|
1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Torre LA, Siegel RL, Ward EM and Jemal A:
Global cancer incidence and mortality rates and trends - an update.
Cancer Epidemiol Biomarkers Prev. 25:16–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Warnakulasuriya S: Global epidemiology of
oral and oropharyngeal cancer. Oral Oncol. 45:309–316. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Gupta B, Johnson NW and Kumar N: Global
epidemiology of head and neck cancers: A continuing challenge.
Oncology. 91:13–23. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mydlarz WK, Hennessey PT and Califano JA:
Advances and perspectives in the molecular diagnosis of head and
neck cancer. Expert Opin Med Diagn. 4:53–65. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Argiris A, Karamouzis MV, Raben D and
Ferris RL: Head and neck cancer. Lancet. 371:1695–1709. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Leemans CR, Braakhuis BJM and Brakenhoff
RH: The molecular biology of head and neck cancer. Nat Rev Cancer.
11:9–22. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chaturvedi AK, Engels EA, Anderson WF and
Gillison ML: Incidence trends for human papillomavirus-related and
-unrelated oral squamous cell carcinomas in the United States. J
Clin Oncol. 26:612–619. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ang KK, Harris J, Wheeler R, Weber R,
Rosenthal DI, Nguyen-Tân PF, Westra WH, Chung CH, Jordan RC, Lu C,
et al: Human papillomavirus and survival of patients with
oropharyngeal cancer. N Engl J Med. 363:24–35. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Slaughter DP, Southwick HW and Smejkal W:
Field cancerization in oral stratified squamous epithelium;
clinical implications of multicentric origin. Cancer. 6:963–968.
1953. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tabor MP, Brakenhoff RH, Ruijter-Schippers
HJ, Kummer JA, Leemans CR and Braakhuis BJM: Genetically altered
fields as origin of locally recurrent head and neck cancer: A
retrospective study. Clin Cancer Res. 10:3607–3613. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Prevo LJ, Sanchez CA, Galipeau PC and Reid
BJ: p53-mutant clones and field effects in Barrett's esophagus.
Cancer Res. 59:4784–4787. 1999.PubMed/NCBI
|
|
15
|
Hawthorn L, Lan L and Mojica W: Evidence
for field effect cancerization in colorectal cancer. Genomics.
103:211–221. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Jones TD, Wang M, Eble JN, MacLennan GT,
Lopez-Beltran A, Zhang S, Cocco A and Cheng L: Molecular evidence
supporting field effect in urothelial carcinogenesis. Clin Cancer
Res. 11:6512–6519. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Torezan LAR and Festa-Neto C: Cutaneous
field cancerization: Clinical, histopathological and therapeutic
aspects. An Bras Dermatol. 88:775–786. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rivenbark AG and Coleman WB: Field
cancerization in mammary carcinogenesis - Implications for
prevention and treatment of breast cancer. Exp Mol Pathol.
93:391–398. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chu TY, Shen CY, Lee HS and Liu HS:
Monoclonality and surface lesion-specific microsatellite
alterations in premalignant and malignant neoplasia of uterine
cervix: A local field effect of genomic instability and clonal
evolution. Genes Chromosomes Cancer. 24:127–134. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gomperts BN, Spira A, Massion PP, Walser
TC, Wistuba II, Minna JD and Dubinett SM: Evolving concepts in lung
carcinogenesis. Semin Respir Crit Care Med. 32:32–43. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kreimer AR, Clifford GM, Boyle P and
Franceschi S: Human papillomavirus types in head and neck squamous
cell carcinomas worldwide: A systematic review. Cancer Epidemiol
Biomarkers Prev. 14:467–475. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hannisdal K, Schjølberg A, De Angelis PM,
Boysen M and Clausen OPF: Human papillomavirus (HPV)-positive
tonsillar carcinomas are frequent and have a favourable prognosis
in males in Norway. Acta Otolaryngol. 130:293–299. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Attner P, Du J, Näsman A, Hammarstedt L,
Ramqvist T, Lindholm J, Marklund L, Dalianis T and Munck-Wikland E:
The role of human papillomavirus in the increased incidence of base
of tongue cancer. Int J Cancer. 126:2879–2884. 2010.PubMed/NCBI
|
|
24
|
Ramqvist T, Grün N and Dalianis T: Human
papillomavirus and tonsillar and base of tongue cancer. Viruses.
