|
1
|
Thomassen I, van Gestel YR, van Ramshorst
B, Luyer MD, Bosscha K, Nienhuijs SW, Lemmens VE and de Hingh IH:
Peritoneal carcinomatosis of gastric origin: A population-based
study on incidence, survival and risk factors. Int J Cancer.
134:622–628. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
McMullen JRW, Selleck M, Wall NR and
Senthil M: Peritoneal carcinomatosis: Limits of diagnosis and the
case for liquid biopsy. Oncotarget. 8:43481–43490. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kanda M and Kodera Y: Molecular mechanisms
of peritoneal dissemination in gastric cancer. World J
Gastroenterol. 22:6829–6840. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Eom BW, Yoon H, Ryu KW, Lee JH, Cho SJ,
Lee JY, Kim CG, Choi IJ, Lee JS, Kook MC, et al: Predictors of
timing and patterns of recurrence after curative resection for
gastric cancer. Dig Surg. 27:481–486. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
van Dommelen SM, Vader P, Lakhal S,
Kooijmans SA, van Solinge WW, Wood MJ and Schiffelers RM:
Microvesicles and exosomes: Opportunities for cell-derived membrane
vesicles in drug delivery. J Control Release. 161:635–644. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zaborowski MP, Balaj L, Breakefield XO and
Lai CP: Extracellular vesicles: Composition, biological relevance,
and methods of study. Bioscience. 65:783–797. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Guo L and Guo N: Exosomes: Potent
regulators of tumor malignancy and potential bio-tools in clinical
application. Crit Rev Oncol Hematol. 95:346–358. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Isola AL and Chen S: Exosomes: The
messengers of health and disease. Curr Neuropharmacol. 15:157–165.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Fujita Y, Yoshioka Y, Ito S, Araya J,
Kuwano K and Ochiya T: Intercellular communication by extracellular
vesicles and their microRNAs in asthma. Clin Ther. 36:873–881.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yashiro M, Chung YS, Nishimura S, Inoue T
and Sowa M: Fibrosis in the peritoneum induced by scirrhous gastric
cancer cells may act as ‘soil’ for peritoneal dissemination.
Cancer. 77 Suppl:1668–1675. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Qu JL, Qu XJ, Zhao MF, Teng YE, Zhang Y,
Hou KZ, Jiang YH, Yang XH and Liu YP: Gastric cancer exosomes
promote tumour cell proliferation through PI3K/Akt and MAPK/ERK
activation. Dig Liver Dis. 41:875–880. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wu L, Zhang X, Zhang B, Shi H, Yuan X, Sun
Y, Pan Z, Qian H and Xu W: Exosomes derived from gastric cancer
cells activate NF-κB pathway in macrophages to promote cancer
progression. Tumour Biol. 37:12169–12180. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Qi J, Zhou Y, Jiao Z, Wang X, Zhao Y and
Li Y, Chen H, Yang L, Zhu H and Li Y: Exosomes derived from human
bone marrow mesenchymal stem cells promote tumor growth through
hedgehog signaling pathway. Cell Physiol Biochem. 42:2242–2254.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Banyard J and Bielenberg DR: The role of
EMT and MET in cancer dissemination. Connect Tissue Res.
56:403–413. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pan L, Liang W, Fu M, Huang ZH, Li X,
Zhang W, Zhang P, Qian H, Jiang PC, Xu WR and Zhang X:
Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes
gastric cancer progression. J Cancer Res Clin Oncol. 143:991–1004.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen JQ, Zhan WH, He YL, Peng JS, Wang JP,
Cai SR and Ma JP: Expression of heparanase gene, CD44v6, MMP-7 and
nm23 protein and their relationship with the invasion and
metastasis of gastric carcinomas. World J Gastroenterol.
