Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
March-2018 Volume 8 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2018 Volume 8 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer (Review)

  • Authors:
    • Emiko Niiro
    • Sachiko Morioka
    • Kana Iwai
    • Yuki Yamada
    • Kenji Ogawa
    • Naoki Kawahara
    • Hiroshi Kobayashi
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
  • Pages: 215-223
    |
    Published online on: January 17, 2018
       https://doi.org/10.3892/br.2018.1045
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cases of mucinous ovarian cancer are predominantly resistant to chemotherapies. The present review summarizes current knowledge of the therapeutic potential of targeting the Wingless (WNT) pathway, with particular emphasis on preclinical and clinical studies, for improving the chemoresistance and treatment of mucinous ovarian cancer. A review was conducted of English language literature published between January 2000 and October 2017 that concerned potential signaling pathways associated with the chemoresistance of mucinous ovarian cancer. The literature indicated that aberrant activation of growth factor and WNT signaling pathways is specifically observed in mucinous ovarian cancer. An evolutionarily conserved signaling cascade system including epidermal growth factor/RAS/RAF/mitogen‑activated protein kinase kinase/extracellular signal‑regulated protein kinase, phosphoinositide 3‑kinase/Akt and WNT signaling regulates a variety of cellular functions; their crosstalk mutually enhances signaling activity and induces chemoresistance. Novel antagonists, modulators and inhibitors have been developed for targeting the components of the WNT signaling pathway, namely Frizzled, low‑density lipoprotein receptor‑related protein 5/6, Dishevelled, casein kinase 1, AXIN, glycogen synthase kinase 3β and β‑catenin. Targeted inhibition of WNT signaling represents a rational and promising novel approach to overcome chemoresistance, and several WNT inhibitors are being evaluated in preclinical studies. In conclusion, the WNT receptors and their downstream components may serve as novel therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer.
View Figures

Figure 1

View References

1 

Kurman RJ and Shih IeM: The origin and pathogenesis of epithelial ovarian cancer: A proposed unifying theory. Am J Surg Pathol. 34:433–443. 2010. View Article : Google Scholar

2 

Ryland GL, Hunter SM, Doyle MA, Caramia F, Li J, Rowley SM, Christie M, Allan PE, Stephens AN, Bowtell DD, et al Australian Ovarian Cancer Study Group, : Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors. Genome Med. 7:872015. View Article : Google Scholar

3 

Ramalingam P: Morphologic, immunophenotypic, and molecular features of epithelial ovarian cancer. Oncology (Williston Park). 30:166–176. 2016.

4 

Harrison ML, Jameson C and Gore ME: Mucinous ovarian cancer. Int J Gynecol Cancer. 18:209–214. 2008. View Article : Google Scholar

5 

Brasseur K, Gévry N and Asselin E: Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget. 8:4008–4042. 2017. View Article : Google Scholar

6 

Hu T and Li C: Convergence between Wnt-β-catenin and EGFR signaling in cancer. Mol Cancer. 9:2362010. View Article : Google Scholar

7 

Teer JK, Yoder S, Gjyshi A, Nicosia SV, Zhang C and Monteiro ANA: Mutational heterogeneity in non-serous ovarian cancers. Sci Rep. 7:97282017. View Article : Google Scholar

8 

Hunter SM, Gorringe KL, Christie M, Rowley SM, Bowtell DD and Campbell IG; Australian Ovarian Cancer Study Group, : Pre-invasive ovarian mucinous tumors are characterized by CDKN2A and RAS pathway aberrations. Clin Cancer Res. 18:5267–5277. 2012. View Article : Google Scholar

9 

Tafe LJ, Muller KE, Ananda G, Mitchell T, Spotlow V, Patterson SE, Tsongalis GJ and Mockus SM: Molecular genetic analysis of ovarian brenner tumors and associated mucinous epithelial neoplasms: High variant concordance and identification of mutually exclusive RAS driver mutations and MYC amplification. Am J Pathol. 186:671–677. 2016. View Article : Google Scholar