7:1332–1343. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ghittoni R, Accardi R, Hasan U, Gheit T,
Sylla B and Tommasino M: The biological properties of E6 and E7
oncoproteins from human papillomaviruses. Virus Genes. 40:1–13.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Huibregtse JM, Scheffner M and Howley PM:
A cellular protein mediates association of p53 with the E6
oncoprotein of human papillomavirus types 16 or 18. EMBO J.
10:4129–4135. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Scheffner M, Huibregtse JM, Vierstra RD
and Howley PM: The HPV-16 E6 and E6-AP complex functions as a
ubiquitin-protein ligase in the ubiquitination of p53. Cell.
75:495–505. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mascolo M, Ilardi G, Romano MF, Celetti A,
Siano M, Romano S, Luise C, Merolla F, Rocco A, Vecchione ML, et
al: Overexpression of chromatin assembly factor-1 p60,
poly(ADP-ribose) polymerase 1 and nestin predicts metastasizing
behaviour of oral cancer. Histopathology. 61:1089–1105. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Aquino G, Pannone G, Santoro A, Liguori G,
Franco R, Serpico R, Florio G, de Rosa A, Mattoni M, Cozza V, et
al: pEGFR-Tyr 845 expression as prognostic factors in oral squamous
cell carcinoma: A tissue-microarray study with clinic-pathological
correlations. Cancer Biol Ther. 13:967–977. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Pannone G, Rodolico V, Santoro A, Lo Muzio
L, Franco R, Botti G, Aquino G, Pedicillo MC, Cagiano S, Campisi G,
et al: Evaluation of a combined triple method to detect causative
HPV in oral and oropharyngeal squamous cell carcinomas: p16
Immunohistochemistry, Consensus PCR HPV-DNA, and In Situ
Hybridization. Infect Agent Cancer. 7:42012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Santoro A, Pannone G, Papagerakis S,
McGuff HS, Cafarelli B, Lepore S, De Maria S, Rubini C, Mattoni M,
Staibano S, et al: Beta-catenin and epithelial tumors: A study
based on 374 oropharyngeal cancers. BioMed Res Int.
2014:9482642014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Russo D, Merolla F, Mascolo M, Ilardi G,
Romano S, Varricchio S, Napolitano V, Celetti A, Postiglione L, Di
Lorenzo PP, et al: FKBP51 immunohistochemical expression: A new
prognostic biomarker for OSCC? Int J Mol Sci. 18:4432017.
View Article : Google Scholar
|
|
33
|
Mascolo M, Ilardi G, Merolla F, Russo D,
Vecchione ML, de Rosa G and Staibano S: Tissue microarray-based
evaluation of Chromatin Assembly Factor-1 (CAF-1)/p60 as tumour
prognostic marker. Int J Mol Sci. 13:11044–11062. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lo Muzio L, Campisi G, Giovannelli L,
Ammatuna P, Greco I, Staibano S, Pannone G, De Rosa G, Di Liberto C
and D'Angelo M: HPV DNA and survivin expression in epithelial oral
carcinogenesis: A relationship? Oral Oncol. 40:1–741. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Weinberger PM, Yu Z, Kountourakis P,
Sasaki C, Haffty BG, Kowalski D, Merkley MA, Rimm DL, Camp RL and
Psyrri A: Defining molecular phenotypes of human
papillomavirus-associated oropharyngeal squamous cell carcinoma:
Validation of three-class hypothesis. Otolaryngol Head Neck Surg.