10:776–782. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tanaka M, Kuriyama S, Itoh G, Maeda D,
Goto A, Tamiya Y, Yanagihara K, Yashiro M and Aiba N: Mesothelial
cells create a novel tissue niche that facilitates gastric cancer
invasion. Cancer Res. 77:684–695. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mukai S, Oue N, Oshima T, Imai T, Sekino
Y, Honma R, Sakamoto N, Sentani K, Kuniyasu H, Egi H, et al:
Overexpression of PCDHB9 promotes peritoneal metastasis and
correlates with poor prognosis in patients with gastric cancer. J
Pathol. 243:100–110. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kitayama J, Yamaguchi H, Ishigami H,
Matsuzaki K and Sata N: Intraperitoneal mesenchymal cells promote
the development of peritoneal metastasis partly by supporting long
migration of disseminated tumor cells. PLoS One. 11:e01545422016.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
King HW, Michael MZ and Gleadle JM:
Hypoxic enhancement of exosome release by breast cancer cells. BMC
Cancer. 12:4212012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang T, Gilkes DM, Takano N, Xiang L, Luo
W, Bishop CJ, Chaturvedi P, Green JJ and Semenza GL:
Hypoxia-inducible factors and RAB22A mediate formation of
microvesicles that stimulate breast cancer invasion and metastasis.
Proc Natl Acad Sci USA. 111:E3234–E3242. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Aga M, Bentz GL, Raffa S, Torrisi MR,
Kondo S, Wakisaka N, Yoshizaki T, Pagano JS and Shackelford J:
Exosomal HIF1α supports invasive potential of nasopharyngeal
carcinoma-associated LMP1-positive exosomes. Oncogene.
33:4613–4622. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Miao ZF, Wang ZN, Zhao TT, Xu YY, Gao J,
Miao F and Xu HM: Peritoneal milky spots serve as a hypoxic niche
and favor gastric cancer stem/progenitor cell peritoneal
dissemination through hypoxia-inducible factor 1α. Stem Cells.
32:3062–3074. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xu Y, Jin X, Huang Y, Dong J, Wang H, Wang
X and Cao X: Inhibition of peritoneal metastasis of human gastric
cancer cells by dextran sulphate through the reduction in HIF-1α
and ITGβ1 expression. Oncol Rep. 35:2624–2634. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kiyasu Y, Kaneshima S and Koga S:
Morphogenesis of peritoneal metastasis in human gastric cancer.
Cancer Res. 41:1236–1239. 1981.PubMed/NCBI
|
|
26
|
Mutsaers SE and Wilkosz S: Structure and
function of mesothelial cells. Cancer Treat Res. 134:1–19.
2007.PubMed/NCBI
|
|
27
|
Arita T, Ichikawa D, Konishi H, Komatsu S,
Shiozaki A, Ogino S, Fujita Y, Hiramoto H, Hamada J, Shoda K, et
al: Tumor exosome-mediated promotion of adhesion to mesothelial
cells in gastric cancer cells. Oncotarget. 7:56855–56863. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Jayne D: Molecular biology of peritoneal
carcinomatosis. Cancer Treat Res. 134:21–33. 2007.PubMed/NCBI
|
|
29
|
Garay J, Piazuelo MB, Majumdar S, Li L,
Trillo-Tinoco J, Del Valle L, Schneider BG, Delgado AG, Wilson KT,
Correa P and Zabaleta J: The homing receptor CD44 is involved in
the progression of precancerous gastric lesions in patients
infected with Helicobacter pylori and in development of
mucous metaplasia in mice. Cancer Lett. 371:90–98. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Nakashio T, Narita T, Akiyama S, Kasai Y,
Kondo K, Ito K, Takagi H and Kannagi R: Adhesion molecules and
TGF-beta1 are involved in the peritoneal dissemination of NUGC-4
human gastric cancer cells. Int J Cancer. 70:612–618. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yamamichi K, Uehara Y, Kitamura N, Nakane
Y and Hioki K: Increased expression of CD44v6 mRNA significantly
correlates with distant metastasis and poor prognosis in gastric
cancer. Int J Cancer. 79:256–262. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sluiter N, de Cuba E, Kwakman R, Kazemier
G, Meijer G and Te Velde EA: Adhesion molecules in peritoneal
dissemination: Function, prognostic relevance and therapeutic
options. Clin Exp Metastasis. 33:401–416. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Nakamura K, Sawada K, Kinose Y, Yoshimura
A, Toda A, Nakatsuka E, Hashimoto K, Mabuchi S, Morishige KI,
Kurachi H, et al: Exosomes promote ovarian cancer cell invasion
through transfer of CD44 to peritoneal mesothelial cells. Mol
Cancer Res. 15:78–92. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Stec M, Szatanek R, Baj-Krzyworzeka M,
Baran J, Zembala M, Barbasz J, Waligórska A, Dobrucki JW, Mytar B,
Szczepanik A, et al: Interactions of tumour-derived
micro(nano)vesicles with human gastric cancer cells. J Transl Med.
