|
1
|
Macias RI: Cholangiocarcinoma: And
pharmacological Biology, Clinical management perspectives. ISRN
Hepatol. 2014.https://doi.org/10.1155/2014/828074.
PubMed/NCBI View Article : Google Scholar
|
|
2
|
Banales JM, Cardinale V, Carpino G,
Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes
SJ and Fouassier L: et al Expert consensus document:
Cholangiocarcinoma: current knowledge and future perspectives
consensus statement from the European Network for the Study of
Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 13.
261–280. 2016.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Sripa B and Pairojkul C:
Cholangiocarcinoma: Lessons from Thailand. Curr Opin Gastroenterol
24. 349–356. 2008.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Thuwajit C, Thuwajit P, Kaewkes S, Sripa
B, Uchida K, Miwa M and Wongkham S: Increased cell proliferation of
mouse fibroblast NIH-3T3 in vitro induced by excretory/secretory
product(s) from Opisthorchis viverrini. Parasitology 129. 455–464.
2004.PubMed/NCBI
|
|
5
|
Srivatanakul P, Ohshima H, Khlat M, Parkin
M, Sukaryodhin S, Brouet I and Bartsch H: Opisthorchis viverrini
infestation and endogenous nitrosamines as risk factors for
cholangiocarcinoma in Thailand. Int J Cancer 48. 821–825.
1991.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Patel T: New insights into the molecular
pathogenesis of intrahepatic cholangiocarcinoma. J Gastroenterol
49. 165–172. 2014.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Marks EI and Yee NS: Molecular genetics
and targeted therapeutics in biliary tract carcinoma. World J
Gastroenterol 22. 1335–1347. 2016.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Rizvi S, Borad MJ, Patel T and Gores GJ:
Cholangiocarcinoma: Molecular pathways and therapeutic
opportunities. Semin Liver Dis 34. 456–464. 2014.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Goldstein D, Lemech C and Valle J: New
molecular and immunotherapeutic approaches in biliary cancer. ESMO
Open 2 (Suppl 1). (e000152)2017.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Roy B, Haupt LM and Griffiths LR: Review:
Alternative splicing (AS) of genes as an approach for generating
protein complexity. Curr Genomics 14. 182–194. 2013.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Douglas AG and Wood MJ: RNA splicing:
Disease and therapy. Brief Funct Genomics 10. 151–164.
2011.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Ghigna C, Valacca C and Biamonti G:
Alternative splicing and tumor progression. Curr Genomics 9.
556–570. 2008.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Tazi J, Bakkour N and Stamm S: Alternative
splicing and disease. Biochim Biophys Acta 1792. 14–26.
2009.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Venables JP: Aberrant alternative splicing
in cancer. Cancer Res 64. 7647–7654. 2004.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Ladomery M: Aberrant alternative splicing
is another hallmark of cancer. Int J Cell Biol 2013.
463786:2013.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Pio R and Montuenga LM: Alternative
splicing in lung cancer. J Thorac Oncol 4. 674–678. 2009.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Martínez-Montiel N, Anaya-Ruiz M,
Pérez-Santos M and Martínez-Contreras RD: Alternative splicing in
breast cancer and the potential development of therapeutic tools.
Genes (Basel) 8. pii(E217)2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Xiping Z, Qingshan W, Shuai Z, Hongjian Y
and Xiaowen D: A summary of relationships between alternative
splicing and breast cancer. Oncotarget 8. 51986–51993.
2017.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Liu L, Xie S, Zhang C and Zhu F: Aberrant
regulation of alternative pre-mRNA splicing in hepatocellular
carcinoma. Crit Rev Eukaryot Gene Expr 24. 133–149. 2014.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Zhang L, Liu X, Zhang X and Chen R:
Identification of important long non-coding RNAs and highly
recurrent aberrant alternative splicing events in hepatocellular
carcinoma through integrative analysis of multiple RNA-Seq
datasets. Mol Genet Genomics 291. 1035–1051. 2016.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Ghigna C, Giordano S, Shen H, Benvenuto F,
Castiglioni F, Comoglio PM, Green MR, Riva S and Biamonti G: Cell
motility is controlled by SF2/ASF through alternative splicing of
the Ron protooncogene. Mol Cell 20. 881–890. 2005.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Stallings-Mann ML, Waldmann J, Zhang Y,
Miller E, Gauthier ML, Visscher DW, Downey GP, Radisky ES, Fields
AP and Radisky DC: Matrix metalloproteinase induction of Rac1b, a
key effector of lung cancer progression. Sci Transl Med 4.