10 

Mackenzie R, Kommoss S, Winterhoff BJ, Kipp BR, Garcia JJ, Voss J, Halling K, Karnezis A, Senz J, Yang W, et al: Targeted deep sequencing of mucinous ovarian tumors reveals multiple overlapping RAS-pathway activating mutations in borderline and cancerous neoplasms. BMC Cancer. 15:4152015. View Article : Google Scholar

11 

Ascierto PA, Kirkwood JM, Grob JJ, Simeone E, Grimaldi AM, Maio M, Palmieri G, Testori A, Marincola FM and Mozzillo N: The role of BRAF V600 mutation in melanoma. J Transl Med. 10:852012. View Article : Google Scholar

12 

Santarpia L, Lippman SM and El-Naggar AK: Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 16:103–119. 2012. View Article : Google Scholar

13 

Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW and Sidransky D: BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 95:625–627. 2003. View Article : Google Scholar

14 

Obaid NM, Bedard K and Huang WY: Strategies for overcoming resistance in tumours harboring BRAF mutations. Int J Mol Sci. 18:E5852017. View Article : Google Scholar

15 

Chang KL, Lee MY, Chao WR and Han CP: The status of Her2 amplification and Kras mutations in mucinous ovarian carcinoma. Hum Genomics. 10:402016. View Article : Google Scholar

16 

Mesbah Ardakani N, Giardina T, Amanuel B and Stewart CJ: Molecular profiling reveals a clonal relationship between ovarian mucinous tumors and corresponding mural carcinomatous nodules. Am J Surg Pathol. 41:1261–1266. 2017. View Article : Google Scholar

17 

Zou Y, Wang F, Liu FY, Huang MZ, Li W, Yuan XQ, Huang OP and He M: RNF43 mutations are recurrent in Chinese patients with mucinous ovarian carcinoma but absent in other subtypes of ovarian cancer. Gene. 531:112–116. 2013. View Article : Google Scholar

18 

Vereczkey I, Serester O, Dobos J, Gallai M, Szakács O, Szentirmay Z and Tóth E: Molecular characterization of 103 ovarian serous and mucinous tumors. Pathol Oncol Res. 17:551–559. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Pines G, Köstler WJ and Yarden Y: Oncogenic mutant forms of EGFR: Lessons in signal transduction and targets for cancer therapy. FEBS Lett. 584:2699–2706. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Barber TD, Vogelstein B, Kinzler KW and Velculescu VE: Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med. 351:28832004. View Article : Google Scholar : PubMed/NCBI

21 

Wee P and Wang Z: Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 9:E522017. View Article : Google Scholar : PubMed/NCBI

22 

Momeny M, Zarrinrad G, Moghaddaskho F, Poursheikhani A, Sankanian G, Zaghal A, Mirshahvaladi S, Esmaeili F, Eyvani H, Barghi F, et al: Dacomitinib, a pan-inhibitor of ErbB receptors, suppresses growth and invasive capacity of chemoresistant ovarian carcinoma cells. Sci Rep. 7:42042017. View Article : Google Scholar : PubMed/NCBI

23 

Matsuo K, Nishimura M, Bottsford-Miller JN, Huang J, Komurov K, Armaiz-Pena GN, Shahzad MM, Stone RL, Roh JW, Sanguino AM, et al: Targeting SRC in mucinous ovarian carcinoma. Clin Cancer Res. 17:5367–5378. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Rosner A, Miyoshi K, Landesman-Bollag E, Xu X, Seldin DC, Moser AR, MacLeod CL, Shyamala G, Gillgrass AE and Cardiff RD: Pathway pathology: Histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumors. Am J Pathol. 161:1087–1097. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Li RN, Liu B, Li XM, Hou LS, Mu XL, Wang H and Linghu H: DACT1 overexpression in type I ovarian cancer inhibits malignant expansion and cis-platinum resistance by modulating canonical Wnt signalling and autophagy. Sci Rep. 7:92852017. View Article : Google Scholar : PubMed/NCBI

26 

Rask K, Nilsson A, Brännström M, Carlsson P, Hellberg P, Janson PO, Hedin L and Sundfeldt K: Wnt-signalling pathway in ovarian epithelial tumours: Increased expression of beta-catenin and GSK3beta. Br J Cancer. 89:1298–1304. 2003. View Article : Google Scholar : PubMed/NCBI

