|
1
|
Aubert G and Lansdorp PM: Telomeres and
aging. Physiol Rev. 88:557–579. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Swanson MJ, Baribault ME, Israel JN and
Bae NS: Telomere protein RAP1 levels are affected by cellular aging
and oxidative stress. Biomed Rep. 5:181–187. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
de Lange T: Shelterin: The protein complex
that shapes and safeguards human telomeres. Genes Dev.
19:2100–2110. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Collins K and Mitchell JR: Telomerase in
the human organism. Oncogene. 21:564–579. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Harley CB, Futcher AB and Greider CW:
Telomeres shorten during ageing of human fibroblasts. Nature.
345:458–460. 1990. View
Article : Google Scholar : PubMed/NCBI
|
|
6
|
Blasco MA: Telomere length, stem cells and
aging. Nat Chem Biol. 3:640–649. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hemann MT, Strong MA, Hao LY and Greider
CW: The shortest telomere, not average telomere length, is critical
for cell viability and chromosome stability. Cell. 107:67–77. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Samper E, Flores JM and Blasco MA:
Restoration of telomerase activity rescues chromosomal instability
and premature aging in Terc−/− mice with short
telomeres. EMBO Rep. 2:800–807. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Blasco MA: Telomeres and human disease:
Ageing, cancer and beyond. Nat Rev Genet. 6:611–622. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Collado M, Blasco MA and Serrano M:
Cellular senescence in cancer and aging. Cell. 130:223–233. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Willeit P, Willeit J, Brandstätter A,
Ehrlenbach S, Mayr A, Gasperi A, Weger S, Oberhollenzer F, Reindl
M, Kronenberg F and Kiechl S: Cellular aging reflected by leukocyte
telomere length predicts advanced atherosclerosis and
cardiovascular disease risk. Arterioscler Thromb Vasc Biol.
30:1649–1656. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Aviv A: Telomeres and human aging: Facts
and fibs. Sci Aging Knowledge Environ 2004. pe432004.
|
|
13
|
Demissie S, Levy D, Benjamin EJ, Cupples
LA, Gardner JP, Herbert A, Kimura M, Larson MG, Meigs JB, Keaney JF
and Aviv A: Insulin resistance, oxidative stress, hypertension, and
leukocyte telomere length in men from the Framingham Heart Study.
Aging Cell. 5:325–330. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Fitzpatrick AL, Kronmal RA, Gardner JP,
Psaty BM, Jenny NS, Tracy RP, Walston J, Kimura M and Aviv A:
Leukocyte telomere length and cardiovascular disease in the
cardiovascular health study. Am J Epidemiol. 165:14–21. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Astrup AS, Tarnow L, Jorsal A, Lajer M,
Nzietchueng R, Benetos A, Rossing P and Parving HH: Telomere length
predicts all-cause mortality in patients with type 1 diabetes.
Diabetologia. 53:45–48. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Olivieri F, Lorenzi M, Antonicelli R,
Testa R, Sirolla C, Cardelli M, Mariotti S, Marchegiani F, Marra M,
Spazzafumo L, et al: Leukocyte telomere shortening in elderly
Type2DM patients with previous myocardial infarction.
Atherosclerosis. 206:588–593. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Karabatsiakis A, Kolassa IT, Kolassa S,
Rudolph KL and Dietrich DE: Telomere shortening in leukocyte
subpopulations in depression. BMC Psychiatry. 14:1922014.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ladwig KH, Brockhaus AC, Baumert J,
Lukaschek K, Emeny RT, Kruse J, Codd V, Häfner S, Albrecht E, Illig
T, et al: Posttraumatic stress disorder and not depression is
associated with shorter leukocyte telomere length: Findings from
3,000 participants in the population-based KORA F4 study. PLoS One.
8:e647622013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Fernandez-Egea E, Bernardo M, Heaphy CM,
Griffith JK, Parellada E, Esmatjes E, Conget I, Nguyen L, George V,
Stöppler H and Kirkpatrick B: Telomere length and pulse pressure in
newly diagnosed, antipsychotic-naive patients with nonaffective
psychosis. Schizophr Bull. 35:437–442. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Yang Z, Ye J, Li C, Zhou D, Shen Q, Wu J,
Cao L, Wang T, Cui D, He S, et al: Drug addiction is associated
with leukocyte telomere length. Sci Rep. 3:15422013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Thomas P, O' Callaghan NJ and Fenech M:
Telomere length in white blood cells, buccal cells and brain tissue
and its variation with ageing and Alzheimer's disease. Mech Ageing
Dev. 129:183–190. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wolkowitz OM, Epel ES, Reus VI and Mellon
SH: Depression gets old fast: Do stress and depression accelerate
cell aging? Depress Anxiety. 27:327–338. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hammen C: Stress and depression. Annu Rev
Clin Psychol. 1:293–319. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Alloy LB, Liu RT and Bender RE: Stress
generation research in depression: A commentary. Int J Cogn Ther.