142ra95:2012.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Poulikakos PI, Persaud Y, Janakiraman M,
Kong X, Ng C, Moriceau G, Shi H, Atefi M, Titz B and Gabay MT: et
al RAF inhibitor resistance is mediated by dimerization of
aberrantly spliced BRAF(V600E). Nature 480. 387–390.
2011.PubMed/NCBI View Article : Google Scholar
|
|
24
|
He C, Zhou F, Zuo Z, Cheng H and Zhou R: A
global view of cancer-specific transcript variants by subtractive
transcriptome-wide analysis. PLoS One 4. e4732:2009.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Chen Y, Liu D, Liu P, Chen Y, Yu H and
Zhang Q: Identification of biomarkers of intrahepatic
cholangiocarcinoma via integrated analysis of mRNA and miRNA
microarray data. Mol Med Rep 15. 1051–1056. 2017.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Yu Q and Stamenkovic I: Cell
surface-localized matrix metalloproteinase-9 proteolytically
activates TGF-beta and promotes tumor invasion and angiogenesis.
Genes Dev 14. 163–176. 2000.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Nam K, Oh S, Lee KM, Yoo SA and Shin I:
CD44 regulates cell proliferation, migration, and invasion via
modulation of c-Src transcription in human breast cancer cells.
Cell Signal 27. 1882–1894. 2015.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Saito S, Okabe H, Watanabe M, Ishimoto T,
Iwatsuki M, Baba Y, Tanaka Y, Kurashige J, Miyamoto Y and Baba H:
CD44v6 expression is related to mesenchymal phenotype and poor
prognosis in patients with colorectal cancer. Oncol Rep 29.
1570–1578. 2013.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Wang J, Xiao L, Luo CH, Zhou H, Zeng L,
Zhong J, Tang Y, Zhao XH, Zhao M and Zhang Y: CD44v6 promotes
β-catenin and TGF-β expression, inducing aggression in
ovarian cancer cells. Mol Med Rep 11. 3505–3510. 2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Yamaguchi A, Zhang M, Goi T, Fujita T,
Niimoto S, Katayama K and Hirose K: Expression of variant CD44
containing variant exon v8-10 in gallbladder cancer. Oncol Rep 7.
541–544. 2000.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Sosulski A, Horn H, Zhang L, Coletti C,
Vathipadiekal V, Castro CM, Birrer MJ, Nagano O, Saya H and Lage K:
et al CD44 splice variant v8-10 as a marker of serous ovarian
cancer prognosis. PLoS One 11. e0156595:2016.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Yun KJ, Yoon KH and Han WC:
Immunohistochemical study for CD44v6 in hepatocellular carcinoma
and cholangiocarcinoma. Cancer Res Treat 34. 170–174.
2002.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Thanee M, Loilome W, Techasen A, Sugihara
E, Okazaki S, Abe S, Ueda S, Masuko T, Namwat N and Khuntikeo N: et
al CD44 variant-dependent redox status regulation in liver
fluke-associated cholangiocarcinoma: A target for
cholangiocarcinoma treatment. Cancer Sci 107. 991–1000.
2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Liu H, Dong W, Lin Z, Lu J, Wan H, Zhou Z
and Liu Z: CCN4 regulates vascular smooth muscle cell migration and
proliferation. Mol Cells 36. 112–118. 2013.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Ono M, Inkson CA, Kilts TM and Young MF:
WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity. J
Bone Miner Res 26. 193–208. 2011.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Tanaka S and Sugimachi K, Saeki H,
Kinoshita J, Ohga T, Shimada M, Maehara Y and Sugimachi K: A novel
variant of WISP1 lacking a Von Willebrand type C module
overexpressed in scirrhous gastric carcinoma. Oncogene 20.