141:382–389. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jung AC, Briolat J, Millon R, de Reyniès
A, Rickman D, Thomas E, Abecassis J, Clavel C and Wasylyk B:
Biological and clinical relevance of transcriptionally active human
papillomavirus (HPV) infection in oropharynx squamous cell
carcinoma. Int J Cancer. 126:1882–1894. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Tomar S, Graves CA, Altomare D, Kowli S,
Kassler S, Sutkowski N, Gillespie MB, Creek KE and Pirisi L: Human
papillomavirus status and gene expression profiles of oropharyngeal
and oral cancers from European American and African American
patients. Head Neck. 38 Suppl 1:e694–e704. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Johannsen E and Lambert PF: Epigenetics of
human papillomaviruses. Virology. 445:205–212. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gameiro SF, Kolendowski B, Zhang A,
Barrett JW, Nichols AC, Torchia J and Mymryk JS: Human
papillomavirus dysregulates the cellular apparatus controlling the
methylation status of H3K27 in different human cancers to
consistently alter gene expression regardless of tissue of origin.
Oncotarget. 8:72564–72576. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gupta PC, Murti PR, Bhonsle RB, Mehta FS
and Pindborg JJ: Effect of cessation of tobacco use on the
incidence of oral mucosal lesions in a 10 yr follow-up study of
12,212 users. Oral Dis. 1:54–58. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Saman DM: A review of the epidemiology of
oral and pharyngeal carcinoma: Update. Head Neck Oncol. 4:12012.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gandini S, Botteri E, Iodice S, Boniol M,
Lowenfels AB, Maisonneuve P and Boyle P: Tobacco smoking and
cancer: A meta-analysis. Int J Cancer. 122:155–164. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Marron M, Boffetta P, Zhang Z-F, Zaridze
D, Wünsch-Filho V, Winn DM, Wei Q, Talamini R, Szeszenia-Dabrowska
N, Sturgis EM, et al: Cessation of alcohol drinking, tobacco
smoking and the reversal of head and neck cancer risk. Int J
Epidemiol. 39:182–196. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mahapatra S, Kamath R, Shetty BK and Binu
VS: Risk of oral cancer associated with gutka and other tobacco
products: A hospital-based case-control study. J Cancer Res Ther.
11:199–203. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Reidy J, McHugh E and Stassen LFA: A
review of the relationship between alcohol and oral cancer.
Surgeon. 9:278–283. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Epstein MA, Achong BG and Barr YM: Virus
particles in cultured lymphoblasts from burkitt's lymphoma. Lancet.
1:702–703. 1964. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
IARC (International Agency for Research on
Cancer), . Epstein-Barr virus. A review o. IARC; Lyon: 2012
|
|
48
|
Prabhu SR and Wilson DF: Evidence of
Epstein-Barr virus association with head and neck cancers: a
review. J Can Dent Assoc. 82:g22016.PubMed/NCBI
|
|
49
|
Higa M, Kinjo T, Kamiyama K, Iwamasa T,
Hamada T and Iyama K: Epstein-Barr virus (EBV) subtype in EBV
related oral squamous cell carcinoma in Okinawa, a subtropical
island in southern Japan, compared with Kitakyushu and Kumamoto in
mainland Japan. J Clin Pathol. 55:414–423. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Dawson MA and Kouzarides T: Cancer
epigenetics: From mechanism to therapy. Cell. 150:12–27. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jones PA and Baylin SB: The fundamental
role of epigenetic events in cancer. Nat Rev Genet. 3:415–428.
2002. View
Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hema KN, Smitha T, Sheethal HS and
Mirnalini SA: Epigenetics in oral squamous cell carcinoma. J Oral
Maxillofac Pathol. 21:252–259. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Mascolo M, Siano M, Ilardi G, Russo D,
Merolla F, De Rosa G and Staibano S: Epigenetic disregulation in
oral cancer. Int J Mol Sci. 13:2331–2353. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mitsukawa K, Lu X and Bartfai T: Galanin,
galanin receptors and drug targets. Cell Mol Life Sci.
