|
1
|
Kurman RJ and Shih IeM: The origin and
pathogenesis of epithelial ovarian cancer: A proposed unifying
theory. Am J Surg Pathol. 34:433–443. 2010. View Article : Google Scholar
|
|
2
|
Ryland GL, Hunter SM, Doyle MA, Caramia F,
Li J, Rowley SM, Christie M, Allan PE, Stephens AN, Bowtell DD, et
al Australian Ovarian Cancer Study Group, : Mutational landscape of
mucinous ovarian carcinoma and its neoplastic precursors. Genome
Med. 7:872015. View Article : Google Scholar
|
|
3
|
Ramalingam P: Morphologic,
immunophenotypic, and molecular features of epithelial ovarian
cancer. Oncology (Williston Park). 30:166–176. 2016.
|
|
4
|
Harrison ML, Jameson C and Gore ME:
Mucinous ovarian cancer. Int J Gynecol Cancer. 18:209–214. 2008.
View Article : Google Scholar
|
|
5
|
Brasseur K, Gévry N and Asselin E:
Chemoresistance and targeted therapies in ovarian and endometrial
cancers. Oncotarget. 8:4008–4042. 2017. View Article : Google Scholar
|
|
6
|
Hu T and Li C: Convergence between
Wnt-β-catenin and EGFR signaling in cancer. Mol Cancer. 9:2362010.
View Article : Google Scholar
|
|
7
|
Teer JK, Yoder S, Gjyshi A, Nicosia SV,
Zhang C and Monteiro ANA: Mutational heterogeneity in non-serous
ovarian cancers. Sci Rep. 7:97282017. View Article : Google Scholar
|
|
8
|
Hunter SM, Gorringe KL, Christie M, Rowley
SM, Bowtell DD and Campbell IG; Australian Ovarian Cancer Study
Group, : Pre-invasive ovarian mucinous tumors are characterized by
CDKN2A and RAS pathway aberrations. Clin Cancer Res. 18:5267–5277.
2012. View Article : Google Scholar
|
|
9
|
Tafe LJ, Muller KE, Ananda G, Mitchell T,
Spotlow V, Patterson SE, Tsongalis GJ and Mockus SM: Molecular
genetic analysis of ovarian brenner tumors and associated mucinous
epithelial neoplasms: High variant concordance and identification
of mutually exclusive RAS driver mutations and MYC amplification.
Am J Pathol. 186:671–677. 2016. View Article : Google Scholar
|
|
10
|
Mackenzie R, Kommoss S, Winterhoff BJ,
Kipp BR, Garcia JJ, Voss J, Halling K, Karnezis A, Senz J, Yang W,
et al: Targeted deep sequencing of mucinous ovarian tumors reveals
multiple overlapping RAS-pathway activating mutations in borderline
and cancerous neoplasms. BMC Cancer. 15:4152015. View Article : Google Scholar
|
|
11
|
Ascierto PA, Kirkwood JM, Grob JJ, Simeone
E, Grimaldi AM, Maio M, Palmieri G, Testori A, Marincola FM and
Mozzillo N: The role of BRAF V600 mutation in melanoma. J Transl
Med. 10:852012. View Article : Google Scholar
|
|
12
|
Santarpia L, Lippman SM and El-Naggar AK:
Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy.
Expert Opin Ther Targets. 16:103–119. 2012. View Article : Google Scholar
|
|
13
|
Cohen Y, Xing M, Mambo E, Guo Z, Wu G,
Trink B, Beller U, Westra WH, Ladenson PW and Sidransky D: BRAF
mutation in papillary thyroid carcinoma. J Natl Cancer Inst.
95:625–627. 2003. View Article : Google Scholar
|
|
14
|
Obaid NM, Bedard K and Huang WY:
Strategies for overcoming resistance in tumours harboring BRAF
mutations. Int J Mol Sci. 18:E5852017. View Article : Google Scholar
|
|
15
|
Chang KL, Lee MY, Chao WR and Han CP: The
status of Her2 amplification and Kras mutations in mucinous ovarian
carcinoma. Hum Genomics. 10:402016. View Article : Google Scholar
|
|
16
|
Mesbah Ardakani N, Giardina T, Amanuel B
and Stewart CJ: Molecular profiling reveals a clonal relationship
between ovarian mucinous tumors and corresponding mural
carcinomatous nodules. Am J Surg Pathol. 41:1261–1266. 2017.