13:3762015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Saif MW, Siddiqui IAR and Sohail MA:
Management of ascites due to gastrointestinal malignancy. Ann Saudi
Med. 29:369–377. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wei M, Yang T, Chen X, Wu Y, Deng X, He W,
Yang J and Wang Z: Malignant ascites-derived exosomes promote
proliferation and induce carcinoma-associated fibroblasts
transition in peritoneal mesothelial cells. Oncotarget.
8:42262–42271. 2017.PubMed/NCBI
|
|
37
|
Lv ZD, Zhao WJ, Jin LY, Wang WJ, Dong Q,
Li N, Xu HM and Wang HB: Blocking TGF-β1 by P17 peptides attenuates
gastric cancer cell induced peritoneal fibrosis and prevents
peritoneal dissemination in vitro and in vivo. Biomed Pharmacother.
88:27–33. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Deng G, Qu J, Zhang Y, Che X, Cheng Y, Fan
Y, Zhang S, Na D, Liu Y and Qu X: Gastric cancer-derived exosomes
promote peritoneal metastasis by destroying the mesothelial
barrier. FEBS Lett. 591:2167–2179. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jia Y, Chen Y, Wang Q, Jayasinghe U, Luo
X, Wei Q, Wang J, Xiong H, Chen C, Xu B, et al: Exosome: Emerging
biomarker in breast cancer. Oncotarget. 8:41717–41733. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Pant S, Hilton H and Burczynski ME: The
multifaceted exosome: Biogenesis, role in normal and aberrant
cellular function, and frontiers for pharmacological and biomarker
opportunities. Biochem Pharmacol. 83:1484–1494. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Azmi AS, Bao B and Sarkar FH: Exosomes in
cancer development, metastasis, and drug resistance: A
comprehensive review. Cancer Metastasis Rev. 32:623–642. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Steinbichler TB, Dudás J, Riechelmann H
and Skvortsova II: The role of exosomes in cancer metastasis. Semin
Cancer Biol. 44:170–181. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang H, Deng T, Liu R, Bai M, Zhou L,
Wang X, Li S, Wang X, Yang H, Li J, et al: Exosome-delivered EGFR
regulates liver microenvironment to promote gastric cancer liver
metastasis. Nat Commun. 8:150162017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Saito T, Nakanishi H, Mochizuki Y, Ito S,
Ito Y, Misawa K, Yatabe Y, Yamamichi K and Kondo E: Preferential
HER2 expression in liver metastases and EGFR expression in
peritoneal metastases in patients with advanced gastric cancer.
Gastric Cancer. 18:711–719. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhou W, Fong MY, Min Y, Somlo G, Liu L,
Palomares MR, Yu Y, Chow A, O'Connor ST, Chin AR, et al:
Cancer-secreted miR-105 destroys vascular endothelial barriers to
promote metastasis. Cancer Cell. 25:501–515. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Que R, Ding G, Chen J and Cao L: Analysis
of serum exosomal microRNAs and clinicopathologic features of
patients with pancreatic adenocarcinoma. World J Surg Oncol.