65:1796–1805. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kanazawa T, Misawa K and Carey TE: Galanin
receptor subtypes 1 and 2 as therapeutic targets in head and neck
squamous cell carcinoma. Expert Opin Ther Targets. 14:289–302.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kanazawa T, Iwashita T, Kommareddi P, Nair
T, Misawa K, Misawa Y, Ueda Y, Tono T and Carey TE: Galanin and
galanin receptor type 1 suppress proliferation in squamous
carcinoma cells: Activation of the extracellular signal regulated
kinase pathway and induction of cyclin-dependent kinase inhibitors.
Oncogene. 26:5762–5771. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kanazawa T, Kommareddi PK, Iwashita T,
Kumar B, Misawa K, Misawa Y, Jang I, Nair TS, Iino Y and Carey TE:
Galanin receptor subtype 2 suppresses cell proliferation and
induces apoptosis in p53 mutant head and neck cancer cells. Clin
Cancer Res. 15:2222–2230. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Misawa K, Misawa Y, Kanazawa T, Mochizuki
D, Imai A, Endo S, Carey TE and Mineta H: Epigenetic inactivation
of galanin and GALR1/2 is associated with early recurrence in head
and neck cancer. Clin Exp Metastasis. 33:187–195. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Khammanivong A, Wang C, Sorenson BS, Ross
KF and Herzberg MC: S100A8/A9 (calprotectin) negatively regulates
G2/M cell cycle progression and growth of squamous cell carcinoma.
PLoS One. 8:e693952013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Khammanivong A, Sorenson BS, Ross KF,
Dickerson EB, Hasina R, Lingen MW and Herzberg MC: Involvement of
calprotectin (S100A8/A9) in molecular pathways associated with
HNSCC. Oncotarget. 7:14029–14047. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hessian PA and Fisher L: The heterodimeric
complex of MRP-8 (S100A8) and MRP-14 (S100A9). Antibody
recognition, epitope definition and the implications for structure.
Eur J Biochem. 268:353–363. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lim Y, Sun CX, Tran P and Punyadeera C:
Salivary epigenetic biomarkers in head and neck squamous cell
carcinomas. Biomarkers Med. 10:301–313. 2016. View Article : Google Scholar
|
|
63
|
Ovchinnikov DA, Cooper MA, Pandit P, Coman
WB, Cooper-White JJ, Keith P, Wolvetang EJ, Slowey PD and
Punyadeera C: Tumor-suppressor Gene Promoter Hypermethylation in
Saliva of Head and Neck Cancer Patients. Transl Oncol. 5:321–326.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Pfaffe T, Cooper-White J, Beyerlein P,
Kostner K and Punyadeera C: Diagnostic potential of saliva: Current
state and future applications. Clin Chem. 57:675–687. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Collet C and Candy J: How many
insulin-like growth factor binding proteins? Mol Cell Endocrinol.
139:1–6. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen Y, Cui T, Knösel T, Yang L, Zöller K
and Petersen I: IGFBP7 is a p53 target gene inactivated in human
lung cancer by DNA hypermethylation. Lung Cancer. 73:38–44. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chen LH, Liu DW, Chang JL, Chen PR, Hsu
LP, Lin HY, Chou YF, Lee CF, Yang MC, Wen YH, et al: Methylation
status of insulin-like growth factor-binding protein 7 concurs with
the malignance of oral tongue cancer. J Exp Clin Cancer Res.