View Article : Google Scholar
|
|
17
|
Zou Y, Wang F, Liu FY, Huang MZ, Li W,
Yuan XQ, Huang OP and He M: RNF43 mutations are recurrent in
Chinese patients with mucinous ovarian carcinoma but absent in
other subtypes of ovarian cancer. Gene. 531:112–116. 2013.
View Article : Google Scholar
|
|
18
|
Vereczkey I, Serester O, Dobos J, Gallai
M, Szakács O, Szentirmay Z and Tóth E: Molecular characterization
of 103 ovarian serous and mucinous tumors. Pathol Oncol Res.
17:551–559. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Pines G, Köstler WJ and Yarden Y:
Oncogenic mutant forms of EGFR: Lessons in signal transduction and
targets for cancer therapy. FEBS Lett. 584:2699–2706. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Barber TD, Vogelstein B, Kinzler KW and
Velculescu VE: Somatic mutations of EGFR in colorectal cancers and
glioblastomas. N Engl J Med. 351:28832004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wee P and Wang Z: Epidermal growth factor
receptor cell proliferation signaling pathways. Cancers (Basel).
9:E522017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Momeny M, Zarrinrad G, Moghaddaskho F,
Poursheikhani A, Sankanian G, Zaghal A, Mirshahvaladi S, Esmaeili
F, Eyvani H, Barghi F, et al: Dacomitinib, a pan-inhibitor of ErbB
receptors, suppresses growth and invasive capacity of
chemoresistant ovarian carcinoma cells. Sci Rep. 7:42042017.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Matsuo K, Nishimura M, Bottsford-Miller
JN, Huang J, Komurov K, Armaiz-Pena GN, Shahzad MM, Stone RL, Roh
JW, Sanguino AM, et al: Targeting SRC in mucinous ovarian
carcinoma. Clin Cancer Res. 17:5367–5378. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Rosner A, Miyoshi K, Landesman-Bollag E,
Xu X, Seldin DC, Moser AR, MacLeod CL, Shyamala G, Gillgrass AE and
Cardiff RD: Pathway pathology: Histological differences between
ErbB/Ras and Wnt pathway transgenic mammary tumors. Am J Pathol.
161:1087–1097. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li RN, Liu B, Li XM, Hou LS, Mu XL, Wang H
and Linghu H: DACT1 overexpression in type I ovarian cancer
inhibits malignant expansion and cis-platinum resistance by
modulating canonical Wnt signalling and autophagy. Sci Rep.
7:92852017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rask K, Nilsson A, Brännström M, Carlsson
P, Hellberg P, Janson PO, Hedin L and Sundfeldt K: Wnt-signalling
pathway in ovarian epithelial tumours: Increased expression of
beta-catenin and GSK3beta. Br J Cancer. 89:1298–1304. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Katoh M: Canonical and non-canonical WNT
signaling in cancer stem cells and their niches: Cellular
heterogeneity, omics reprogramming, targeted therapy and tumor
plasticity (Review). Int J Oncol. 51:1357–1369. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Barbolina MV, Burkhalter RJ and Stack MS:
Diverse mechanisms for activation of Wnt signalling in the ovarian
tumour microenvironment. Biochem J. 437:1–12. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Singh A and Settleman J: EMT, cancer stem
cells and drug resistance: An emerging axis of evil in the war on
cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Huang L, Jin Y, Feng S, Zou Y, Xu S, Qiu
S, Li L and Zheng J: Role of Wnt/β-catenin, Wnt/c-Jun N-terminal
kinase and Wnt/Ca2+ pathways in cisplatin-induced
chemoresistance in ovarian cancer. Exp Ther Med. 12:3851–3858.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ohtsu H, Mifune M, Frank GD, Saito S,
Inagami T, Kim-Mitsuyama S, Takuwa Y, Sasaki T, Rothstein JD,
Suzuki H, et al: Signal-crosstalk between Rho/ROCK and c-Jun
NH2-terminal kinase mediates migration of vascular smooth muscle
cells stimulated by angiotensin II. Arterioscler Thromb Vasc Biol.
25:1831–1836. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zheng HC: The molecular mechanisms of
chemoresistance in cancers. Oncotarget. 8:59950–59964.
2017.PubMed/NCBI
|
|
33
|
Karabuk E, Kose MF, Hizli D, Taşkin S,
Karadağ B, Turan T, Boran N, Ozfuttu A and Ortaç UF: Comparison of
advanced stage mucinous epithelial ovarian cancer and serous
epithelial ovarian cancer with regard to chemosensitivity and
survival outcome: A matched case-control study. J Gynecol Oncol.