27 

Katoh M: Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 51:1357–1369. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Barbolina MV, Burkhalter RJ and Stack MS: Diverse mechanisms for activation of Wnt signalling in the ovarian tumour microenvironment. Biochem J. 437:1–12. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Singh A and Settleman J: EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Huang L, Jin Y, Feng S, Zou Y, Xu S, Qiu S, Li L and Zheng J: Role of Wnt/β-catenin, Wnt/c-Jun N-terminal kinase and Wnt/Ca2+ pathways in cisplatin-induced chemoresistance in ovarian cancer. Exp Ther Med. 12:3851–3858. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Ohtsu H, Mifune M, Frank GD, Saito S, Inagami T, Kim-Mitsuyama S, Takuwa Y, Sasaki T, Rothstein JD, Suzuki H, et al: Signal-crosstalk between Rho/ROCK and c-Jun NH2-terminal kinase mediates migration of vascular smooth muscle cells stimulated by angiotensin II. Arterioscler Thromb Vasc Biol. 25:1831–1836. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Zheng HC: The molecular mechanisms of chemoresistance in cancers. Oncotarget. 8:59950–59964. 2017.PubMed/NCBI

33 

Karabuk E, Kose MF, Hizli D, Taşkin S, Karadağ B, Turan T, Boran N, Ozfuttu A and Ortaç UF: Comparison of advanced stage mucinous epithelial ovarian cancer and serous epithelial ovarian cancer with regard to chemosensitivity and survival outcome: A matched case-control study. J Gynecol Oncol. 24:160–166. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Wamunyokoli FW, Bonome T, Lee JY, Feltmate CM, Welch WR, Radonovich M, Pise-Masison C, Brady J, Hao K, Berkowitz RS, et al: Expression profiling of mucinous tumors of the ovary identifies genes of clinicopathologic importance. Clin Cancer Res. 12:690–700. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Stewart DJ: Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst. 106:djt3562014. View Article : Google Scholar : PubMed/NCBI

36 

Garrett AP, Lee KR, Colitti CR, Muto MG, Berkowitz RS and Mok SC: k-ras mutation may be an early event in mucinous ovarian tumorigenesis. Int J Gynecol Pathol. 20:244–251. 2001. View Article : Google Scholar : PubMed/NCBI

37 

Bahrami A, Amerizadeh F, ShahidSales S, Khazaei M, Ghayour-Mobarhan M, Sadeghnia HR, Maftouh M, Hassanian SM and Avan A: Therapeutic potential of targeting Wnt/β-catenin pathway in treatment of colorectal cancer: Rational and progress. J Cell Biochem. 118:1979–1983. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Luo K, Gu X, Liu J, Zeng G, Peng L, Huang H, Jiang M, Yang P, Li M, Yang Y, et al: Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling. Exp Cell Res. 347:105–113. 2016. View Article : Google Scholar : PubMed/NCBI

39 

King TD, Zhang W, Suto MJ and Li Y: Frizzled7 as an emerging target for cancer therapy. Cell Signal. 24:846–851. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Kawano Y and Kypta R: Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 116:2627–2634. 2003. View Article : Google Scholar : PubMed/NCBI

41 

Le PN, McDermott JD and Jimeno A: Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther. 146:1–11. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Pez F, Lopez A, Kim M, Wands JR, Caron de Fromentel C and Merle P: Wnt signaling and hepatocarcinogenesis: Molecular targets for the development of innovative anticancer drugs. J Hepatol. 59:1107–1117. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Saran U, Arfuso F, Zeps N and Dharmarajan A: Secreted frizzled-related protein 4 expression is positively associated with responsiveness to cisplatin of ovarian cancer cell lines in vitro and with lower tumour grade in mucinous ovarian cancers. BMC Cell Biol. 13:252012. View Article : Google Scholar : PubMed/NCBI

44 

Jacob F, Ukegjini K, Nixdorf S, Ford CE, Olivier J, Caduff R, Scurry JP, Guertler R, Hornung D, Mueller R, et al: Loss of secreted frizzled-related protein 4 correlates with an aggressive phenotype and predicts poor outcome in ovarian cancer patients. PLoS One. 7:e318852012. View Article : Google Scholar : PubMed/NCBI