3:380–388. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
McEwen BS and McEwen BS: Mood disorders
and allostatic load. Biol Psychiatry. 54:200–207. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kapczinski F, Dal-Pizzol F, Teixeira AL,
Magalhaes PV, Kauer-Sant'Anna M, Klamt F, Moreira JC, de
Bittencourt Pasquali MA, Fries GR, Quevedo J, et al: Peripheral
biomarkers and illness activity in bipolar disorder. J Psychiatr
Res. 45:156–161. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kinser PA and Lyon DE: Major depressive
disorder and measures of cellular aging: An integrative review.
Nurs Res Pract. 2013:4690702013.PubMed/NCBI
|
|
28
|
Epel ES, Blackburn EH, Lin J, Dhabhar FS,
Adler NE, Morrow JD and Cawthon RM: Accelerated telomere shortening
in response to life stress. Proc Natl Acad Sci USA. 101:pp.
17312–17315. 2004; View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Berk M, Kapczinski F, Andreazza AC, Dean
OM, Giorlando F, Maes M, Yücel M, Gama CS, Dodd S, Dean B, et al:
Pathways underlying neuroprogression in bipolar disorder: Focus on
inflammation, oxidative stress and neurotrophic factors. Neurosci
Biobehav Rev. 35:804–817. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Monteleone P, Serritella C, Martiadis V
and Maj M: Decreased levels of serum brain-derived neurotrophic
factor in both depressed and euthymic patients with unipolar
depression and in euthymic patients with bipolar I and II
disorders. Bipolar Disord. 10:95–100. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ferrón SR, Marqués-Torrejón MA, Mira H,
Flores I, Taylor K, Blasco MA and Fariñas I: Telomere shortening in
neural stem cells disrupts neuronal differentiation and
neuritogenesis. J Neurosci. 29:14394–14407. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kendler KS, Karkowski LM and Prescott CA:
Fears and phobias: Reliability and heritability. Psychol Med.
29:539–553. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Fyhrquist F and Saijonmaa O: Telomere
length and cardiovascular aging. Ann Med. 44 Suppl 1:138–142. 2012.
View Article : Google Scholar
|
|
34
|
Simon NM, Smoller JW, McNamara KL, Maser
RS, Zalta AK, Pollack MH, Nierenberg AA, Fava M and Wong KK:
Telomere shortening and mood disorders: Preliminary support for a
chronic stress model of accelerated aging. Biol Psychiatry.
60:432–435. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Brieger K, Schiavone S, Miller FJ Jr and
Krause KH: Reactive oxygen species: From health to disease. Swiss
Med Wkly. 142:w136592012.PubMed/NCBI
|
|
36
|
von Zglinicki T: Oxidative stress shortens
telomeres. Trends Biochem Sci. 27:339–344. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Verhoeven JE, Révész D, Epel ES, Lin J,
Wolkowitz OM and Penninx BW: Major depressive disorder and
accelerated cellular aging: Results from a large psychiatric cohort
study. Mol Psychiatry. 19:895–901. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Elvsåshagen T, Vera E, Bøen E, Bratlie J,
Andreassen OA, Josefsen D, Malt UF, Blasco MA and Boye B: The load
of short telomeres is increased and associated with lifetime number
of depressive episodes in bipolar II disorder. J Affect Disord.
135:43–50. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Needham BL, Mezuk B, Bareis N, Lin J,
Blackburn EH and Epel ES: Depression, anxiety and telomere length
in young adults: Evidence from the National Health and Nutrition
Examination Survey. Mol Psychiatry. 20:520–528. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Lung FW, Chen NC and Shu BC: Genetic
pathway of major depressive disorder in shortening telomeric
length. Psychiatr Genet. 17:195–199. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Phillips AC, Robertson T, Carroll D, Der
G, Shiels PG, McGlynn L and Benzeval M: Do symptoms of depression
predict telomere length? Evidence from the west of Scotland
twenty-07 study. Psychosom Med. 75:288–296. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wikgren M, Maripuu M, Karlsson T,
Nordfjäll K, Bergdahl J, Hultdin J, Del-Favero J, Roos G, Nilsson
LG, Adolfsson R and Norrback KF: Short telomeres in depression and
the general population are associated with a hypocortisolemic
state. Biol Psychiatry. 71:294–300. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hartmann N, Boehner M, Groenen F and Kalb
R: Telomere length of patients with major depression is shortened
but independent from therapy and severity of the disease. Depress
Anxiety. 27:1111–1116. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Simon NM, Walton ZE, Bui E, Prescott J,
Hoge E, Keshaviah A, Schwarz N, Dryman T, Ojserkis RA, Kovachy B,
et al: Telomere length and telomerase in a well-characterized
sample of individuals with major depressive disorder compared to
controls. Psychoneuroendocrinology. 58:9–22. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Puterman E and Epel E: An intricate dance:
Life experience, multisystem resiliency, and rate of telomere
decline throughout the lifespan. Soc Personal Psychol Compass.