11:2192013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ren J, Zhou Q, Li H, Li J, Pang L, Su L,
Gu Q, Zhu Z and Liu B: Characterization of exosomal RNAs derived
from human gastric cancer cells by deep sequencing. Tumour Biol.
39:10104283176950122017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang N, Wang L, Yang Y, Gong L, Xiao B and
Liu X: A serum exosomal microRNA panel as a potential biomarker
test for gastric cancer. Biochem Biophys Res Commun. 493:1322–1328.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tokuhisa M, Ichikawa Y, Kosaka N, Ochiya
T, Yashiro M, Hirakawa K, Kosaka T, Makino H, Akiyama H, Kunisaki C
and Endo I: Exosomal mirnas from peritoneum lavage fluid as
potential prognostic biomarkers of peritoneal metastasis in gastric
cancer. PLoS One. 10:e01304722015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Qi J, Zhou Y, Jiao Z, Wang X, Zhao Y and
Li Y, Chen H, Yang L, Zhu H and Li Y: Exosomes derived from human
bone marrow mesenchymal stem cells promote tumor growth through
hedgehog signaling pathway. Cell Physiol Biochem. 42:2242–2254.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ji R, Zhang B, Zhang X, Xue J, Yuan X, Yan
Y, Wang M, Zhu W, Qian H and Xu W: Exosomes derived from human
mesenchymal stem cells confer drug resistance in gastric cancer.
Cell Cycle. 14:2473–2483. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Naito Y, Yoshioka Y, Yamamoto Y and Ochiya
T: How cancer cells dictate their microenvironment: Present roles
of extracellular vesicles. Cell Mol Life Sci. 74:697–713. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gopal SK, Greening DW, Rai A, Chen M, Xu
R, Shafiq A, Mathias RA, Zhu HJ and Simpson RJ: Extracellular
vesicles: Their role in cancer biology and epithelial-mesenchymal
transition. Biochem J. 474:21–45. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lobb RJ, van Amerongen R, Wiegmans A, Ham
S, Larsen JE and Möller A: Exosomes derived from mesenchymal
non-small cell lung cancer cells promote chemoresistance. Int J
Cancer. 141:614–620. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zheng P, Chen L, Yuan X, Luo Q, Liu Y, Xie
G, Ma Y and Shen L: Exosomal transfer of tumor-associated
macrophage-derived miR-21 confers cisplatin resistance in gastric
cancer cells. J Exp Clin Cancer Res. 36:532017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Toffoli G, Hadla M, Corona G, Caligiuri I,
Palazzolo S, Semeraro S, Gamini A, Canzonieri V and Rizzolio F:
Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin.
Nanomedicine (Lond). 10:2963–2971. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Gomez-Cabrero A, Wrasidlo W and Reisfeld
RA: IMD-0354 targets breast cancer stem cells: A novel approach for
an adjuvant to chemotherapy to prevent multidrug resistance in a
murine model. PLoS One. 8:e736072013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY,
Park J, Nilsson J, Lötvall J, Kim YK and Gho YS: Bioinspired
exosome-mimetic nanovesicles for targeted delivery of
chemotherapeutics to malignant tumors. ACS Nano. 7:7698–7710. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kamerkar S, LeBleu VS, Sugimoto H, Yang S,
Ruivo CF, Melo SA, Lee J and Kalluri R: Exosomes facilitate
therapeutic targeting of oncogenic KRAS in pancreatic cancer.
Nature. 546:498–503. 2017.PubMed/NCBI
|
|
60
|
Zhang H, Wang Y, Bai M, Wang J, Zhu K, Liu
R, Ge S, Li J, Ning T, Deng T, et al: Exosomes serve as
nanoparticles to suppress tumor growth and angiogenesis in gastric
cancer by delivering hepatocyte growth factor siRNA. Cancer Sci.
109:629–641. 2018. View Article : Google Scholar : PubMed/NCBI
|