Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
December-2018 Volume 9 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2018 Volume 9 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Epigenetic modulation during hippocampal development (Review)

  • Authors:
    • Si‑Jing Fan
    • An‑Bang Sun
    • Lian Liu
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China, Laboratory of Neuronal and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China
  • Pages: 463-473
    |
    Published online on: October 18, 2018
       https://doi.org/10.3892/br.2018.1160
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The hippocampus is located in the limbic system and is vital in learning ability, memory formation and emotion regulation, and is associated with depression, epilepsy and mental retardation in an abnormal developmental situation. Several factors have been found to modulate the development of the hippocampus, and epigenetic modification have a crucial effect in this progress. The present review summarizes the epigenetic modifications, including DNA methylation, histone acetylation, and non‑coding RNAs, regulating all stages of hippocampal development, focusing on the growth of Ammon's horn and the dentate gyrus in humans and rodents. These modifications may significantly affect hippocampal development and health in addition to cognitive processes.
View Figures
View References

1 

Li Y, Mu Y and Gage FH: Development of neural circuits in the adult hippocampus. Curr Top Dev Biol. 87:149–174. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Xu L, Tang X, Wang Y, Xu H and Fan X: Radial glia, the keystone of the development of the hippocampal dentate gyrus. Mol Neurobiol. 51:131–141. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Zhao C, Deng W and Gage FH: Mechanisms and functional implications of adult neurogenesis. Cell. 132:645–660. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Khalaf-Nazzal R and Francis F: Hippocampal development-old and new findings. Neuroscience. 248:225–242. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Stouffer MA, Golden JA and Francis F: Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol Dis. 92:18–45. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Burke MW, Ptito M, Ervin FR and Palmour RM: Hippocampal neuron populations are reduced in vervet monkeys with fetal alcohol exposure. Dev Psychobiol. 57:470–485. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Legrand M, Lam S, Anselme I, Gloaguen C, Ibanez C, Eriksson P, Lestaevel P and Dinocourt C: Exposure to depleted uranium during development affects neuronal differentiation in the hippocampal dentate gyrus and induces depressive-like behavior in offspring. Neurotoxicology. 57:153–162. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Inbar-Feigenberg M, Choufani S, Butcher DT, Roifman M and Weksberg R: Basic concepts of epigenetics. Fertil Steril. 99:607–615. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Caronia-Brown G, Yoshida M, Gulden F, Assimacopoulos S and Grove EA: The cortical hem regulates the size and patterning of neocortex. Development. 141:2855–2865. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Deng JB, Cai Y, Sun XJ, Zhang Y, Su M and Song QX: Morphological study of human embryo development in the Hippocampus-I. General observation of structure. Shenjing Jiepouxue Zazhi. (1):1–9. 1996.(In Chinese).

11 

Li G and Pleasure SJ: Morphogenesis of the dentate gyrus: What we are learning from mouse mutants. Dev Neurosci. 27:93–99. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Nicola Z, Fabel K and Kempermann G: Development of the adult neurogenic niche in the hippocampus of mice. Front Neuroanat. 9:532015. View Article : Google Scholar : PubMed/NCBI

13 

Kier EL, Kim JH, Fulbright RK and Bronen RA: Embryology of the human fetal hippocampus: MR imaging, anatomy, and histology. AJNR Am J Neuroradiol. 18:525–532. 1997.PubMed/NCBI

14 

Humphrey T: The development of the human hippocampal fissure. J Anat. 101:655–676. 1967.PubMed/NCBI

15 

Rice D and Barone S Jr: Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ Health Perspect. 108 Suppl 3:511–533. 2000. View Article : Google Scholar : PubMed/NCBI