6:807–825. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Czepielewski LS, Massuda R, Panizzutti B,
da Rosa ED, de Lucena D, Macêdo D, Grun LK, Barbé-Tuana FM and Gama
CS: Telomere length in subjects with schizophrenia, their
unaffected siblings and healthy controls: Evidence of accelerated
aging. Schizophr Res. 174:39–42. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Shastry BS: Schizophrenia: A genetic
perspective (Review). Int J Mol Med. 9:207–212. 2002.PubMed/NCBI
|
|
48
|
Rao S, Ye N, Hu H, Shen Y and Xu Q:
Variants in TERT influencing telomere length are associated with
paranoid schizophrenia risk. Am J Med Genet B Neuropsychiatr Genet.
171B:1–324. 2016.
|
|
49
|
Yu WY, Chang HW, Lin CH and Cho CL: Short
telomeres in patients with chronic schizophrenia who show a poor
response to treatment. J Psychiatry Neurosci. 33:244–247.
2008.PubMed/NCBI
|
|
50
|
Wolkowitz OM, Jeste DV, Martin AS, Lin J,
Daly RE, Reuter C and Kraemer H: Leukocyte telomere length: Effects
of schizophrenia, age, and gender. J Psychiatr Res. 85:42–48. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Leykin I, Mayer R and Shinitzky M: Short
and long-term immunosuppressive effects of clozapine and
haloperidol. Immunopharmacology. 37:75–86. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Müller N, Myint AM and Schwarz MJ:
Inflammation in schizophrenia. Adv Protein Chem Struct Biol.
88:49–68. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Porton B, Delisi LE, Bertisch HC, Ji F,
Gordon D, Li P, Benedict MM, Greenberg WM and Kao HT: Telomerase
levels in schizophrenia: A preliminary study. Schizophr Res.
106:242–247. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Rao S, Kota LN, Li Z, Yao Y, Tang J, Mao
C, Jain S, Xu Y and Xu Q: Accelerated leukocyte telomere erosion in
schizophrenia: Evidence from the present study and a meta-analysis.
J Psychiatr Res. 79:50–56. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Savolainen K, Räikkönen K, Kananen L,
Kajantie E, Hovatta I, Lahti M, Lahti J, Pesonen AK, Heinonen K and
Eriksson JG: History of mental disorders and leukocyte telomere
length in late adulthood: The Helsinki Birth Cohort Study (HBCS). J
Psychiatr Res. 46:1346–1353. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Beaulieu JM and Gainetdinov RR: The
physiology, signaling, and pharmacology of dopamine receptors.
Pharmacol Rev. 63:182–217. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hoffmeyer K, Raggioli A, Rudloff S, Anton
R, Hierholzer A, Del Valle I, Hein K, Vogt R and Kemler R:
Wnt/β-catenin signaling regulates telomerase in stem cells and
cancer cells. Science. 336:1549–1554. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Schizophrenia Working Group of the
Psychiatric Genomics Consortium, . Biological insights from 108
schizophrenia-associated genetic loci. Nature. 511:421–427. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Okusaga OO: Accelerated aging in
schizophrenia patients: The potential role of oxidative stress.
Aging Dis. 5:256–262. 2013.PubMed/NCBI
|
|
60
|
Okusaga O, Hamilton RG, Can A, Igbide A,
Giegling I, Hartmann AM, Konte B, Friedl M, Reeves GM, Rujescu D
and Postolache TT: Phadiatop seropositivity in schizophrenia
patients and controls: A preliminary study. AIMS Public Health.
1:43–50. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kirkpatrick B and Galderisi S: Deficit
schizophrenia: An update. World Psychiatry. 7:143–147. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kao HT, Cawthon RM, Delisi LE, Bertisch
HC, Ji F, Gordon D, Li P, Benedict MM, Greenberg WM and Porton B:
Rapid telomere erosion in schizophrenia. Mol Psychiatry.