45 

Su HY, Lai HC, Lin YW, Liu CY, Chen CK, Chou YC, Lin SP, Lin WC, Lee HY and Yu MH: Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway. Int J Cancer. 127:555–567. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Bernaudo S, Salem M, Qi X, Zhou W, Zhang C, Yang W, Rosman D, Deng Z, Ye G, Yang B, et al: Cyclin G2 inhibits epithelial-to-mesenchymal transition by disrupting Wnt/β-catenin signaling. Oncogene. 35:4816–4827. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Fischer MM, Cancilla B, Yeung VP, Cattaruzza F, Chartier C, Murriel CL, Cain J, Tam R, Cheng CY, Evans JW, et al: WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death. Sci Adv. 3:e17000902017. View Article : Google Scholar : PubMed/NCBI

48 

Menezes ME, Devine DJ, Shevde LA and Samant RS: Dickkopf1: A tumor suppressor or metastasis promoter? Int J Cancer. 130:1477–1483. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Takata A, Terauchi M, Hiramitsu S, Uno M, Wakana K and Kubota T: Dkk-3 induces apoptosis through mitochondrial and Fas death receptor pathways in human mucinous ovarian cancer cells. Int J Gynecol Cancer. 25:372–379. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Duan H, Yan Z, Chen W, Wu Y, Han J, Guo H and Qiao J: TET1 inhibits EMT of ovarian cancer cells through activating Wnt/β-catenin signaling inhibitors DKK1 and SFRP2. Gynecol Oncol. 147:408–417. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Wang Z, Li B, Zhou L, Yu S, Su Z, Song J, Sun Q, Sha O, Wang X, Jiang W, et al: Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells. Proc Natl Acad Sci USA. 113:pp. 13150–13155. 2016; View Article : Google Scholar : PubMed/NCBI

52 

Grandy D, Shan J, Zhang X, Rao S, Akunuru S, Li H, Zhang Y, Alpatov I, Zhang XA, Lang RA, et al: Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled. J Biol Chem. 284:16256–16263. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Ge YX, Wang CH, Hu FY, Pan LX, Min J, Niu KY, Zhang L, Li J and Xu T: New advances of TMEM88 in cancer initiation and progression, with special emphasis on Wnt signaling pathway. J Cell Physiol. 233:79–87. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Chen X and Deng Y: Simulations of a specific inhibitor of the dishevelled PDZ domain. J Mol Model. 15:91–96. 2009. View Article : Google Scholar : PubMed/NCBI

55 

de Groot RE, Ganji RS, Bernatik O, Lloyd-Lewis B, Seipel K, Šedová K, Zdráhal Z, Dhople VM, Dale TC, Korswagen HC and Bryja V: Huwe1-mediated ubiquitylation of dishevelled defines a negative feedback loop in the Wnt signaling pathway. Sci Signal. 7:ra262014. View Article : Google Scholar : PubMed/NCBI

56 

Bouteille N, Driouch K, Hage PE, Sin S, Formstecher E, Camonis J, Lidereau R and Lallemand F: Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein. Oncogene. 28:2569–2580. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Yin X, Xiang T, Li L, Su X, Shu X, Luo X, Huang J, Yuan Y, Peng W, Oberst M, et al: DACT1, an antagonist to Wnt/β-catenin signaling, suppresses tumor cell growth and is frequently silenced in breast cancer. Breast Cancer Res. 15:R232013. View Article : Google Scholar : PubMed/NCBI

58 

Rosenberg LH, Lafitte M, Quereda V, Grant W, Chen W, Bibian M, Noguchi Y, Fallahi M, Yang C, Chang JC, et al: Therapeutic targeting of casein kinase 1δ in breast cancer. Sci Transl Med. 7:318ra2022015. View Article : Google Scholar : PubMed/NCBI