24:160–166. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wamunyokoli FW, Bonome T, Lee JY, Feltmate
CM, Welch WR, Radonovich M, Pise-Masison C, Brady J, Hao K,
Berkowitz RS, et al: Expression profiling of mucinous tumors of the
ovary identifies genes of clinicopathologic importance. Clin Cancer
Res. 12:690–700. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Stewart DJ: Wnt signaling pathway in
non-small cell lung cancer. J Natl Cancer Inst. 106:djt3562014.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Garrett AP, Lee KR, Colitti CR, Muto MG,
Berkowitz RS and Mok SC: k-ras mutation may be an early event in
mucinous ovarian tumorigenesis. Int J Gynecol Pathol. 20:244–251.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bahrami A, Amerizadeh F, ShahidSales S,
Khazaei M, Ghayour-Mobarhan M, Sadeghnia HR, Maftouh M, Hassanian
SM and Avan A: Therapeutic potential of targeting Wnt/β-catenin
pathway in treatment of colorectal cancer: Rational and progress. J
Cell Biochem. 118:1979–1983. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Luo K, Gu X, Liu J, Zeng G, Peng L, Huang
H, Jiang M, Yang P, Li M, Yang Y, et al: Inhibition of disheveled-2
resensitizes cisplatin-resistant lung cancer cells through
down-regulating Wnt/β-catenin signaling. Exp Cell Res. 347:105–113.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
King TD, Zhang W, Suto MJ and Li Y:
Frizzled7 as an emerging target for cancer therapy. Cell Signal.
24:846–851. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kawano Y and Kypta R: Secreted antagonists
of the Wnt signalling pathway. J Cell Sci. 116:2627–2634. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Le PN, McDermott JD and Jimeno A:
Targeting the Wnt pathway in human cancers: Therapeutic targeting
with a focus on OMP-54F28. Pharmacol Ther. 146:1–11. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pez F, Lopez A, Kim M, Wands JR, Caron de
Fromentel C and Merle P: Wnt signaling and hepatocarcinogenesis:
Molecular targets for the development of innovative anticancer
drugs. J Hepatol. 59:1107–1117. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Saran U, Arfuso F, Zeps N and Dharmarajan
A: Secreted frizzled-related protein 4 expression is positively
associated with responsiveness to cisplatin of ovarian cancer cell
lines in vitro and with lower tumour grade in mucinous ovarian
cancers. BMC Cell Biol. 13:252012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jacob F, Ukegjini K, Nixdorf S, Ford CE,
Olivier J, Caduff R, Scurry JP, Guertler R, Hornung D, Mueller R,
et al: Loss of secreted frizzled-related protein 4 correlates with
an aggressive phenotype and predicts poor outcome in ovarian cancer
patients. PLoS One. 7:e318852012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Su HY, Lai HC, Lin YW, Liu CY, Chen CK,
Chou YC, Lin SP, Lin WC, Lee HY and Yu MH: Epigenetic silencing of
SFRP5 is related to malignant phenotype and chemoresistance of
ovarian cancer through Wnt signaling pathway. Int J Cancer.
127:555–567. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bernaudo S, Salem M, Qi X, Zhou W, Zhang
C, Yang W, Rosman D, Deng Z, Ye G, Yang B, et al: Cyclin G2
inhibits epithelial-to-mesenchymal transition by disrupting
Wnt/β-catenin signaling. Oncogene. 35:4816–4827. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fischer MM, Cancilla B, Yeung VP,
Cattaruzza F, Chartier C, Murriel CL, Cain J, Tam R, Cheng CY,
Evans JW, et al: WNT antagonists exhibit unique combinatorial
antitumor activity with taxanes by potentiating mitotic cell death.
Sci Adv. 3:e17000902017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Menezes ME, Devine DJ, Shevde LA and
Samant RS: Dickkopf1: A tumor suppressor or metastasis promoter?
Int J Cancer. 130:1477–1483. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Takata A, Terauchi M, Hiramitsu S, Uno M,
Wakana K and Kubota T: Dkk-3 induces apoptosis through
mitochondrial and Fas death receptor pathways in human mucinous
ovarian cancer cells. Int J Gynecol Cancer. 25:372–379. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Duan H, Yan Z, Chen W, Wu Y, Han J, Guo H
and Qiao J: TET1 inhibits EMT of ovarian cancer cells through
activating Wnt/β-catenin signaling inhibitors DKK1 and SFRP2.