16 

Deng W, Aimone JB and Gage FH: New neurons and new memories: How does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 11:339–350. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Warner-Schmidt JL and Duman RS: Hippocampal neurogenesis: Opposing effects of stress and antidepressant treatment. Hippocampus. 16:239–249. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Utsunomiya H, Takano K, Okazaki M and Mitsudome A: Development of the temporal lobe in infants and children: Analysis by MR-based volumetry. AJNR Am J Neuroradiol. 20:717–723. 1999.PubMed/NCBI

19 

Woolard AA and Heckers S: Anatomical and functional correlates of human hippocampal volume asymmetry. Psychiatry Res. 201:48–53. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Rogers BP, Sheffield JM, Luksik AS and Heckers S: Systematic error in hippocampal volume asymmetry measurement is minimal with a manual segmentation protocol. Front Neurosci. 6:1792012. View Article : Google Scholar : PubMed/NCBI

21 

Semple BD, Blomgren K, Gimlin K, Ferriero DM and Noble-Haeusslein LJ: Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 106–107, 1-16. 2013.PubMed/NCBI

22 

Bayer SA: Development of the hippocampal region in the rat. II. Morphogenesis during embryonic and early postnatal life. J Comp Neurol. 190:115–134. 1980. View Article : Google Scholar : PubMed/NCBI

23 

Radic T, Frieß L, Vijikumar A, Jungenitz T, Deller T and Schwarzacher SW: Differential postnatal expression of neuronal maturation markers in the dentate gyrus of mice and rats. Front Neuroanat. 11:1042017. View Article : Google Scholar : PubMed/NCBI

24 

Altman J and Bayer SA: Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells. J Comp Neurol. 301:325–342. 1990. View Article : Google Scholar : PubMed/NCBI

25 

Altman J and Bayer SA: Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol. 301:365–381. 1990. View Article : Google Scholar : PubMed/NCBI

26 

Bayer SA: Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol. 190:87–114. 1980. View Article : Google Scholar : PubMed/NCBI

27 

Altman J and Bayer SA: Prolonged sojourn of developing pyramidal cells in the intermediate zone of the hippocampus and their settling in the stratum pyramidale. J Comp Neurol. 301:343–364. 1990. View Article : Google Scholar : PubMed/NCBI

28 

Schlessinger AR, Cowan WM and Swanson LW: The time of origin of neurons in Ammons horn and the associated retrohippocampal fields. Anat Embryol (Berl). 154:153–173. 1978. View Article : Google Scholar : PubMed/NCBI

29 

Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA and Gage FH: Neurogenesis in the adult human hippocampus. Nat Med. 4:1313–1317. 1998. View Article : Google Scholar : PubMed/NCBI

30 

Berg DA, Bond AM, Ming GL and Song H: Radial glial cells in the adult dentate gyrus: What are they and where do they come from? F1000 Res. 7:2772018. View Article : Google Scholar

31 

Nakahira E and Yuasa S: Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J Comp Neurol. 483:329–340. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Barry G, Piper M, Lindwall C, Moldrich R, Mason S, Little E, Sarkar A, Tole S, Gronostajski RM and Richards LJ: Specific glial populations regulate hippocampal morphogenesis. J Neurosci. 28:12328–12340. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Angevine JB Jr: Time of neuron origin in the hippocampal region. An autoradiographic study in the mouse. Exp Neurol Suppl. (Suppl 2):1–70. 1965.

34 

Hayashi K, Kubo K, Kitazawa A and Nakajima K: Cellular dynamics of neuronal migration in the hippocampus. Front Neurosci. 9:1352015. View Article : Google Scholar : PubMed/NCBI

35 

Reznikov KY: Cell proliferation and cytogenesis in the mouse hippocampus. Adv Anat Embryol Cell Biol. 122:1–74. 1991. View Article : Google Scholar : PubMed/NCBI

36 

Pérez Delgado MM, Serrano Aguilar PG, Castañeyra Perdomo A and Ferres Torres R: Postnatal development of the Ammons horn (CA1 and CA3 fields). A karyometric and topographic study. Histol Histopathol. 9:715–721. 1994.PubMed/NCBI

