|
1
|
Ng KW and Lau WM: Skin Deep: The Basics of
Human Skin Structure and Drug Penetration. Springer-Verlag; Berlin
Heidelberg, New York: 2015
|
|
2
|
Menon GK: Skin basics; structure and
functionLipids and Skin Health. Springer International Publishing;
Switzerland: pp. 9–23. 2015
|
|
3
|
Barbieri JS, Wanat K and Seykora J: Skin:
Basic structure and functionPathobiology of Human Disease. Academic
Press; pp. 1134–1144. 2014, View Article : Google Scholar
|
|
4
|
Mcgrath JA, Eady RAJ and Pope FM: Anatomy
and organization of human skinRook's Textbook of Dermatology. 7th.
Wiley; pp. 45–128. 2008
|
|
5
|
Hay RJ, Johns NE, Williams HC, Bolliger
IW, Dellavalle RP, Margolis DJ, Marks R, Naldi L, Weinstock MA,
Wulf SK, et al: The global burden of skin disease in 2010: An
analysis of the prevalence and impact of skin conditions. J Invest
Dermatol. 134:1527–1534. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lo Cicero A, Delevoye C, Gilles-Marsens F,
Loew D, Dingli F, Guéré C, André N, Vié K, van Niel G and Raposo G:
Exosomes released by keratinocytes modulate melanocyte
pigmentation. Nat Commun. 6:75062015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Felicetti F, De Feo A, Coscia C, Puglisi
R, Pedini F, Pasquini L, Bellenghi M, Errico MC, Pagani E and Carè
A: Exosome-mediated transfer of miR-222 is sufficient to increase
tumor malignancy in melanoma. J Transl Med. 14:562016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lin J, Li J, Huang B, Liu J, Chen X, Chen
XM, Xu YM, Huang LF and Wang XZ: Exosomes: Novel biomarkers for
clinical diagnosis. Sci World J. 2015:6570862015. View Article : Google Scholar
|
|
9
|
Properzi F, Logozzi M and Fais S:
Exosomes: The future of biomarkers in medicine. Biomarkers Med.
7:769–778. 2013. View Article : Google Scholar
|
|
10
|
Cocucci E, Racchetti G and Meldolesi J:
Shedding microvesicles: Artefacts no more. Trends Cell Biol.
19:43–51. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bach DH, Hong JY, Park HJ and Lee SK: The
role of exosomes and miRNAs in drug-resistance of cancer cells. Int
J Cancer. 141:220–230. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lai RC, Chen TS and Lim SK: Mesenchymal
stem cell exosome: A novel stem cell-based therapy for
cardiovascular disease. Regen Med. 6:481–492. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Rabinowits G, Gerçel-Taylor C, Day JM,
Taylor DD and Kloecker GH: Exosomal microRNA: A diagnostic marker
for lung cancer. Clin Lung Cancer. 10:42–46. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yan Y, Jiang W, Tan Y, Zou S, Zhang H, Mao
F, Gong A, Qian H and Xu W: hucMSC exosome-derived GPX1 is required
for the recovery of hepatic oxidant injury. Mol Ther. 25:465–479.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li J, Chen Y, Guo X, Zhou L, Jia Z, Peng
Z, Tang Y, Liu W, Zhu B, Wang L and Ren C: GPC1 exosome and its
regulatory miRNAs are specific markers for the detection and target
therapy of colorectal cancer. J Cell Mol Med. 21:838–847. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Proksch E, Brandner JM and Jensen JM: The
skin: An indispensable barrier. Exp Dermatol. 17:1063–1072. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Forslind B and Lindberg M: Skin, Hair, and
Nails: Structure and Function. CRC Press; 2003
|
|
18
|
Bang C, Batkai S, Dangwal S, Gupta SK,
Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A, et al:
Cardiac fibroblast-derived microRNA passenger strand-enriched
exosomes mediate cardiomyocyte hypertrophy. J Clin Invest.
124:2136–2146. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Holmes D: Adipose tissue: Adipocyte
exosomes drive melanoma progression. Nat Rev Endocrinol.
12:4362016. View Article : Google Scholar
|
|
20
|
Bickers DR and Athar M: Oxidative stress
in the pathogenesis of skin disease. J Invest Dermatol.
126:2565–2575. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Akita N, Sawamura D, Matsumura K and
Nomura K: Clinical study of diflorasone diacetate ointment
(Diflal® ointment) in various types of skin diseases.