Gynecol Oncol. 147:408–417. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang Z, Li B, Zhou L, Yu S, Su Z, Song J,
Sun Q, Sha O, Wang X, Jiang W, et al: Prodigiosin inhibits
Wnt/β-catenin signaling and exerts anticancer activity in breast
cancer cells. Proc Natl Acad Sci USA. 113:pp. 13150–13155. 2016;
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Grandy D, Shan J, Zhang X, Rao S, Akunuru
S, Li H, Zhang Y, Alpatov I, Zhang XA, Lang RA, et al: Discovery
and characterization of a small molecule inhibitor of the PDZ
domain of dishevelled. J Biol Chem. 284:16256–16263. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ge YX, Wang CH, Hu FY, Pan LX, Min J, Niu
KY, Zhang L, Li J and Xu T: New advances of TMEM88 in cancer
initiation and progression, with special emphasis on Wnt signaling
pathway. J Cell Physiol. 233:79–87. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Chen X and Deng Y: Simulations of a
specific inhibitor of the dishevelled PDZ domain. J Mol Model.
15:91–96. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
de Groot RE, Ganji RS, Bernatik O,
Lloyd-Lewis B, Seipel K, Šedová K, Zdráhal Z, Dhople VM, Dale TC,
Korswagen HC and Bryja V: Huwe1-mediated ubiquitylation of
dishevelled defines a negative feedback loop in the Wnt signaling
pathway. Sci Signal. 7:ra262014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Bouteille N, Driouch K, Hage PE, Sin S,
Formstecher E, Camonis J, Lidereau R and Lallemand F: Inhibition of
the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein.
Oncogene. 28:2569–2580. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yin X, Xiang T, Li L, Su X, Shu X, Luo X,
Huang J, Yuan Y, Peng W, Oberst M, et al: DACT1, an antagonist to
Wnt/β-catenin signaling, suppresses tumor cell growth and is
frequently silenced in breast cancer. Breast Cancer Res.
15:R232013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Rosenberg LH, Lafitte M, Quereda V, Grant
W, Chen W, Bibian M, Noguchi Y, Fallahi M, Yang C, Chang JC, et al:
Therapeutic targeting of casein kinase 1δ in breast cancer. Sci
Transl Med. 7:318ra2022015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zheng Y, McFarland BC, Drygin D, Yu H,
Bellis SL, Kim H, Bredel M and Benveniste EN: Targeting protein
kinase CK2 suppresses prosurvival signaling pathways and growth of
glioblastoma. Clin Cancer Res. 19:6484–6494. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kim J and Kim SH: Druggability of the CK2
inhibitor CX-4945 as an anticancer drug and beyond. Arch Pharm Res.
35:1293–1296. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hung MS, Xu Z, Lin YC, Mao JH, Yang CT,
Chang PJ, Jablons DM and You L: Identification of hematein as a
novel inhibitor of protein kinase CK2 from a natural product
library. BMC Cancer. 9:1352009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wu X, Luo F, Li J, Zhong X and Liu K:
Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon
cancer cell lines via inhibition of the Wnt signaling pathway. Int
J Oncol. 48:1333–1340. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Thorvaldsen TE, Pedersen NM, Wenzel EM and
Stenmark H: Differential roles of AXIN1 and AXIN2 in tankyrase
inhibitor-induced formation of degradasomes and β-catenin
degradation. PLoS One. 12:e01705082017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhou A, Lin K, Zhang S, Chen Y, Zhang N,
Xue J, Wang Z, Aldape KD, Xie K, Woodgett JR and Huang S: Nuclear
GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing
its deubiquitylation by USP22. Nat Cell Biol. 18:954–966. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sun A, Li C, Chen R, Huang Y, Chen Q, Cui
X, Liu H, Thrasher JB and Li B: GSK-3β controls autophagy by
modulating LKB1-AMPK pathway in prostate cancer cells. Prostate.