59 

Zheng Y, McFarland BC, Drygin D, Yu H, Bellis SL, Kim H, Bredel M and Benveniste EN: Targeting protein kinase CK2 suppresses prosurvival signaling pathways and growth of glioblastoma. Clin Cancer Res. 19:6484–6494. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Kim J and Kim SH: Druggability of the CK2 inhibitor CX-4945 as an anticancer drug and beyond. Arch Pharm Res. 35:1293–1296. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Hung MS, Xu Z, Lin YC, Mao JH, Yang CT, Chang PJ, Jablons DM and You L: Identification of hematein as a novel inhibitor of protein kinase CK2 from a natural product library. BMC Cancer. 9:1352009. View Article : Google Scholar : PubMed/NCBI

62 

Wu X, Luo F, Li J, Zhong X and Liu K: Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. Int J Oncol. 48:1333–1340. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Thorvaldsen TE, Pedersen NM, Wenzel EM and Stenmark H: Differential roles of AXIN1 and AXIN2 in tankyrase inhibitor-induced formation of degradasomes and β-catenin degradation. PLoS One. 12:e01705082017. View Article : Google Scholar : PubMed/NCBI

64 

Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, Wang Z, Aldape KD, Xie K, Woodgett JR and Huang S: Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 18:954–966. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Sun A, Li C, Chen R, Huang Y, Chen Q, Cui X, Liu H, Thrasher JB and Li B: GSK-3β controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells. Prostate. 76:172–183. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Ahn SY, Yang JH, Kim NH, Lee K, Cha YH, Yun JS, Kang HE, Lee Y, Choi J, Kim HS and Yook JI: Anti-helminthic niclosamide inhibits Ras-driven oncogenic transformation via activation of GSK-3. Oncotarget. 8:31856–31863. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Jingushi K, Nakamura T, Takahashi-Yanaga F, Matsuzaki E, Watanabe Y, Yoshihara T, Morimoto S and Sasaguri T: Differentiation-inducing factor-1 suppresses the expression of c-Myc in the human cancer cell lines. J Pharmacol Sci. 121:103–109. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Zhang Q, Chen WM, Zhang XX, Zhang HX, Wang HC, Zheng FY and Zhu FF: Overexpression of salusin-β is associated with poor prognosis in ovarian cancer. Oncol Rep. 37:1826–1832. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Guo RJ, Funakoshi S, Lee HH, Kong J and Lynch JP: The intestine-specific transcription factor Cdx2 inhibits beta-catenin/TCF transcriptional activity by disrupting the beta-catenin-TCF protein complex. Carcinogenesis. 31:159–166. 2010. View Article : Google Scholar : PubMed/NCBI

70 

Koh I, Hinoi T, Sentani K, Hirata E, Nosaka S, Niitsu H, Miguchi M, Adachi T, Yasui W, Ohdan H and Kudo Y: Regulation of multidrug resistance 1 expression by CDX2 in ovarian mucinous adenocarcinoma. Cancer Med. 5:1546–1555. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Takakura Y, Hinoi T, Oue N, Sasada T, Kawaguchi Y, Okajima M, Akyol A, Fearon ER, Yasui W and Ohdan H: CDX2 regulates multidrug resistance 1 gene expression in malignant intestinal epithelium. Cancer Res. 70:6767–6778. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Yan X, Lyu T, Jia N, Yu Y, Hua K and Feng W: Huaier aqueous extract inhibits ovarian cancer cell motility via the AKT/GSK3β/β-catenin pathway. PLoS One. 8:e637312013. View Article : Google Scholar : PubMed/NCBI

73 

Yamada T and Masuda M: Emergence of TNIK inhibitors in cancer therapeutics. Cancer Sci. 108:818–823. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Shin SH, Lim DY, Reddy K, Malakhova M, Liu F, Wang T, Song M, Chen H, Bae KB, Ryu J, et al: A small molecule inhibitor of the β-catenin-TCF4 interaction suppresses colorectal cancer growth in vitro and in vivo. EBioMedicine. 25:22–31. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Zhang C, Zhang Z, Zhang S, Wang W and Hu P: Targeting of Wnt/β-catenin by anthelmintic drug pyrvinium enhances sensitivity of ovarian cancer cells to chemotherapy. Med Sci Monit. 23:266–275. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Zhao S, Ma Y and Huang X: Trefoil factor 1 elevates the malignant phenotype of mucinous ovarian cancer cell through Wnt/β-catenin signaling. Int J Clin Exp Pathol. 8:10412–10419. 2015.PubMed/NCBI