Skin Res. 29:115–119. 2010.
|
|
22
|
Balato N, Megna M, Ayala F, Balato A,
Napolitano M and Patruno C: Effects of climate changes on skin
diseases. Expert Rev Anti Infect Ther. 12:171–181. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Liu L, Song P, Yi X, Li C and Gao T: 067
Serum-derived exosomes contribute to abnormal melanocyte function
in patients with active vitiligo. J Invest Dermatol. 136:S12. 2016.
View Article : Google Scholar
|
|
24
|
Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu
R, Huang F, Zhang H and Chen L: Exosomes derived from human adipose
mensenchymal stem cells accelerates cutaneous wound healing via
optimizing the characteristics of fibroblasts. Sci Rep.
6:329932016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Goedert L, Koya R, Hu-Lieskovan S and
Ribas A: Exosomes as a predictor tool of acquired resistance to
melanoma treatment. BMC Proc. 8 Suppl 4:pp. P282014; View Article : Google Scholar
|
|
26
|
Xiao D, Barry S, Kmetz D, Egger M, Pan J,
Rai SN, Qu J, McMasters KM and Hao H: Melanoma cell-derived
exosomes promote epithelial-mesenchymal transition in primary
melanocytes through paracrine/autocrine signaling in the tumor
microenvironment. Cancer Lett. 376:318–327. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Simpson RJ, Jensen SS and Lim JW:
Proteomic profiling of exosomes: Current perspectives. Proteomics.
8:4083–4099. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Vlassov AV, Magdaleno S, Setterquist R and
Conrad R: Exosomes: Current knowledge of their composition,
biological functions, and diagnostic and therapeutic potentials.
Biochim Biophys Acta. 1820:940–948. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Pan BT and Johnstone RM: Fate of the
transferrin receptor during maturation of sheep reticulocytes in
vitro: Selective externalization of the receptor. Cell. 33:967–978.
1983. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mathivanan S, Ji H and Simpson RJ:
Exosomes: Extracellular organelles important in intercellular
communication. J Proteomics. 73:1907–1920. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Simpson RJ, Lim JW, Moritz RL and
Mathivanan S: Exosomes: Proteomic insights and diagnostic
potential. Expert Rev Proteomics. 6:267–283. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lakkaraju A and Rodriguez-Boulan E:
Itinerant exosomes: Emerging roles in cell and tissue polarity.
Trends Cell Biol. 18:199–209. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
van Niel G, Porto-Carreiro I, Simoes S and
Raposo G: Exosomes: A common pathway for a specialized function. J
Biochem. 140:13–21. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Segura MF, Hanniford D, Menendez S, Reavie
L, Zou X, Alvarez-Diaz S, Zakrzewski J, Blochin E, Rose A,
Bogunovic D, et al: Aberrant miR-182 expression promotes melanoma
metastasis by repressing FOXO3 and microphthalmia-associated
transcription factor. Proc Natl Acad Sci USA. 106:pp. 1814–1819.
2009; View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Conde-Vancells J, Rodriguez-Suarez E,
Embade N, Gil D, Matthiesen R, Valle M, Elortza F, Lu SC, Mato JM
and Falcon-Perez JM: Characterization and comprehensive proteome
profiling of exosomes secreted by hepatocytes. J Proteome Res.
7:5157–5166. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhou H, Cheruvanky A, Hu X, Matsumoto T,
Hiramatsu N, Cho ME, Berger A, Leelahavanichkul A, Doi K, Chawla
LS, et al: Urinary exosomal transcription factors, a new class of
biomarkers for renal disease. Kidney Int. 74:613–621. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Théry C, Ostrowski M and Segura E:
Membrane vesicles as conveyors of immune responses. Nat Rev
Immunol. 9:581–593. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ichim T and Bogin V: Therapeutic immune
modulation by stem cell secreted exosomes. US Patent 20160361399
A1. August 4–2016.issued December 15, 2016.
|
|
39
|
Liu Q, Rojas-Canales DM, Divito SJ,
Shufesky WJ, Stolz DB, Erdos G, Sullivan ML, Gibson GA, Watkins SC,
Larregina AT, et al: Donor dendritic cell-derived exosomes promote
allograft-targeting immune response. J Clin Invest. 126:2805–2820.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhao H, Yang L, Baddour J, Achreja A,
Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA,
et al: Tumor microenvironment derived exosomes pleiotropically
modulate cancer cell metabolism. Elife. 5:e102502016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yi H, Ye J, Yang XM, Zhang LW, Zhang ZG
and Chen YP: High-grade ovarian cancer secreting effective exosomes
in tumor angiogenesis. Int J Clin Exp Pathol. 8:5062–5070.