34:202015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Segre JA, Bauer C and Fuchs E: Klf4 is a
transcription factor required for establishing the barrier function
of the skin. Nat Genet. 22:356–360. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Feinberg MW, Wara AK, Cao Z, Lebedeva MA,
Rosenbauer F, Iwasaki H, Hirai H, Katz JP, Haspel RL, Gray S, et
al: The Kruppel-like factor KLF4 is a critical regulator of
monocyte differentiation. EMBO J. 26:4138–4148. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Schmidt R and Plath K: The roles of the
reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic
cell epigenome during induced pluripotent stem cell generation.
Genome Biol. 13:2512012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wei D, Gong W, Kanai M, Schlunk C, Wang L,
Yao JC, Wu TT, Huang S and Xie K: Drastic down-regulation of
Krüppel-like factor 4 expression is critical in human gastric
cancer development and progression. Cancer Res. 65:2746–2754. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Le Magnen C, Bubendorf L, Ruiz C, Zlobec
I, Bachmann A, Heberer M, Spagnoli GC, Wyler S and Mengus C: Klf4
transcription factor is expressed in the cytoplasm of prostate
cancer cells. Eur J Cancer. 49:955–963. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Naranjo Gómez JM, Bernal JFV, Arranz PG,
Fernández SL and Roman JJG: Alterations in the expression of p53,
KLF4, and p21 in neuroendocrine lung tumors. Arch Pathol Lab Med.
138:936–942. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ohnishi S, Ohnami S, Laub F, Aoki K,
Suzuki K, Kanai Y, Haga K, Asaka M, Ramirez F and Yoshida T:
Downregulation and growth inhibitory effect of epithelial-type
Krüppel-like transcription factor KLF4, but not KLF5, in bladder
cancer. Biochem Biophys Res Commun. 308:251–256. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Li W, Liu M, Su Y, Zhou X, Liu Y and Zhang
X: The Janus-faced roles of Krüppel-like factor 4 in oral squamous
cell carcinoma cells. Oncotarget. 6:44480–44494. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Guillemin R: Hypothalamic hormones a.k.a.
hypothalamic releasing factors. J Endocrinol. 184:11–28. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Theodoropoulou M and Stalla GK:
Somatostatin receptors: From signaling to clinical practice. Front
Neuroendocrinol. 34:228–252. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lamberts SW, van der Lely AJ, de Herder WW
and Hofland LJ: Octreotide. N Engl J Med. 334:246–254. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Misawa K, Misawa Y, Kondo H, Mochizuki D,
Imai A, Fukushima H, Uehara T, Kanazawa T and Mineta H: Aberrant
methylation inactivates somatostatin and somatostatin receptor type
1 in head and neck squamous cell carcinoma. PLoS One.
10:e01185882015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Esquela-Kerscher A and Slack FJ: Oncomirs
- microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Peschiaroli A, Giacobbe A, Formosa A,
Markert EK, Bongiorno-Borbone L, Levine AJ, Candi E, D'Alessandro
A, Zolla L, Finazzi Agrò A, et al: miR-143 regulates hexokinase 2
expression in cancer cells. Oncogene. 32:797–802. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Huang WC, Chan SH, Jang TH, Chang JW, Ko
YC, Yen TC, Chiang SL, Chiang WF, Shieh TY, Liao CT, et al:
miRNA-491-5p and GIT1 serve as modulators and biomarkers for oral
squamous cell carcinoma invasion and metastasis. Cancer Res.
74:751–764. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Alterio D, Bacigalupo A, Cantù G, et al:
Linee guida - Tumori della testa e del collo. Aiom, Milano.
2016.(In Italian).
|
|
84
|
Colevas AD, Yom SS, Pfister DG, Spencer S,
Adelstein D, Adkins D, Brizel DM, Burtness B, Busse PM, Caudell JJ,
et al: Head and neck cancers, version 1.2018. J Natl Compr Canc
Netw. 16:479–490. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chiappinelli KB, Strissel PL, Desrichard
A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, et
al: Inhibiting DNA methylation causes an interferon response in
cancer via dsRNA including endogenous retroviruses. Cell.