5525–5532. 2001.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Tanaka S, Sugimachi K, Kameyama T, Maehara
S, Shirabe K, Shimada M, Wands JR and Maehara Y: Human WISP1v, a
member of the CCN family, is associated with invasive
cholangiocarcinoma. Hepatology 37. 1122–1129. 2003.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Wu Q, Jorgensen M, Song J, Zhou J, Liu C
and Pi L: Members of the Cyr61/CTGF/NOV protein family: Emerging
players in hepatic progenitor cell activation and intrahepatic
cholangiocarcinoma. Gastroenterol Res Pract 2016.
2313850:2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Helps NR, Luo X, Barker HM and Cohen PT:
NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase
localized to centrosomes, is complexed to protein phosphatase 1.
Biochem J 349. 509–518. 2000.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Fardilha M, Wu W, Sá R, Fidalgo S, Sousa
C, Mota C, da Cruz e Silva OA and da Cruz e Silva EF: Alternatively
spliced protein variants as potential therapeutic targets for male
infertility and contraception. Ann N Y Acad Sci 1030. 468–478.
2004.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Zhong X, Guan X, Dong Q, Yang S, Liu W and
Zhang L: Examining Nek2 as a better proliferation marker in
non-small cell lung cancer prognosis. Tumour Biol 35. 7155–7162.
2014.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Wang S, Li W, Liu N, Zhang F, Liu H, Liu
F, Liu J, Zhang T and Niu Y: Nek2A contributes to tumorigenic
growth and possibly functions as potential therapeutic target for
human breast cancer. J Cell Biochem 113. 1904–1914. 2012.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Lai XB, Nie YQ, Huang HL, Li YF, Cao CY,
Yang H, Shen B and Feng ZQ: NIMA-related kinase 2 regulates
hepatocellular carcinoma cell growth and proliferation. Oncol Lett
13. 1587–1594. 2017.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Kokuryo T, Senga T, Yokoyama Y, Nagino M,
Nimura Y and Hamaguchi M: Nek2 as an effective target for
inhibition of tumorigenic growth and peritoneal dissemination of
cholangiocarcinoma. Cancer Res 67. 9637–9642. 2007.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Wang Y, Shen H, Yin Q, Zhang T, Liu Z,
Zhang W and Niu Y: Effect of NIMA-related kinase 2B on the
sensitivity of breast cancer to paclitaxel in vitro and vivo.
Tumour Biol 39. 1010428317699754:2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Xue L, Aihara E, Podolsky DK, Wang TC and
Montrose MH: In vivo action of trefoil factor 2 (TFF2) to speed
gastric repair is independent of cyclooxygenase. Gut 59. 1184–1191.
2010.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Kosriwong K, Menheniott TR, Giraud AS,
Jearanaikoon P, Sripa B and Limpaiboon T: Trefoil factors: Tumor
progression markers and mitogens via EGFR/MAPK activation in
cholangiocarcinoma. World J Gastroenterol 17. 1631–1641.
2011.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Kamlua S, Patrakitkomjorn S, Jearanaikoon
P, Menheniott TR, Giraud AS and Limpaiboon T: A novel TFF2 splice
variant (∆EX2TFF2) correlates with longer overall survival time in
cholangiocarcinoma. Oncol Rep 27. 1207–1212. 2012.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Kim M, Grimmig T, Grimm M, Lazariotou M,
Meier E, Rosenwald A, Tsaur I, Blaheta R, Heemann U and Germer CT:
et al Expression of Foxp3 in colorectal cancer but not in Treg
cells correlates with disease progression in patients with
colorectal cancer. PLoS One 8. e53630:2013.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Harada K, Shimoda S, Kimura Y, Sato Y,
Ikeda H, Igarashi S, Ren XS, Sato H and Nakanuma Y: Significance of
immunoglobulin G4 (IgG4)-positive cells in extrahepatic
cholangiocarcinoma: Molecular mechanism of IgG4 reaction in cancer
tissue. Hepatology 56. 157–164. 2012.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Ebert LM, Tan BS Browning J, Svobodova S,
Russell SE, Kirkpatrick N, Gedye C, Moss D, Ng SP and MacGregor D:
et al The regulatory T cell-associated transcription factor FoxP3
is expressed by tumor cells. Cancer Res 68. 3001–3009.