2015.PubMed/NCBI
|
|
42
|
Tickner JA, Urquhart AJ, Stephenson SA,
Richard DJ and O'Byrne KJ: Functions and therapeutic roles of
exosomes in cancer. Front Oncol. 4:1272014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Saleem SN and Abdel-Mageed AB:
Tumor-derived exosomes in oncogenic reprogramming and cancer
progression. Cell Mol Life Sci. 72:1–10. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chevillet JR, Kang Q, Ruf IK, Briggs HA,
Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK,
Gallichotte EN, et al: Quantitative and stoichiometric analysis of
the microRNA content of exosomes. Proc Natl Acad Sci USA. 111:pp.
14888–14893. 2014; View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bi S, Wang C, Jin Y, Lv Z, Xing X and Lu
Q: Correlation between serum exosome derived miR-208a and acute
coronary syndrome. Int J Clin Exp Med. 8:4275–4280. 2015.PubMed/NCBI
|
|
46
|
Wang H and Wang B: Extracellular vesicle
microRNAs mediate skeletal muscle myogenesis and disease. Biomed
Rep. 5:296–300. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Humphries B: Dissecting the mechanism by
which microRNA-200b inhibits breast cancer metastasis. PhD
dissertationMichigan State University 2016
|
|
48
|
Wang B, Yao K, Huuskes BM, Shen HH, Zhuang
J, Godson C, Brennan EP, Wilkinson-Berka JL, Wise AF and Ricardo
SD: Mesenchymal stem cells deliver exogenous microRNA-let7c via
exosomes to attenuate renal fibrosis. Mol Ther. 24:1290–1301. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lou G, Song X, Yang F, Wu S, Wang J, Chen
Z and Liu Y: Exosomes derived from miR-122-modified adipose
tissue-derived MSCs increase chemosensitivity of hepatocellular
carcinoma. J Hematol Oncol. 8:1222015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ji Q, Ji Y, Peng J, Zhou X, Chen X, Zhao
H, Xu T, Chen L and Xu Y: Increased brain-specific miR-9 and
miR-124 in the serum exosomes of acute ischemic stroke patients.
PLoS One. 11:e01636452016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jackson SJ, Zhang Z, Feng D, Flagg M,
O'Loughlin E, Wang D, Stokes N, Fuchs E and Yi R: Rapid and
widespread suppression of self-renewal by microRNA-203 during
epidermal differentiation. Development. 140:1882–1891. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Nijhof JG, van Pelt C, Mulder AA, Mitchell
DL, Mullenders LH and de Gruijl FR: Epidermal stem and progenitor
cells in murine epidermis accumulate UV damage despite NER
proficiency. Carcinogenesis. 28:792–800. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Mistry DS, Chen Y and Sen GL: Progenitor
function in self-renewing human epidermis is maintained by the
exosome. Cell Stem Cell. 11:127–135. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Noiret M, Mottier S, Angrand G,
Gautier-Courteille C, Lerivray H, Viet J, Paillard L, Mereau A,
Hardy S and Audic Y: Ptbp1 and Exosc9 knockdowns trigger skin
stability defects through different pathways. Dev Biol.
409:489–501. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Clevers H: Wnt/β-catenin signaling in
development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gross JC, Chaudhary V, Bartscherer K and
Boutros M: Active Wnt proteins are secreted on exosomes. Nat Cell
Biol. 14:1036–1045. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhang B, Wang M, Gong A, Zhang X, Wu X,
Zhu Y, Shi H, Wu L, Zhu W, Qian H and Xu W: HucMSC-exosome
mediated-Wnt4 signaling is required for cutaneous wound healing.
Stem Cells. 33:2158–2168. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Varothai S and Bergfeld WF: Androgenetic
alopecia: An evidence-based treatment update. Am J Clin Dermatol.
15:217–230. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lim SK, Yeo MSW, Chen TS and Lai RC: Use
of exosomes to promote or enhance hair growth EP Patent 2629782 A1.
October 17–2011, issued August 28, 2013.
|
|
60
|
Lin JY and Fisher DE: Melanocyte biology
and skin pigmentation. Nature. 445:843–850. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Rawlings AV: Ethnic skin types: Are there
differences in skin structure and function? Int J Cosmet Sci.