77 

Wang J, Cai J, Han F, Yang C, Tong Q, Cao T, Wu L and Wang Z: Silencing of CXCR4 blocks progression of ovarian cancer and depresses canonical Wnt signaling pathway. Int J Gynecol Cancer. 21:981–987. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Gao W, Liu Y, Qin R, Liu D and Feng Q: Silence of fibronectin 1 increases cisplatin sensitivity of non-small cell lung cancer cell line. Biochem Biophys Res Commun. 476:35–41. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Choi D, Ramu S, Park E, Jung E, Yang S, Jung W, Choi I, Lee S, Kim KE, Seong YJ, et al: Aberrant activation of notch signaling inhibits PROX1 activity to enhance the malignant behavior of thyroid cancer cells. Cancer Res. 76:582–593. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Tang X, Wang Y, Fan Z, Ji G, Wang M, Lin J, Huang S and Meltzer SJ: Klotho: A tumor suppressor and modulator of the Wnt/β-catenin pathway in human hepatocellular carcinoma. Lab Invest. 96:197–205. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Cloven NG, Kyshtoobayeva A, Burger RA, Yu IR and Fruehauf JP: In vitro chemoresistance and biomarker profiles are unique for histologic subtypes of epithelial ovarian cancer. Gynecol Oncol. 92:160–166. 2004. View Article : Google Scholar : PubMed/NCBI

82 

Adams GP and Weiner LM: Monoclonal antibody therapy of cancer. Nat Biotechnol. 23:1147–1157. 2005. View Article : Google Scholar : PubMed/NCBI

83 

Gui T and Shen K: The epidermal growth factor receptor as a therapeutic target in epithelial ovarian cancer. Cancer Epidemiol. 36:490–496. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Vaidyanathan A, Sawers L, Gannon AL, Chakravarty P, Scott AL, Bray SE, Ferguson MJ and Smith G: ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br J Cancer. 115:431–441. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Zhang M, Liu E, Cui Y and Huang Y: Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol Med. 14:212–227. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Niiro E, Morioka S, Iwai K, Yamada Y, Ogawa K, Kawahara N and Kobayashi H: Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer (Review). Biomed Rep 8: 215-223, 2018.
APA
Niiro, E., Morioka, S., Iwai, K., Yamada, Y., Ogawa, K., Kawahara, N., & Kobayashi, H. (2018). Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer (Review). Biomedical Reports, 8, 215-223. https://doi.org/10.3892/br.2018.1045
MLA
Niiro, E., Morioka, S., Iwai, K., Yamada, Y., Ogawa, K., Kawahara, N., Kobayashi, H."Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer (Review)". Biomedical Reports 8.3 (2018): 215-223.
Chicago
Niiro, E., Morioka, S., Iwai, K., Yamada, Y., Ogawa, K., Kawahara, N., Kobayashi, H."Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer (Review)". Biomedical Reports 8, no. 3 (2018): 215-223. https://doi.org/10.3892/br.2018.1045
Copy and paste a formatted citation
x
Spandidos Publications style
Niiro E, Morioka S, Iwai K, Yamada Y, Ogawa K, Kawahara N and Kobayashi H: Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer (Review). Biomed Rep 8: 215-223, 2018.
APA
Niiro, E., Morioka, S., Iwai, K., Yamada, Y., Ogawa, K., Kawahara, N., & Kobayashi, H. (2018). Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer (Review). Biomedical Reports, 8, 215-223. https://doi.org/10.3892/br.2018.1045
MLA
Niiro, E., Morioka, S., Iwai, K., Yamada, Y., Ogawa, K., Kawahara, N., Kobayashi, H."Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer (Review)". Biomedical Reports 8.3 (2018): 215-223.
Chicago
Niiro, E., Morioka, S., Iwai, K., Yamada, Y., Ogawa, K., Kawahara, N., Kobayashi, H."Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer (Review)". Biomedical Reports 8, no. 3 (2018): 215-223. https://doi.org/10.3892/br.2018.1045
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team