162:974–986. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Roulois D, Loo Yau H, Singhania R, Wang Y,
Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, et al:
DNA-demethylating agents target colorectal cancer cells by inducing
viral mimicry by endogenous transcripts. Cell. 162:961–973. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Nabet BY, Qiu Y, Shabason JE, Wu TJ, Yoon
T, Kim BC, Benci JL, DeMichele AM, Tchou J, Marcotrigiano J, et al:
Exosome RNA unshielding couples stromal activation to pattern
recognition receptor signaling in cancer. Cell. 170:352–366.e13.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yang X, Han H, De Carvalho DD, Lay FD,
Jones PA and Liang G: Gene body methylation can alter gene
expression and is a therapeutic target in cancer. Cancer Cell.
26:577–590. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Jones PA, Issa J-PJ and Baylin S:
Targeting the cancer epigenome for therapy. Nat Rev Genet.
17:630–641. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Mani S and Herceg Z: DNA demethylating
agents and epigenetic therapy of cancer. Adv Genet. 70:327–340.
2010.PubMed/NCBI
|
|
91
|
Hammond SM: An overview of microRNAs. Adv
Drug Deliv Rev. 87:3–14. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li Y, Geng P, Jiang W, Wang Y, Yao J, Lin
X, Liu J, Huang L, Su B and Chen H: Enhancement of radiosensitivity
by 5-Aza-CdR through activation of G2/M checkpoint response and
apoptosis in osteosarcoma cells. Tumour Biol. 35:4831–4839. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Festuccia C, Gravina GL, D'Alessandro AM,
Muzi P, Millimaggi D, Dolo V, Ricevuto E, Vicentini C and Bologna
M: Azacitidine improves antitumor effects of docetaxel and
cisplatin in aggressive prostate cancer models. Endocr Relat
Cancer. 16:401–413. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Qiu H, Yashiro M, Shinto O, Matsuzaki T
and Hirakawa K: DNA methyltransferase inhibitor 5-aza-CdR enhances
the radiosensitivity of gastric cancer cells. Cancer Sci.
100:181–188. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Brieger J, Mann SA, Pongsapich W,
Koutsimpelas D, Fruth K and Mann WJ: Pharmacological genome
demethylation increases radiosensitivity of head and neck squamous
carcinoma cells. Int J Mol Med. 29:505–509. 2012.PubMed/NCBI
|
|
96
|
De Schutter H, Kimpe M, Isebaert S and
Nuyts S: A systematic assessment of radiation dose enhancement by
5-Aza-2′-deoxycytidine and histone deacetylase inhibitors in
head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol
Phys. 73:904–912. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Huang S-H and O'Sullivan B: Oral cancer:
Current role of radiotherapy and chemotherapy. Med Oral Patol Oral
Cir Bucal. 18:e233–e240. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Basu T, Laskar SG, Gupta T, Budrukkar A,
Murthy V and Agarwal JP: Toxicity with radiotherapy for oral
cancers and its management: A practical approach. J Cancer Res
Ther. 8 Suppl 1:S72–S84. 2012.PubMed/NCBI
|
|
99
|
Sun W, Zaboli D, Liu Y, Arnaoutakis D,
Khan T, Wang H, Koch W, Khan Z and Califano JA: Comparison of
promoter hypermethylation pattern in salivary rinses collected with
and without an exfoliating brush from patients with HNSCC. PLoS
One. 7:e336422012. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Schussel J, Zhou XC, Zhang Z, Pattani K,
Bermudez F, Jean-Charles G, McCaffrey T, Padhya T, Phelan J,
Spivakovsky S, et al: EDNRB and DCC salivary rinse hypermethylation
has a similar performance as expert clinical examination in
discrimination of oral cancer/dysplasia versus benign lesions. Clin
Cancer Res. 19:3268–3275. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lima LMC, de Souza LR, da Silva TF,
Pereira CS, Guimarães ALS, de Paula AMB and de Andrade Carvalho H:
DNA repair gene excision repair cross complementing-group 1 (ERCC1)
in head and neck squamous cell carcinoma: Analysis of methylation
and polymorphism (G19007A), protein expression and association with
epidemiological and clinicopathological factors. Histopathology.