28:79–93. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Whitton M, Pinart M, Batchelor JM,
Leonardi-Bee J, Gonzalez U, Jiyad Z, Eleftheriadou V and Ezzedine
K: Evidence-based management of vitiligo: Summary of a Cochrane
systematic review. Br J Dermatol. 174:962–969. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q,
Xie Z, Zhang C and Wang Y: Exosomes released from human induced
pluripotent stem cells-derived MSCs facilitate cutaneous wound
healing by promoting collagen synthesis and angiogenesis. J Transl
Med. 13:492015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Li X, Jiang C and Zhao J: Human
endothelial progenitor cells-derived exosomes accelerate cutaneous
wound healing in diabetic rats by promoting endothelial function. J
Diabetes Complications. 30:986–992. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gallet R, Dawkins J, Valle J, Simsolo E,
de Couto G, Middleton R, Tseliou E, Luthringer D, Kreke M, Smith
RR, et al: Exosomes secreted by cardiosphere-derived cells reduce
scarring, attenuate adverse remodelling, and improve function in
acute and chronic porcine myocardial infarction. Eur Heart J.
38:201–211. 2017.PubMed/NCBI
|
|
66
|
Zhao B, Zhang Y, Han S, Zhang W, Zhou Q,
Guan H, Liu J, Shi J, Su L and Hu D: Exosomes derived from human
amniotic epithelial cells accelerate wound healing and inhibit scar
formation. J Mol Histol. 48:121–132. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang B, Wu X, Zhang X, Sun Y, Yan Y, Shi
H, Zhu Y, Wu L, Pan Z, Zhu W, et al: Human umbilical cord
mesenchymal stem cell exosomes enhance angiogenesis through the
Wnt4/β-catenin pathway. Stem Cells Transl Med. 4:513–522. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Nakamura K, Jinnin M, Fukushima S and Ihn
H: Exosome expression in the skin and sera of systemic sclerosis
patients, and its possible therapeutic application against skin
ulcer. J Dermatol Sci. 84:e97–e98. 2016. View Article : Google Scholar
|
|
69
|
Diepgen TL and Mahler V: The epidemiology
of skin cancer. Br J Dermatol. 146 Suppl 61:1–6. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wernli KJ, Henrikson NB, Morrison CC,
Nguyen M, Pocobelli G and Blasi PR: Screening for skin cancer in
adults: Updated evidence report and systematic review for the US
Preventive Services Task Force. JAMA. 316:436–447. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hodi FS, O'Day SJ, McDermott DF, Weber RW,
Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel
JC, et al: Improved survival with ipilimumab in patients with
metastatic melanoma. N Engl J Med. 363:711–723. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Alegre E, Zubiri L, Perez-Gracia JL,
González-Cao M, Soria L, Martín-Algarra S and González A:
Circulating melanoma exosomes as diagnostic and prognosis
biomarkers. Clin Chim Acta. 454:28–32. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gray-Schopfer V, Wellbrock C and Marais R:
Melanoma biology and new targeted therapy. Nature. 445:851–857.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gajos-Michniewicz A, Duechler M and Czyz
M: miRNA in melanoma-derived exosomes. Cancer Lett. 347:29–37.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hood JL, San RS and Wickline SA: Exosomes
released by melanoma cells prepare sentinel lymph nodes for tumor
metastasis. Cancer Res. 71:3792–3801. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ekström EJ, Bergenfelz C, von Bülow V,
Serifler F, Carlemalm E, Jönsson G, Andersson T and Leandersson K:
WNT5A induces release of exosomes containing pro-angiogenic and
immunosuppressive factors from malignant melanoma cells. Mol
Cancer. 13:882014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Hood JL: Melanoma exosomes enable tumor
tolerance in lymph nodes. Med Hypotheses. 90:11–13. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Shoshan E, Mobley AK, Braeuer RR, Kamiya
T, Huang L, Vasquez ME, Salameh A, Lee HJ, Kim SJ, Ivan C, et al:
Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma
growth and metastasis. Nat Cell Biol. 17:311–321. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhou J, Xu D, Xie H, Tang J, Liu R, Li J,
Wang S, Chen X, Su J, Zhou X, et al: miR-33a functions as a tumor
suppressor in melanoma by targeting HIF-1α. Cancer Biol Ther.