37 

Podobinska M, Szablowska-Gadomska I, Augustyniak J, Sandvig I, Sandvig A and Buzanska L: Epigenetic modulation of stem cells in neurodevelopment: The role of methylation and acetylation. Front Cell Neurosci. 11:232017. View Article : Google Scholar : PubMed/NCBI

38 

Moore LD, Le T and Fan G: DNA methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Uysal F, Akkoyunlu G and Ozturk S: Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos. Biochimie. 116:103–113. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Jeltsch A and Jurkowska RZ: New concepts in DNA methylation. Trends Biochem Sci. 39:310–318. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Jones PA: Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 13:484–492. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Reik W, Dean W and Walter J: Epigenetic reprogramming in mammalian development. Science. 293:1089–1093. 2001. View Article : Google Scholar : PubMed/NCBI

43 

Denomme MM and Mann MR: Maternal control of genomic imprint maintenance. Reprod Biomed Online. 27:629–636. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Chen Y, Damayanti NP, Irudayaraj J, Dunn K and Zhou FC: Diversity of two forms of DNA methylation in the brain. Front Genet. 5:462014. View Article : Google Scholar : PubMed/NCBI

45 

Setoguchi H, Namihira M, Kohyama J, Asano H, Sanosaka T and Nakashima K: Methyl-CpG binding proteins are involved in restricting differentiation plasticity in neurons. J Neurosci Res. 84:969–979. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Wu Z, Huang K, Yu J, Le T, Namihira M, Liu Y, Zhang J, Xue Z, Cheng L and Fan G: Dnmt3a regulates both proliferation and differentiation of mouse neural stem cells. J Neurosci Res. 90:1883–1891. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Noguchi H, Murao N, Kimura A, Matsuda T, Namihira M and Nakashima K: DNA Methyltransferase 1 Is Indispensable for Development of the Hippocampal Dentate Gyrus. J Neurosci. 36:6050–6068. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Chen Y, Ozturk NC and Zhou FC: DNA methylation program in developing hippocampus and its alteration by alcohol. PLoS One. 8:e605032013. View Article : Google Scholar : PubMed/NCBI

49 

Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, Silva AJ and Fan G: Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci. 13:423–430. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, Li E, Zhang Y and Sun YE: Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science. 329:444–448. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Simmons RK, Stringfellow SA, Glover ME, Wagle AA and Clinton SM: DNA methylation markers in the postnatal developing rat brain. Brain Res. 1533:26–36. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Zhang RR, Cui QY, Murai K, Lim YC, Smith ZD, Jin S, Ye P, Rosa L, Lee YK, Wu HP, et al: Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell. 13:237–245. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Larimore JL, Chapleau CA, Kudo S, Theibert A, Percy AK and Pozzo-Miller L: Bdnf overexpression in hippocampal neurons prevents dendritic atrophy caused by Rett-associated MECP2 mutations. Neurobiol Dis. 34:199–211. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Zoghbi HY: Postnatal neurodevelopmental disorders: Meeting at the synapse? Science. 302:826–830. 2003. View Article : Google Scholar : PubMed/NCBI

55 

Falkai P, Reich-Erkelenz D, Malchow B, Schmitt A and Majtenyi K: Brain development before onset of the first psychotic episode and during outcome of schizophrenia. Fortschr Neurol Psychiatr. 81:260–264. 2013.(In German). PubMed/NCBI

56 

Matrisciano F, Tueting P, Dalal I, Kadriu B, Grayson DR, Davis JM, Nicoletti F and Guidotti A: Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology. 68:184–194. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Miller-Delaney SF, Bryan K, Das S, McKiernan RC, Bray IM, Reynolds JP, Gwinn R, Stallings RL and Henshall DC: Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain. 138:616–631. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Blanco-Luquin I, Altuna M, Sánchez-Ruiz de Gordoa J, Urdánoz-Casado A, Roldán M, Cámara M, Zelaya V, Erro ME, Echavarri C and Mendioroz M: PLD3 epigenetic changes in the hippocampus of Alzheimers disease. Clin Epigenetics. 10:1162018. View Article : Google Scholar : PubMed/NCBI

59 

Zhang TY, Labonté B, Wen XL, Turecki G and Meaney MJ: Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology. 38:111–123. 2013. View Article : Google Scholar : PubMed/NCBI

60 

McClelland S, Korosi A, Cope J, Ivy A and Baram TZ: Emerging roles of epigenetic mechanisms in the enduring effects of early-life stress and experience on learning and memory. Neurobiol Learn Mem. 96:79–88. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Davies MN, Krause L, Bell JT, Gao F, Ward KJ, Wu H, Lu H, Liu Y, Tsai PC, Collier DA, et al; UK Brain Expression Consortium, . Hypermethylation in the ZBTB20 gene is associated with major depressive disorder. Genome Biol. 15:R562014. View Article : Google Scholar : PubMed/NCBI

62 

Oliveira AM, Hemstedt TJ, Freitag HE and Bading H: Dnmt3a2: A hub for enhancing cognitive functions. Mol Psychiatry. 21:1130–1136. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Fischle W, Mootz HD and Schwarzer D: Synthetic histone code. Curr Opin Chem Biol. 28:131–140. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Zentner GE and Henikoff S: Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol. 20:259–266. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Zhang Y, Gilquin B, Khochbin S and Matthias P: Two catalytic domains are required for protein deacetylation. J Biol Chem. 281:2401–2404. 2006. View Article : Google Scholar : PubMed/NCBI

66 

MacDonald JL and Roskams AJ: Histone deacetylases 1 and 2 are expressed at distinct stages of neuro-glial development. Dev Dyn. 237:2256–2267. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Montgomery RL, Hsieh J, Barbosa AC, Richardson JA and Olson EN: Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci USA. 106:7876–7881. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Hagelkruys A, Lagger S, Krahmer J, Leopoldi A, Artaker M, Pusch O, Zezula J, Weissmann S, Xie Y, Schöfer C, et al: A single allele of Hdac2 but not Hdac1 is sufficient for normal mouse brain development in the absence of its paralog. Development. 141:604–616. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Baranek C and Atanasoski S: Modulating epigenetic mechanisms: The diverse functions of Ski during cortical development. Epigenetics. 7:676–679. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Kokura K, Kaul SC, Wadhwa R, Nomura T, Khan MM, Shinagawa T, Yasukawa T, Colmenares C and Ishii S: The Ski protein family is required for MeCP2-mediated transcriptional repression. J Biol Chem. 276:34115–34121. 2001. View Article : Google Scholar : PubMed/NCBI

71 

You L, Yan K, Zou J, Zhao H, Bertos NR, Park M, Wang E and Yang XJ: The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors. PLoS Genet. 11:e10050342015. View Article : Google Scholar : PubMed/NCBI

72 

Qiao Y, Wang R, Yang X, Tang K and Jing N: Dual roles of histone H3 lysine 9 acetylation in human embryonic stem cell pluripotency and neural differentiation. J Biol Chem. 290:2508–2520. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Biswal S, Das D, Barhwal K, Kumar A, Nag TC, Thakur MK, Hota SK and Kumar B: Epigenetic regulation of SNAP25 prevents progressive glutamate excitotoxicty in hypoxic CA3 neurons. Mol Neurobiol. 54:6133–6147. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Kim BW, Yang S, Lee CH and Son H: A critical time window for the survival of neural progenitor cells by HDAC inhibitors in the hippocampus. Mol Cells. 31:159–164. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Hou N, Gong M, Bi Y, Zhang Y, Tan B, Liu Y, Wei X, Chen J and Li T: Spatiotemporal expression of HDAC2 during the postnatal development of the rat hippocampus. Int J Med Sci. 11:788–795. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, et al: HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 459:55–60. 2009. View Article : Google Scholar : PubMed/NCBI

77 

Gräff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M, et al: An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature. 483:222–226. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Sewal AS, Patzke H, Perez EJ, Park P, Lehrmann E, Zhang Y, Becker KG, Fletcher BR, Long JM and Rapp PR: Experience modulates the effects of histone deacetylase inhibitors on gene and protein expression in the hippocampus: Impaired plasticity in aging. J Neurosci. 35:11729–11742. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Sandner G, Host L, Angst MJ, Guiberteau T, Guignard B and Zwiller J: The HDAC inhibitor phenylbutyrate reverses effects of neonatal ventral hippocampal lesion in rats. Front Psychiatry. 1:1532011. View Article : Google Scholar : PubMed/NCBI

80 

Tsuji M, Miyagawa K and Takeda H: Epigenetic regulation of resistance to emotional stress: Possible involvement of 5-HT1A receptor-mediated histone acetylation. J Pharmacol Sci. 125:347–354. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Contestabile A and Sintoni S: Histone acetylation in neurodevelopment. Curr Pharm Des. 19:5043–5050. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Marchese FP and Huarte M: Long non-coding RNAs and chromatin modifiers: Their place in the epigenetic code. Epigenetics. 9:21–26. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Li X, Wu Z, Fu X and Han W: lncRNAs: Insights into their function and mechanics in underlying disorders. Mutat Res Rev Mutat Res. 762:1–21. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Chuang JC and Jones PA: Epigenetics and microRNAs. Pediatr Res. 61:24R–29R. 2007. View Article : Google Scholar : PubMed/NCBI

85 

Wang Z, Yao H, Lin S, Zhu X, Shen Z, Lu G, Poon WS, Xie D, Lin MC and Kung HF: Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett. 331:1–10. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Tammen SA, Friso S and Choi SW: Epigenetics: The link between nature and nurture. Mol Aspects Med. 34:753–764. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Li Q, Bian S, Hong J, Kawase-Koga Y, Zhu E, Zheng Y, Yang L and Sun T: Timing specific requirement of microRNA function is essential for embryonic and postnatal hippocampal development. PLoS One. 6:e260002011. View Article : Google Scholar : PubMed/NCBI

88 

Konopka W, Kiryk A, Novak M, Herwerth M, Parkitna JR, Wawrzyniak M, Kowarsch A, Michaluk P, Dzwonek J, Arnsperger T, et al: MicroRNA loss enhances learning and memory in mice. J Neurosci. 30:14835–14842. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Mercer TR, Dinger ME, Sunkin SM, Mehler MF and Mattick JS: Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA. 105:716–721. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, Zheng D and Lachman HM: RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS One. 6:e233562011. View Article : Google Scholar : PubMed/NCBI

91 

Nigro A, Menon R, Bergamaschi A, Clovis YM, Baldi A, Ehrmann M, Comi G, De Pietri Tonelli D, Farina C, Martino G, et al: miR-30e and miR-181d control radial glia cell proliferation via HtrA1 modulation. Cell Death Dis. 3:e3602012. View Article : Google Scholar : PubMed/NCBI

92 

Kerek R, Geoffroy A, Bison A, Martin N, Akchiche N, Pourié G, Helle D, Guéant JL, Bossenmeyer-Pourié C and Daval JL: Early methyl donor deficiency may induce persistent brain defects by reducing Stat3 signaling targeted by miR-124. Cell Death Dis. 4:e7552013. View Article : Google Scholar : PubMed/NCBI

93 

Monteleone MC, Adrover E, Pallarés ME, Antonelli MC, Frasch AC and Brocco MA: Prenatal stress changes the glycoprotein GPM6A gene expression and induces epigenetic changes in rat offspring brain. Epigenetics. 9:152–160. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Howe JR VI, Li ES, Streeter SE, Rahme GJ, Chipumuro E, Russo GB, Litzky JF, Hills LB, Rodgers KR, Skelton PD, et al: MiR-338-3p regulates neuronal maturation and suppresses glioblastoma proliferation. PLoS One. 12:e01776612017. View Article : Google Scholar : PubMed/NCBI

95 

Shibata M, Nakao H, Kiyonari H, Abe T and Aizawa S: MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci. 31:3407–3422. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Delaloy C, Liu L, Lee JA, Su H, Shen F, Yang GY, Young WL, Ivey KN and Gao FB: MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell. 6:323–335. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Sim SE, Lim CS, Kim JI, Seo D, Chun H, Yu NK, Lee J, Kang SJ, Ko HG, Choi JH, et al: The Brain-Enriched MicroRNA miR-9-3p Regulates Synaptic Plasticity and Memory. J Neurosci. 36:8641–8652. 2016. View Article : Google Scholar : PubMed/NCBI

98 

Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman RH, et al: An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA. 105:9093–9098. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M and Greenberg ME: A brain-specific microRNA regulates dendritic spine development. Nature. 439:283–289. 2006. View Article : Google Scholar : PubMed/NCBI

100 

Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner PF, Busch CJ, Kane C, et al: A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol. 11:705–716. 2009. View Article : Google Scholar : PubMed/NCBI

101 

Bond AM, Vangompel MJ, Sametsky EA, Clark MF, Savage JC, Disterhoft JF and Kohtz JD: Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci. 12:1020–1027. 2009. View Article : Google Scholar : PubMed/NCBI

102 

Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, Zhang MQ, Sedel F, Jourdren L, Coulpier F, et al: A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 29:3082–3093. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Nan A, Zhou X, Chen L, Liu M, Zhang N, Zhang L, Luo Y, Liu Z, Dai L and Jiang Y: A transcribed ultraconserved noncoding RNA, Uc.173, is a key molecule for the inhibition of lead-induced neuronal apoptosis. Oncotarget. 7:112–124. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Chhabra R: miRNA and methylation: A multifaceted liaison. ChemBioChem. 16:195–203. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P and Filipowicz W: MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol. 15:259–267. 2008. View Article : Google Scholar : PubMed/NCBI

106 

So AY, Jung JW, Lee S, Kim HS and Kang KS: DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One. 6:e195032011. View Article : Google Scholar : PubMed/NCBI

107 

OLoghlen A, Muñoz-Cabello AM, Gaspar-Maia A, Wu HA, Banito A, Kunowska N, Racek T, Pemberton HN, Beolchi P, Lavial F, et al: MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell. 10:33–46. 2012. View Article : Google Scholar : PubMed/NCBI

108 

Jobe EM, McQuate AL and Zhao X: Crosstalk among Epigenetic Pathways Regulates Neurogenesis. Front Neurosci. 6:592012. View Article : Google Scholar : PubMed/NCBI

109 

Cui JG, Zhao Y, Sethi P, Li YY, Mahta A, Culicchia F and Lukiw WJ: Micro-RNA-128 (miRNA-128) down-regulation in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key regulators of brain cell proliferation. J Neurooncol. 98:297–304. 2010. View Article : Google Scholar : PubMed/NCBI

110 

Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L, Santistevan NJ, Li W, Zhao X and Jin P: Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol. 189:127–141. 2010. View Article : Google Scholar : PubMed/NCBI

111 

Gao J, Wang WY, Mao YW, Gräff J, Guan JS, Pan L, Mak G, Kim D, Su SC and Tsai LH: A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 466:1105–1109. 2010. View Article : Google Scholar : PubMed/NCBI

112 

Zovoilis A, Agbemenyah HY, Agis-Balboa RC, Stilling RM, Edbauer D, Rao P, Farinelli L, Delalle I, Schmitt A, Falkai P, et al: microRNA-34c is a novel target to treat dementias. EMBO J. 30:4299–4308. 2011. View Article : Google Scholar : PubMed/NCBI

113 

Qureshi IA and Mehler MF: Epigenetic mechanisms underlying human epileptic disorders and the process of epileptogenesis. Neurobiol Dis. 39:53–60. 2010. View Article : Google Scholar : PubMed/NCBI

114 

Zhong J, Chuang SC, Bianchi R, Zhao W, Lee H, Fenton AA, Wong RK and Tiedge H: BC1 regulation of metabotropic glutamate receptor-mediated neuronal excitability. J Neurosci. 29:9977–9986. 2009. View Article : Google Scholar : PubMed/NCBI

115 

Hu S, Wang H, Chen K, Cheng P, Gao S, Liu J, Li X and Sun X: MicroRNA-34c downregulation ameliorates amyloid-β-induced synaptic failure and memory deficits by targeting VAMP2. J Alzheimers Dis. 48:673–686. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Wesseling H, Xu B, Want EJ, Holmes E, Guest PC, Karayiorgou M, Gogos JA and Bahn S: System-based proteomic and metabonomic analysis of the Df(16)A+/- mouse identifies potential miR-185 targets and molecular pathway alterations. Mol Psychiatry. 22:384–395. 2017. View Article : Google Scholar : PubMed/NCBI

117 

Olde Loohuis NF, Nadif Kasri N, Glennon JC, van Bokhoven H, Hébert SS, Kaplan BB, Martens GJ and Aschrafi A: The schizophrenia risk gene MIR137 acts as a hippocampal gene network node orchestrating the expression of genes relevant to nervous system development and function. Prog Neuropsychopharmacol Biol Psychiatry. 73:109–118. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, et al: Dynamic changes in the human methylome during differentiation. Genome Res. 20:320–331. 2010. View Article : Google Scholar : PubMed/NCBI

119 

Amaral PP, Neyt C, Wilkins SJ, Askarian-Amiri ME, Sunkin SM, Perkins AC and Mattick JS: Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA. 15:2013–2027. 2009. View Article : Google Scholar : PubMed/NCBI

120 

Amador-Arjona A, Cimadamore F, Huang CT, Wright R, Lewis S, Gage FH and Terskikh AV: SOX2 primes the epigenetic landscape in neural precursors enabling proper gene activation during hippocampal neurogenesis. Proc Natl Acad Sci USA. 112:E1936–E1945. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Fan SJ, Sun AB and Liu L: Epigenetic modulation during hippocampal development (Review). Biomed Rep 9: 463-473, 2018.
APA
Fan, S., Sun, A., & Liu, L. (2018). Epigenetic modulation during hippocampal development (Review). Biomedical Reports, 9, 463-473. https://doi.org/10.3892/br.2018.1160
MLA
Fan, S., Sun, A., Liu, L."Epigenetic modulation during hippocampal development (Review)". Biomedical Reports 9.6 (2018): 463-473.
Chicago
Fan, S., Sun, A., Liu, L."Epigenetic modulation during hippocampal development (Review)". Biomedical Reports 9, no. 6 (2018): 463-473. https://doi.org/10.3892/br.2018.1160
Copy and paste a formatted citation
x
Spandidos Publications style
Fan SJ, Sun AB and Liu L: Epigenetic modulation during hippocampal development (Review). Biomed Rep 9: 463-473, 2018.
APA
Fan, S., Sun, A., & Liu, L. (2018). Epigenetic modulation during hippocampal development (Review). Biomedical Reports, 9, 463-473. https://doi.org/10.3892/br.2018.1160
MLA
Fan, S., Sun, A., Liu, L."Epigenetic modulation during hippocampal development (Review)". Biomedical Reports 9.6 (2018): 463-473.
Chicago
Fan, S., Sun, A., Liu, L."Epigenetic modulation during hippocampal development (Review)". Biomedical Reports 9, no. 6 (2018): 463-473. https://doi.org/10.3892/br.2018.1160
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team