13:118–119. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Polho GB, De-Paula VJ, Cardillo G, dos
Santos B and Kerr DS: Leukocyte telomere length in patients with
schizophrenia: A meta-analysis. Schizophr Res. 165:195–200. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Prabakaran S, Swatton JE, Ryan MM,
Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, Dudbridge
F, Lilley KS, et al: Mitochondrial dysfunction in schizophrenia:
Evidence for compromised brain metabolism and oxidative stress. Mol
Psychiatry. 9:684–697. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Nishioka N and Arnold SE: Evidence for
oxidative DNA damage in the hippocampus of elderly patients with
chronic schizophrenia. Am J Geriatr Psychiatry. 12:167–175. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yao JK, Reddy R, McElhinny LG and van
Kammen DP: Reduced status of plasma total antioxidant capacity in
schizophrenia. Schizophr Res. 32:1–8. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Khan MM, Evans DR, Gunna V, Scheffer RE,
Parikh VV and Mahadik SP: Reduced erythrocyte membrane essential
fatty acids and increased lipid peroxides in schizophrenia at the
never-medicated first-episode of psychosis and after years of
treatment with antipsychotics. Schizophr Res. 58:1–10. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ranjekar PK, Hinge A, Hegde MV, Ghate M,
Kale A, Sitasawad S, Wagh UV, Debsikdar VB and Mahadik SP:
Decreased antioxidant enzymes and membrane essential
polyunsaturated fatty acids in schizophrenic and bipolar mood
disorder patients. Psychiatry Res. 121:109–122. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Epel ES: Psychological and metabolic
stress: A recipe for accelerated cellular aging? Hormones (Athens).
8:7–22. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Grahame TJ and Schlesinger RB: Oxidative
stress-induced telomeric erosion as a mechanism underlying airborne
particulate matter-related cardiovascular disease. Part Fibre
Toxicol. 9:212012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
von Zglinicki T, Bürkle A and Kirkwood TB:
Stress, DNA damage and ageing - an integrative approach. Exp
Gerontol. 36:1049–1062. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Huzen J, Wong LS, van Veldhuisen DJ,
Samani NJ, Zwinderman AH, Codd V, Cawthon RM, Benus GF, van der
Horst IC, Navis G, et al: Telomere length loss due to smoking and
metabolic traits. J Intern Med. 275:155–163. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Broer L, Codd V, Nyholt DR, Deelen J,
Mangino M, Willemsen G, Albrecht E, Amin N, Beekman M, de Geus EJ,
et al: Meta-analysis of telomere length in 19,713 subjects reveals
high heritability, stronger maternal inheritance and a paternal age
effect. Eur J Hum Genet. 21:1163–1168. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lindqvist D, Epel ES, Mellon SH, Penninx
BW, Révész D, Verhoeven JE, Reus VI, Lin J, Mahan L, Hough CM, et
al: Psychiatric disorders and leukocyte telomere length: Underlying
mechanisms linking mental illness with cellular aging. Neurosci
Biobehav Rev. 55:333–364. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Verhoeven JE, van Oppen P, Puterman E,
Elzinga B and Penninx BW: The association of early and recent
psychosocial life stress with leukocyte telomere length. Psychosom
Med. 77:882–891. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hoen PW, Rosmalen JG, Schoevers RA, Huzen
J, van der Harst P and de Jonge P: Association between anxiety but
not depressive disorders and leukocyte telomere length after 2
years of follow-up in a population-based sample. Psychol Med.
43:689–697. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Malouff JM and Schutte NS: A meta-analysis
of the relationship between anxiety and telomere length. Anxiety
Stress Coping. 30:264–272. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Mathur MB, Epel E, Kind S, Desai M, Parks
CG, Sandler DP and Khazeni N: Perceived stress and telomere length:
A systematic review, meta-analysis, and methodologic considerations
for advancing the field. Brain Behav Immun. 54:158–169. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang X, Sundquist K, Hedelius A, Palmér K,
Memon AA and Sundquist J: Leukocyte telomere length and depression,
anxiety and stress and adjustment disorders in primary health care
patients. BMC Psychiatry. 17:1482017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Weischer M, Bojesen SE, Cawthon RM,
Freiberg JJ, Tybjærg-Hansen A and Nordestgaard BG: Short telomere
length, myocardial infarction, ischemic heart disease, and early
death. Arterioscler Thromb Vasc Biol. 32:822–829. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wentzensen IM, Mirabello L, Pfeiffer RM
and Savage SA: The association of telomere length and cancer: A
meta-analysis. Cancer Epidemiol Biomarkers Prev. 20:1238–1250.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Willeit P, Raschenberger J, Heydon EE,
Tsimikas S, Haun M, Mayr A, Weger S, Witztum JL, Butterworth AS,
Willeit J, et al: Leucocyte telomere length and risk of type 2
diabetes mellitus: New prospective cohort study and
literature-based meta-analysis. PLoS One. 9:e1124832014. View Article : Google Scholar : PubMed/NCBI
|