16:846–855. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Bhattacharya A, Schmitz U, Raatz Y,
Schönherr M, Kottek T, Schauer M, Franz S, Saalbach A, Anderegg U,
Wolkenhauer O, et al: miR-638 promotes melanoma metastasis and
protects melanoma cells from apoptosis and autophagy. Oncotarget.
6:2966–2980. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Alegre E, Sanmamed MF, Rodriguez C,
Carranza O, Martín-Algarra S and González A: Study of circulating
microRNA-125b levels in serum exosomes in advanced melanoma. Arch
Pathol Lab Med. 138:828–832. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Pfeffer SR, Grossmann KF, Cassidy PB, Yang
CH, Fan M, Kopelovich L, Leachman SA and Pfeffer LM: Detection of
exosomal miRNAs in the plasma of melanoma patients. J Clin Med.
4:2012–2027. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Mutschelknaus L, Peters C, Winkler K,
Yentrapalli R, Heider T, Atkinson MJ and Moertl S: Exosomes derived
from squamous head and neck cancer promote cell survival after
ionizing radiation. PLoS One. 11:e01522132016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Languino LR, Singh A, Prisco M, Inman GJ,
Luginbuhl A, Curry JM and South AP: Exosome-mediated transfer from
the tumor microenvironment increases TGFβ signaling in squamous
cell carcinoma. Am J Transl Res. 8:2432–2437. 2016.PubMed/NCBI
|
|
85
|
Jelonek K, Wojakowska A, Marczak L, Muer
A, Tinhofer-Keilholz I, Lysek-Gladysinska M, Widlak P and
Pietrowska M: Ionizing radiation affects protein composition of
exosomes secreted in vitro from head and neck squamous cell
carcinoma. Acta Biochim Pol. 62:265–272. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Toki S, Motegi S, Yamada K, Uchiyama A,
Kanai S, Yamanaka M and Ishikawa O: Clinical and laboratory
features of systemic sclerosis complicated with localized
scleroderma. J Dermatol. 42:283–287. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Nakamura K, Jinnin M, Harada M, Kudo H,
Nakayama W, Inoue K, Ogata A, Kajihara I, Fukushima S and Ihn H:
Altered expression of CD63 and exosomes in scleroderma dermal
fibroblasts. J Dermatol Sci. 84:30–39. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Brouwer R, Pruijn GJ and van Venrooij WJ:
The human exosome: An autoantigenic complex of exoribonucleases in
myositis and scleroderma. Arthritis Res. 3:102–106. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gutiérrez-Ramos R, Gonz Lez-Díaz V,
Pacheco-Tovar MG, López-Luna A, Avalos-Díaz E and Herrera-Esparza
R: A dermatomyositis and scleroderma overlap syndrome with a
remarkable high titer of anti-exosome antibodies. Reumatismo.
60:296–300. 2008.PubMed/NCBI
|
|
90
|
Barkai L and Paragh G: Metabolic syndrome
in childhood and adolescence. Orv Hetil. 147:243–250. 2006.(In
Hungarian). PubMed/NCBI
|
|
91
|
Rajala MW and Scherer PE: Minireview: The
adipocyte - at the crossroads of energy homeostasis, inflammation,
and atherosclerosis. Endocrinology. 144:3765–3773. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ferrante SC, Nadler EP, Pillai DK, Hubal
MJ, Wang Z, Wang JM, Gordish-Dressman H, Koeck E, Sevilla S, Wiles
AA and Freishtat RJ: Adipocyte-derived exosomal miRNAs: A novel
mechanism for obesity-related disease. Pediatr Res. 77:447–454.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhang Y, Yu M, Dai M, Chen C, Tang Q, Jing
W, Wang H and Tian W: miR-450a-5p within rat adipose tissue
exosome-like vesicles promotes adipogenic differentiation by
targeting WISP2. J Cell Sci. 130:1158–1168. 2017.PubMed/NCBI
|
|
94
|
Skowron F, Bérard F, Balme B and
Maucort-Boulch D: Role of obesity on the thickness of primary
cutaneous melanoma. J Eur Acad Dermatol Venereol. 29:262–269. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lazar I, Clement E, Dauvillier S, Milhas
D, Ducoux-Petit M, LeGonidec S, Moro C, Soldan V, Dalle S, Balor S,
et al: Adipocyte exosomes promote melanoma aggressiveness through
fatty acid oxidation: a novel mechanism linking obesity and cancer.
Cancer Res. 76:4051–4057. 2016. View Article : Google Scholar : PubMed/NCBI
|