60:489–496. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Guerrero-Preston R, Soudry E, Acero J,
Orera M, Moreno-López L, Macía-Colón G, Jaffe A, Berdasco M,
Ili-Gangas C, Brebi-Mieville P, et al: NID2 and HOXA9 promoter
hypermethylation as biomarkers for prevention and early detection
in oral cavity squamous cell carcinoma tissues and saliva. Cancer
Prev Res (Phila). 4:1061–1072. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Demokan S, Chang X, Chuang A, Mydlarz WK,
Kaur J, Huang P, Khan Z, Khan T, Ostrow KL, Brait M, et al: KIF1A
and EDNRB are differentially methylated in primary HNSCC and
salivary rinses. Int J Cancer. 127:2351–2359. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ovchinnikov DA, Wan Y, Coman WB, Pandit P,
Cooper-White JJ, Herman JG and Punyadeera C: DNA Methylation at the
Novel CpG Sites in the Promoter of MED15/PCQAP Gene as a Biomarker
for Head and Neck Cancers. Biomark Insight. 9:53–60. 2014.
View Article : Google Scholar
|
|
105
|
Sun W, Zaboli D, Wang H, Liu Y,
Arnaoutakis D, Khan T, Khan Z, Koch WM and Califano JA: Detection
of TIMP3 promoter hypermethylation in salivary rinse as an
independent predictor of local recurrence-free survival in head and
neck cancer. Clin Cancer Res. 18:1082–1091. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Huang YK, Peng BY, Wu CY, Su CT, Wang HC
and Lai HC: DNA methylation of PAX1 as a biomarker for oral
squamous cell carcinoma. Clin Oral Investig. 18:801–808. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Rettori MM, de Carvalho AC, Bomfim Longo
AL, de Oliveira CZ, Kowalski LP, Carvalho AL and Vettore AL:
Prognostic significance of TIMP3 hypermethylation in post-treatment
salivary rinse from head and neck squamous cell carcinoma patients.
Carcinogenesis. 34:20–27. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Momen-Heravi F, Trachtenberg AJ, Kuo WP
and Cheng YS: Genomewide Study of Salivary MicroRNAs for Detection
of Oral Cancer. J Dent Res. 93 Suppl:86S–93S. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Salazar C, Calvopiña D and Punyadeera C:
miRNAs in human papilloma virus associated oral and oropharyngeal
squamous cell carcinomas. Expert Rev Mol Diagn. 14:1033–1040. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Liu CJ, Lin SC, Yang CC, Cheng HW and
Chang KW: Exploiting salivary miR-31 as a clinical biomarker of
oral squamous cell carcinoma. Head Neck. 34:219–224. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Salazar C, Nagadia R, Pandit P,
Cooper-White J, Banerjee N, Dimitrova N, Coman WB and Punyadeera C:
A novel saliva-based microRNA biomarker panel to detect head and
neck cancers. Cell Oncol (Dordr). 37:331–338. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Park NJ, Zhou H, Elashoff D, Henson BS,
Kastratovic DA, Abemayor E and Wong DT: Salivary microRNA:
Discovery, characterization, and clinical utility for oral cancer
detection. Clin Cancer Res. 15:5473–5477. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wiklund ED, Gao S, Hulf T, Sibbritt T,
Nair S, Costea DE, Villadsen SB, Bakholdt V, Bramsen JB, Sørensen
JA, et al: MicroRNA alterations and associated aberrant DNA
methylation patterns across multiple sample types in oral squamous
cell carcinoma. PLoS One. 6:e278402011. View Article : Google Scholar : PubMed/NCBI
|