2008.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Hu W, Feng Z and Levine AJ: The regulation
of multiple p53 stress responses is mediated through MDM2. Genes
Cancer 3. 199–208. 2012.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Khoury MP and Bourdon JC: The isoforms of
the p53 protein. Cold Spring Harb Perspect Biol 2.
a000927:2010.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Surget S, Khoury MP and Bourdon JC:
Uncovering the role of p53 splice variants in human malignancy: A
clinical perspective. Onco Targets Ther 7. 57–68. 2013.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Arsic N, Gadea G, Lagerqvist EL, Busson M,
Cahuzac N, Brock C, Hollande F, Gire V, Pannequin J and Roux P: The
p53 isoform Δ133p53β promotes cancer stem cell potential. Stem Cell
Reports 4. 531–540. 2015.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Arsic N, Ho-Pun-Cheung A, Evelyne C,
Assenat E, Jarlier M, Anguille C, Colard M, Pezet M, Roux P and
Gadea G: The p53 isoform delta133p53ß regulates cancer cell
apoptosis in a RhoB-dependent manner. PLoS One 12.
e0172125:2017.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Della Torre G, Pasquini G, Pilotti S,
Alasio L, Civelli E, Cozzi G, Milella M, Salvetti M, Pierotti MA
and Severini A: TP53 mutations and mdm2 protein overexpression in
cholangiocarcinomas. Diagn Mol Pathol 9. 41–46. 2000.PubMed/NCBI
|
|
58
|
Tullo A, D'Erchia AM, Honda K, Kelly MD,
Habib NA, Saccone C and Sbisà E: New p53 mutations in hilar
cholangiocarcinoma. Eur J Clin Invest 30. 798–803. 2000.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Liu XF, Zhang H, Zhu SG, Zhou XT, Su HL,
Xu Z and Li SJ: Correlation of p53 gene mutation and expression of
P53 protein in cholangiocarcinoma. World J Gastroenterol 12.
4706–4709. 2006.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Nutthasirikul N, Limpaiboon T, Leelayuwat
C, Patrakitkomjorn S and Jearanaikoon P: Ratio disruption of the
∆133p53 and TAp53 isoform equilibrium correlates with poor clinical
outcome in intrahepatic cholangiocarcinoma. Int J Oncol 42.
1181–1188. 2013.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Nutthasirikul N, Hahnvajanawong C,
Techasen A, Limpaiboon T, Leelayuwat C, Chau-In S and Jearanaikoon
P: Targeting the ∆133p53 isoform can restore chemosensitivity in
5-fluorouracil-resistant cholangiocarcinoma cells. Int J Oncol 47.
2153–2164. 2015.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Liu K, Zang Y, Guo X, Wei F, Yin J, Pang L
and Chen D: The Δ133p53 isoform reduces wtp53-induced stimulation
of DNA Pol γ activity in the presence and absence of D4T. Aging Dis
8. 228–239. 2017.PubMed/NCBI View Article : Google Scholar
|
|
63
|
David CJ, Chen M, Assanah M, Canoll P and
Manley JL: HnRNP proteins controlled by c-Myc deregulate pyruvate
kinase mRNA splicing in cancer. Nature 463. 364–368.
2010.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Liu WR, Tian MX, Yang LX, Lin YL, Jin L,
Ding ZB, Shen YH, Peng YF, Gao DM and Zhou J: et al PKM2 promotes
metastasis by recruiting myeloid-derived suppressor cells and
indicates poor prognosis for hepatocellular carcinoma. Oncotarget
6. 846–861. 2015.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Li C, Zhao Z, Zhou Z and Liu R: PKM2
promotes cell survival and invasion under metabolic stress by
enhancing Warburg effect in pancreatic ductal adenocarcinoma. Dig
Dis Sci 61. 767–773. 2016.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Lu W, Cao Y, