|
1
|
Li Y, Mu Y and Gage FH: Development of
neural circuits in the adult hippocampus. Curr Top Dev Biol.
87:149–174. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Xu L, Tang X, Wang Y, Xu H and Fan X:
Radial glia, the keystone of the development of the hippocampal
dentate gyrus. Mol Neurobiol. 51:131–141. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhao C, Deng W and Gage FH: Mechanisms and
functional implications of adult neurogenesis. Cell. 132:645–660.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Khalaf-Nazzal R and Francis F: Hippocampal
development-old and new findings. Neuroscience. 248:225–242. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Stouffer MA, Golden JA and Francis F:
Neuronal migration disorders: Focus on the cytoskeleton and
epilepsy. Neurobiol Dis. 92:18–45. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Burke MW, Ptito M, Ervin FR and Palmour
RM: Hippocampal neuron populations are reduced in vervet monkeys
with fetal alcohol exposure. Dev Psychobiol. 57:470–485. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Legrand M, Lam S, Anselme I, Gloaguen C,
Ibanez C, Eriksson P, Lestaevel P and Dinocourt C: Exposure to
depleted uranium during development affects neuronal
differentiation in the hippocampal dentate gyrus and induces
depressive-like behavior in offspring. Neurotoxicology. 57:153–162.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Inbar-Feigenberg M, Choufani S, Butcher
DT, Roifman M and Weksberg R: Basic concepts of epigenetics. Fertil
Steril. 99:607–615. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Caronia-Brown G, Yoshida M, Gulden F,
Assimacopoulos S and Grove EA: The cortical hem regulates the size
and patterning of neocortex. Development. 141:2855–2865. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Deng JB, Cai Y, Sun XJ, Zhang Y, Su M and
Song QX: Morphological study of human embryo development in the
Hippocampus-I. General observation of structure. Shenjing Jiepouxue
Zazhi. (1):1–9. 1996.(In Chinese).
|
|
11
|
Li G and Pleasure SJ: Morphogenesis of the
dentate gyrus: What we are learning from mouse mutants. Dev
Neurosci. 27:93–99. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nicola Z, Fabel K and Kempermann G:
Development of the adult neurogenic niche in the hippocampus of
mice. Front Neuroanat. 9:532015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kier EL, Kim JH, Fulbright RK and Bronen
RA: Embryology of the human fetal hippocampus: MR imaging, anatomy,
and histology. AJNR Am J Neuroradiol. 18:525–532. 1997.PubMed/NCBI
|
|
14
|
Humphrey T: The development of the human
hippocampal fissure. J Anat. 101:655–676. 1967.PubMed/NCBI
|
|
15
|
Rice D and Barone S Jr: Critical periods
of vulnerability for the developing nervous system: Evidence from
humans and animal models. Environ Health Perspect. 108 Suppl
3:511–533. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Deng W, Aimone JB and Gage FH: New neurons
and new memories: How does adult hippocampal neurogenesis affect
learning and memory? Nat Rev Neurosci. 11:339–350. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Warner-Schmidt JL and Duman RS:
Hippocampal neurogenesis: Opposing effects of stress and
antidepressant treatment. Hippocampus. 16:239–249. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Utsunomiya H, Takano K, Okazaki M and
Mitsudome A: Development of the temporal lobe in infants and
children: Analysis by MR-based volumetry. AJNR Am J Neuroradiol.
20:717–723. 1999.PubMed/NCBI
|
|
19
|
Woolard AA and Heckers S: Anatomical and
functional correlates of human hippocampal volume asymmetry.
Psychiatry Res. 201:48–53. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Rogers BP, Sheffield JM, Luksik AS and
Heckers S: Systematic error in hippocampal volume asymmetry
measurement is minimal with a manual segmentation protocol. Front
Neurosci. 6:1792012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Semple BD, Blomgren K, Gimlin K, Ferriero
DM and Noble-Haeusslein LJ: Brain development in rodents and
humans: Identifying benchmarks of maturation and vulnerability to
injury across species. Prog Neurobiol. 106–107, 1-16.
2013.PubMed/NCBI
|
|
22
|
Bayer SA: Development of the hippocampal
region in the rat. II. Morphogenesis during embryonic and early
postnatal life. J Comp Neurol. 190:115–134. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Radic T, Frieß L, Vijikumar A, Jungenitz
T, Deller T and Schwarzacher SW: Differential postnatal expression
of neuronal maturation markers in the dentate gyrus of mice and
rats. Front Neuroanat. 11:1042017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Altman J and Bayer SA: Mosaic organization
of the hippocampal neuroepithelium and the multiple germinal
sources of dentate granule cells. J Comp Neurol. 301:325–342. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Altman J and Bayer SA: Migration and
distribution of two populations of hippocampal granule cell
precursors during the perinatal and postnatal periods. J Comp
Neurol. 301:365–381. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bayer SA: Development of the hippocampal
region in the rat. I. Neurogenesis examined with 3H-thymidine
autoradiography. J Comp Neurol. 190:87–114. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Altman J and Bayer SA: Prolonged sojourn
of developing pyramidal cells in the intermediate zone of the
hippocampus and their settling in the stratum pyramidale. J Comp
Neurol. 301:343–364. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Schlessinger AR, Cowan WM and Swanson LW:
The time of origin of neurons in Ammons horn and the associated
retrohippocampal fields. Anat Embryol (Berl). 154:153–173. 1978.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Eriksson PS, Perfilieva E, Björk-Eriksson
T, Alborn AM, Nordborg C, Peterson DA and Gage FH: Neurogenesis in
the adult human hippocampus. Nat Med. 4:1313–1317. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Berg DA, Bond AM, Ming GL and Song H:
Radial glial cells in the adult dentate gyrus: What are they and
where do they come from? F1000 Res. 7:2772018. View Article : Google Scholar
|
|
31
|
Nakahira E and Yuasa S: Neuronal
generation, migration, and differentiation in the mouse hippocampal
primoridium as revealed by enhanced green fluorescent protein gene
transfer by means of in utero electroporation. J Comp Neurol.
483:329–340. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Barry G, Piper M, Lindwall C, Moldrich R,
Mason S, Little E, Sarkar A, Tole S, Gronostajski RM and Richards
LJ: Specific glial populations regulate hippocampal morphogenesis.
J Neurosci. 28:12328–12340. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Angevine JB Jr: Time of neuron origin in
the hippocampal region. An autoradiographic study in the mouse. Exp
Neurol Suppl. (Suppl 2):1–70. 1965.
|
|
34
|
Hayashi K, Kubo K, Kitazawa A and Nakajima
K: Cellular dynamics of neuronal migration in the hippocampus.
Front Neurosci. 9:1352015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Reznikov KY: Cell proliferation and
cytogenesis in the mouse hippocampus. Adv Anat Embryol Cell Biol.
122:1–74. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pérez Delgado MM, Serrano Aguilar PG,
Castañeyra Perdomo A and Ferres Torres R: Postnatal development of
the Ammons horn (CA1 and CA3 fields). A karyometric and topographic
study. Histol Histopathol. 9:715–721. 1994.PubMed/NCBI
|
|
37
|
Podobinska M, Szablowska-Gadomska I,
Augustyniak J, Sandvig I, Sandvig A and Buzanska L: Epigenetic
modulation of stem cells in neurodevelopment: The role of
methylation and acetylation. Front Cell Neurosci. 11:232017.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Moore LD, Le T and Fan G: DNA methylation
and its basic function. Neuropsychopharmacology. 38:23–38. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Uysal F, Akkoyunlu G and Ozturk S: Dynamic
expression of DNA methyltransferases (DNMTs) in oocytes and early
embryos. Biochimie. 116:103–113. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jeltsch A and Jurkowska RZ: New concepts
in DNA methylation. Trends Biochem Sci. 39:310–318. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Jones PA: Functions of DNA methylation:
Islands, start sites, gene bodies and beyond. Nat Rev Genet.
13:484–492. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Reik W, Dean W and Walter J: Epigenetic
reprogramming in mammalian development. Science. 293:1089–1093.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Denomme MM and Mann MR: Maternal control
of genomic imprint maintenance. Reprod Biomed Online. 27:629–636.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chen Y, Damayanti NP, Irudayaraj J, Dunn K
and Zhou FC: Diversity of two forms of DNA methylation in the
brain. Front Genet. 5:462014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Setoguchi H, Namihira M, Kohyama J, Asano
H, Sanosaka T and Nakashima K: Methyl-CpG binding proteins are
involved in restricting differentiation plasticity in neurons. J
Neurosci Res. 84:969–979. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wu Z, Huang K, Yu J, Le T, Namihira M, Liu
Y, Zhang J, Xue Z, Cheng L and Fan G: Dnmt3a regulates both
proliferation and differentiation of mouse neural stem cells. J
Neurosci Res. 90:1883–1891. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Noguchi H, Murao N, Kimura A, Matsuda T,
Namihira M and Nakashima K: DNA Methyltransferase 1 Is
Indispensable for Development of the Hippocampal Dentate Gyrus. J
Neurosci. 36:6050–6068. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chen Y, Ozturk NC and Zhou FC: DNA
methylation program in developing hippocampus and its alteration by
alcohol. PLoS One. 8:e605032013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Feng J, Zhou Y, Campbell SL, Le T, Li E,
Sweatt JD, Silva AJ and Fan G: Dnmt1 and Dnmt3a maintain DNA
methylation and regulate synaptic function in adult forebrain
neurons. Nat Neurosci. 13:423–430. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wu H, Coskun V, Tao J, Xie W, Ge W,
Yoshikawa K, Li E, Zhang Y and Sun YE: Dnmt3a-dependent nonpromoter
DNA methylation facilitates transcription of neurogenic genes.
Science. 329:444–448. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Simmons RK, Stringfellow SA, Glover ME,
Wagle AA and Clinton SM: DNA methylation markers in the postnatal
developing rat brain. Brain Res. 1533:26–36. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhang RR, Cui QY, Murai K, Lim YC, Smith
ZD, Jin S, Ye P, Rosa L, Lee YK, Wu HP, et al: Tet1 regulates adult
hippocampal neurogenesis and cognition. Cell Stem Cell. 13:237–245.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Larimore JL, Chapleau CA, Kudo S, Theibert
A, Percy AK and Pozzo-Miller L: Bdnf overexpression in hippocampal
neurons prevents dendritic atrophy caused by Rett-associated MECP2
mutations. Neurobiol Dis. 34:199–211. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zoghbi HY: Postnatal neurodevelopmental
disorders: Meeting at the synapse? Science. 302:826–830. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Falkai P, Reich-Erkelenz D, Malchow B,
Schmitt A and Majtenyi K: Brain development before onset of the
first psychotic episode and during outcome of schizophrenia.
Fortschr Neurol Psychiatr. 81:260–264. 2013.(In German). PubMed/NCBI
|
|
56
|
Matrisciano F, Tueting P, Dalal I, Kadriu
B, Grayson DR, Davis JM, Nicoletti F and Guidotti A: Epigenetic
modifications of GABAergic interneurons are associated with the
schizophrenia-like phenotype induced by prenatal stress in mice.
Neuropharmacology. 68:184–194. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Miller-Delaney SF, Bryan K, Das S,
McKiernan RC, Bray IM, Reynolds JP, Gwinn R, Stallings RL and
Henshall DC: Differential DNA methylation profiles of coding and
non-coding genes define hippocampal sclerosis in human temporal
lobe epilepsy. Brain. 138:616–631. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Blanco-Luquin I, Altuna M, Sánchez-Ruiz de
Gordoa J, Urdánoz-Casado A, Roldán M, Cámara M, Zelaya V, Erro ME,
Echavarri C and Mendioroz M: PLD3 epigenetic changes in the
hippocampus of Alzheimers disease. Clin Epigenetics. 10:1162018.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang TY, Labonté B, Wen XL, Turecki G and
Meaney MJ: Epigenetic mechanisms for the early environmental
regulation of hippocampal glucocorticoid receptor gene expression
in rodents and humans. Neuropsychopharmacology. 38:111–123. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
McClelland S, Korosi A, Cope J, Ivy A and
Baram TZ: Emerging roles of epigenetic mechanisms in the enduring
effects of early-life stress and experience on learning and memory.
Neurobiol Learn Mem. 96:79–88. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Davies MN, Krause L, Bell JT, Gao F, Ward
KJ, Wu H, Lu H, Liu Y, Tsai PC, Collier DA, et al; UK Brain
Expression Consortium, . Hypermethylation in the ZBTB20 gene is
associated with major depressive disorder. Genome Biol. 15:R562014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Oliveira AM, Hemstedt TJ, Freitag HE and
Bading H: Dnmt3a2: A hub for enhancing cognitive functions. Mol
Psychiatry. 21:1130–1136. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Fischle W, Mootz HD and Schwarzer D:
Synthetic histone code. Curr Opin Chem Biol. 28:131–140. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zentner GE and Henikoff S: Regulation of
nucleosome dynamics by histone modifications. Nat Struct Mol Biol.
20:259–266. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang Y, Gilquin B, Khochbin S and
Matthias P: Two catalytic domains are required for protein
deacetylation. J Biol Chem. 281:2401–2404. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
MacDonald JL and Roskams AJ: Histone
deacetylases 1 and 2 are expressed at distinct stages of
neuro-glial development. Dev Dyn. 237:2256–2267. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Montgomery RL, Hsieh J, Barbosa AC,
Richardson JA and Olson EN: Histone deacetylases 1 and 2 control
the progression of neural precursors to neurons during brain
development. Proc Natl Acad Sci USA. 106:7876–7881. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hagelkruys A, Lagger S, Krahmer J,
Leopoldi A, Artaker M, Pusch O, Zezula J, Weissmann S, Xie Y,
Schöfer C, et al: A single allele of Hdac2 but not Hdac1 is
sufficient for normal mouse brain development in the absence of its
paralog. Development. 141:604–616. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Baranek C and Atanasoski S: Modulating
epigenetic mechanisms: The diverse functions of Ski during cortical
development. Epigenetics. 7:676–679. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kokura K, Kaul SC, Wadhwa R, Nomura T,
Khan MM, Shinagawa T, Yasukawa T, Colmenares C and Ishii S: The Ski
protein family is required for MeCP2-mediated transcriptional
repression. J Biol Chem. 276:34115–34121. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
You L, Yan K, Zou J, Zhao H, Bertos NR,
Park M, Wang E and Yang XJ: The lysine acetyltransferase activator
Brpf1 governs dentate gyrus development through neural stem cells
and progenitors. PLoS Genet. 11:e10050342015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Qiao Y, Wang R, Yang X, Tang K and Jing N:
Dual roles of histone H3 lysine 9 acetylation in human embryonic
stem cell pluripotency and neural differentiation. J Biol Chem.
290:2508–2520. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Biswal S, Das D, Barhwal K, Kumar A, Nag
TC, Thakur MK, Hota SK and Kumar B: Epigenetic regulation of SNAP25
prevents progressive glutamate excitotoxicty in hypoxic CA3
neurons. Mol Neurobiol. 54:6133–6147. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kim BW, Yang S, Lee CH and Son H: A
critical time window for the survival of neural progenitor cells by
HDAC inhibitors in the hippocampus. Mol Cells. 31:159–164. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hou N, Gong M, Bi Y, Zhang Y, Tan B, Liu
Y, Wei X, Chen J and Li T: Spatiotemporal expression of HDAC2
during the postnatal development of the rat hippocampus. Int J Med
Sci. 11:788–795. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Guan JS, Haggarty SJ, Giacometti E,
Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X,
Mazitschek R, et al: HDAC2 negatively regulates memory formation
and synaptic plasticity. Nature. 459:55–60. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gräff J, Rei D, Guan JS, Wang WY, Seo J,
Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M, et al: An
epigenetic blockade of cognitive functions in the neurodegenerating
brain. Nature. 483:222–226. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sewal AS, Patzke H, Perez EJ, Park P,
Lehrmann E, Zhang Y, Becker KG, Fletcher BR, Long JM and Rapp PR:
Experience modulates the effects of histone deacetylase inhibitors
on gene and protein expression in the hippocampus: Impaired
plasticity in aging. J Neurosci. 35:11729–11742. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sandner G, Host L, Angst MJ, Guiberteau T,
Guignard B and Zwiller J: The HDAC inhibitor phenylbutyrate
reverses effects of neonatal ventral hippocampal lesion in rats.
Front Psychiatry. 1:1532011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tsuji M, Miyagawa K and Takeda H:
Epigenetic regulation of resistance to emotional stress: Possible
involvement of 5-HT1A receptor-mediated histone acetylation. J
Pharmacol Sci. 125:347–354. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Contestabile A and Sintoni S: Histone
acetylation in neurodevelopment. Curr Pharm Des. 19:5043–5050.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Marchese FP and Huarte M: Long non-coding
RNAs and chromatin modifiers: Their place in the epigenetic code.
Epigenetics. 9:21–26. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li X, Wu Z, Fu X and Han W: lncRNAs:
Insights into their function and mechanics in underlying disorders.
Mutat Res Rev Mutat Res. 762:1–21. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chuang JC and Jones PA: Epigenetics and
microRNAs. Pediatr Res. 61:24R–29R. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang Z, Yao H, Lin S, Zhu X, Shen Z, Lu G,
Poon WS, Xie D, Lin MC and Kung HF: Transcriptional and epigenetic
regulation of human microRNAs. Cancer Lett. 331:1–10. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Tammen SA, Friso S and Choi SW:
Epigenetics: The link between nature and nurture. Mol Aspects Med.
34:753–764. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li Q, Bian S, Hong J, Kawase-Koga Y, Zhu
E, Zheng Y, Yang L and Sun T: Timing specific requirement of
microRNA function is essential for embryonic and postnatal
hippocampal development. PLoS One. 6:e260002011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Konopka W, Kiryk A, Novak M, Herwerth M,
Parkitna JR, Wawrzyniak M, Kowarsch A, Michaluk P, Dzwonek J,
Arnsperger T, et al: MicroRNA loss enhances learning and memory in
mice. J Neurosci. 30:14835–14842. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Mercer TR, Dinger ME, Sunkin SM, Mehler MF
and Mattick JS: Specific expression of long noncoding RNAs in the
mouse brain. Proc Natl Acad Sci USA. 105:716–721. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lin M, Pedrosa E, Shah A, Hrabovsky A,
Maqbool S, Zheng D and Lachman HM: RNA-Seq of human neurons derived
from iPS cells reveals candidate long non-coding RNAs involved in
neurogenesis and neuropsychiatric disorders. PLoS One.
6:e233562011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Nigro A, Menon R, Bergamaschi A, Clovis
YM, Baldi A, Ehrmann M, Comi G, De Pietri Tonelli D, Farina C,
Martino G, et al: miR-30e and miR-181d control radial glia cell
proliferation via HtrA1 modulation. Cell Death Dis. 3:e3602012.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kerek R, Geoffroy A, Bison A, Martin N,
Akchiche N, Pourié G, Helle D, Guéant JL, Bossenmeyer-Pourié C and
Daval JL: Early methyl donor deficiency may induce persistent brain
defects by reducing Stat3 signaling targeted by miR-124. Cell Death
Dis. 4:e7552013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Monteleone MC, Adrover E, Pallarés ME,
Antonelli MC, Frasch AC and Brocco MA: Prenatal stress changes the
glycoprotein GPM6A gene expression and induces epigenetic changes
in rat offspring brain. Epigenetics. 9:152–160. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Howe JR VI, Li ES, Streeter SE, Rahme GJ,
Chipumuro E, Russo GB, Litzky JF, Hills LB, Rodgers KR, Skelton PD,
et al: MiR-338-3p regulates neuronal maturation and suppresses
glioblastoma proliferation. PLoS One. 12:e01776612017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Shibata M, Nakao H, Kiyonari H, Abe T and
Aizawa S: MicroRNA-9 regulates neurogenesis in mouse telencephalon
by targeting multiple transcription factors. J Neurosci.
31:3407–3422. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Delaloy C, Liu L, Lee JA, Su H, Shen F,
Yang GY, Young WL, Ivey KN and Gao FB: MicroRNA-9 coordinates
proliferation and migration of human embryonic stem cell-derived
neural progenitors. Cell Stem Cell. 6:323–335. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Sim SE, Lim CS, Kim JI, Seo D, Chun H, Yu
NK, Lee J, Kang SJ, Ko HG, Choi JH, et al: The Brain-Enriched
MicroRNA miR-9-3p Regulates Synaptic Plasticity and Memory. J
Neurosci. 36:8641–8652. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wayman GA, Davare M, Ando H, Fortin D,
Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman
RH, et al: An activity-regulated microRNA controls dendritic
plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA.
105:9093–9098. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Schratt GM, Tuebing F, Nigh EA, Kane CG,
Sabatini ME, Kiebler M and Greenberg ME: A brain-specific microRNA
regulates dendritic spine development. Nature. 439:283–289. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Siegel G, Obernosterer G, Fiore R, Oehmen
M, Bicker S, Christensen M, Khudayberdiev S, Leuschner PF, Busch
CJ, Kane C, et al: A functional screen implicates
microRNA-138-dependent regulation of the depalmitoylation enzyme
APT1 in dendritic spine morphogenesis. Nat Cell Biol. 11:705–716.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Bond AM, Vangompel MJ, Sametsky EA, Clark
MF, Savage JC, Disterhoft JF and Kohtz JD: Balanced gene regulation
by an embryonic brain ncRNA is critical for adult hippocampal GABA
circuitry. Nat Neurosci. 12:1020–1027. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Bernard D, Prasanth KV, Tripathi V,
Colasse S, Nakamura T, Xuan Z, Zhang MQ, Sedel F, Jourdren L,
Coulpier F, et al: A long nuclear-retained non-coding RNA regulates
synaptogenesis by modulating gene expression. EMBO J. 29:3082–3093.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Nan A, Zhou X, Chen L, Liu M, Zhang N,
Zhang L, Luo Y, Liu Z, Dai L and Jiang Y: A transcribed
ultraconserved noncoding RNA, Uc.173, is a key molecule for the
inhibition of lead-induced neuronal apoptosis. Oncotarget.
7:112–124. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Chhabra R: miRNA and methylation: A
multifaceted liaison. ChemBioChem. 16:195–203. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Sinkkonen L, Hugenschmidt T, Berninger P,
Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P and
Filipowicz W: MicroRNAs control de novo DNA methylation through
regulation of transcriptional repressors in mouse embryonic stem
cells. Nat Struct Mol Biol. 15:259–267. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
So AY, Jung JW, Lee S, Kim HS and Kang KS:
DNA methyltransferase controls stem cell aging by regulating BMI1
and EZH2 through microRNAs. PLoS One. 6:e195032011. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
OLoghlen A, Muñoz-Cabello AM, Gaspar-Maia
A, Wu HA, Banito A, Kunowska N, Racek T, Pemberton HN, Beolchi P,
Lavial F, et al: MicroRNA regulation of Cbx7 mediates a switch of
Polycomb orthologs during ESC differentiation. Cell Stem Cell.