76:172–183. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ahn SY, Yang JH, Kim NH, Lee K, Cha YH,
Yun JS, Kang HE, Lee Y, Choi J, Kim HS and Yook JI: Anti-helminthic
niclosamide inhibits Ras-driven oncogenic transformation via
activation of GSK-3. Oncotarget. 8:31856–31863. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Jingushi K, Nakamura T, Takahashi-Yanaga
F, Matsuzaki E, Watanabe Y, Yoshihara T, Morimoto S and Sasaguri T:
Differentiation-inducing factor-1 suppresses the expression of
c-Myc in the human cancer cell lines. J Pharmacol Sci. 121:103–109.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang Q, Chen WM, Zhang XX, Zhang HX, Wang
HC, Zheng FY and Zhu FF: Overexpression of salusin-β is associated
with poor prognosis in ovarian cancer. Oncol Rep. 37:1826–1832.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Guo RJ, Funakoshi S, Lee HH, Kong J and
Lynch JP: The intestine-specific transcription factor Cdx2 inhibits
beta-catenin/TCF transcriptional activity by disrupting the
beta-catenin-TCF protein complex. Carcinogenesis. 31:159–166. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Koh I, Hinoi T, Sentani K, Hirata E,
Nosaka S, Niitsu H, Miguchi M, Adachi T, Yasui W, Ohdan H and Kudo
Y: Regulation of multidrug resistance 1 expression by CDX2 in
ovarian mucinous adenocarcinoma. Cancer Med. 5:1546–1555. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Takakura Y, Hinoi T, Oue N, Sasada T,
Kawaguchi Y, Okajima M, Akyol A, Fearon ER, Yasui W and Ohdan H:
CDX2 regulates multidrug resistance 1 gene expression in malignant
intestinal epithelium. Cancer Res. 70:6767–6778. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yan X, Lyu T, Jia N, Yu Y, Hua K and Feng
W: Huaier aqueous extract inhibits ovarian cancer cell motility via
the AKT/GSK3β/β-catenin pathway. PLoS One. 8:e637312013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yamada T and Masuda M: Emergence of TNIK
inhibitors in cancer therapeutics. Cancer Sci. 108:818–823. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Shin SH, Lim DY, Reddy K, Malakhova M, Liu
F, Wang T, Song M, Chen H, Bae KB, Ryu J, et al: A small molecule
inhibitor of the β-catenin-TCF4 interaction suppresses colorectal
cancer growth in vitro and in vivo. EBioMedicine. 25:22–31. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang C, Zhang Z, Zhang S, Wang W and Hu
P: Targeting of Wnt/β-catenin by anthelmintic drug pyrvinium
enhances sensitivity of ovarian cancer cells to chemotherapy. Med
Sci Monit. 23:266–275. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhao S, Ma Y and Huang X: Trefoil factor 1
elevates the malignant phenotype of mucinous ovarian cancer cell
through Wnt/β-catenin signaling. Int J Clin Exp Pathol.
8:10412–10419. 2015.PubMed/NCBI
|
|
77
|
Wang J, Cai J, Han F, Yang C, Tong Q, Cao
T, Wu L and Wang Z: Silencing of CXCR4 blocks progression of
ovarian cancer and depresses canonical Wnt signaling pathway. Int J
Gynecol Cancer. 21:981–987. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Gao W, Liu Y, Qin R, Liu D and Feng Q:
Silence of fibronectin 1 increases cisplatin sensitivity of
non-small cell lung cancer cell line. Biochem Biophys Res Commun.
476:35–41. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Choi D, Ramu S, Park E, Jung E, Yang S,
Jung W, Choi I, Lee S, Kim KE, Seong YJ, et al: Aberrant activation
of notch signaling inhibits PROX1 activity to enhance the malignant
behavior of thyroid cancer cells. Cancer Res. 76:582–593. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tang X, Wang Y, Fan Z, Ji G, Wang M, Lin
J, Huang S and Meltzer SJ: Klotho: A tumor suppressor and modulator
of the Wnt/β-catenin pathway in human hepatocellular carcinoma. Lab
Invest. 96:197–205. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Cloven NG, Kyshtoobayeva A, Burger RA, Yu
IR and Fruehauf JP: In vitro chemoresistance and biomarker profiles
are unique for histologic subtypes of epithelial ovarian cancer.
Gynecol Oncol. 92:160–166. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Adams GP and Weiner LM: Monoclonal
antibody therapy of cancer. Nat Biotechnol. 23:1147–1157. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gui T and Shen K: The epidermal growth
factor receptor as a therapeutic target in epithelial ovarian
cancer. Cancer Epidemiol. 36:490–496. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Vaidyanathan A, Sawers L, Gannon AL,
Chakravarty P, Scott AL, Bray SE, Ferguson MJ and Smith G: ABCB1
(MDR1) induction defines a common resistance mechanism in
paclitaxel- and olaparib-resistant ovarian cancer cells. Br J
Cancer. 115:431–441. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhang M, Liu E, Cui Y and Huang Y:
Nanotechnology-based combination therapy for overcoming
multidrug-resistant cancer. Cancer Biol Med. 14:212–227. 2017.
View Article : Google Scholar : PubMed/NCBI
|