10:33–46. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Jobe EM, McQuate AL and Zhao X: Crosstalk
among Epigenetic Pathways Regulates Neurogenesis. Front Neurosci.
6:592012. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Cui JG, Zhao Y, Sethi P, Li YY, Mahta A,
Culicchia F and Lukiw WJ: Micro-RNA-128 (miRNA-128) down-regulation
in glioblastoma targets ARP5 (ANGPTL6), Bmi-1 and E2F-3a, key
regulators of brain cell proliferation. J Neurooncol. 98:297–304.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Szulwach KE, Li X, Smrt RD, Li Y, Luo Y,
Lin L, Santistevan NJ, Li W, Zhao X and Jin P: Cross talk between
microRNA and epigenetic regulation in adult neurogenesis. J Cell
Biol. 189:127–141. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Gao J, Wang WY, Mao YW, Gräff J, Guan JS,
Pan L, Mak G, Kim D, Su SC and Tsai LH: A novel pathway regulates
memory and plasticity via SIRT1 and miR-134. Nature. 466:1105–1109.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Zovoilis A, Agbemenyah HY, Agis-Balboa RC,
Stilling RM, Edbauer D, Rao P, Farinelli L, Delalle I, Schmitt A,
Falkai P, et al: microRNA-34c is a novel target to treat dementias.
EMBO J. 30:4299–4308. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Qureshi IA and Mehler MF: Epigenetic
mechanisms underlying human epileptic disorders and the process of
epileptogenesis. Neurobiol Dis. 39:53–60. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhong J, Chuang SC, Bianchi R, Zhao W, Lee
H, Fenton AA, Wong RK and Tiedge H: BC1 regulation of metabotropic
glutamate receptor-mediated neuronal excitability. J Neurosci.
29:9977–9986. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Hu S, Wang H, Chen K, Cheng P, Gao S, Liu
J, Li X and Sun X: MicroRNA-34c downregulation ameliorates
amyloid-β-induced synaptic failure and memory deficits by targeting
VAMP2. J Alzheimers Dis. 48:673–686. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wesseling H, Xu B, Want EJ, Holmes E,
Guest PC, Karayiorgou M, Gogos JA and Bahn S: System-based
proteomic and metabonomic analysis of the Df(16)A+/- mouse
identifies potential miR-185 targets and molecular pathway
alterations. Mol Psychiatry. 22:384–395. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Olde Loohuis NF, Nadif Kasri N, Glennon
JC, van Bokhoven H, Hébert SS, Kaplan BB, Martens GJ and Aschrafi
A: The schizophrenia risk gene MIR137 acts as a hippocampal gene
network node orchestrating the expression of genes relevant to
nervous system development and function. Prog Neuropsychopharmacol
Biol Psychiatry. 73:109–118. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Laurent L, Wong E, Li G, Huynh T, Tsirigos
A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, et al:
Dynamic changes in the human methylome during differentiation.
Genome Res. 20:320–331. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Amaral PP, Neyt C, Wilkins SJ,
Askarian-Amiri ME, Sunkin SM, Perkins AC and Mattick JS: Complex
architecture and regulated expression of the Sox2ot locus during
vertebrate development. RNA. 15:2013–2027. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Amador-Arjona A, Cimadamore F, Huang CT,
Wright R, Lewis S, Gage FH and Terskikh AV: SOX2 primes the
epigenetic landscape in neural precursors enabling proper gene
activation during hippocampal neurogenesis. Proc Natl Acad Sci USA.
112:E1936–E1945. 2015. View Article : Google Scholar : PubMed/NCBI
|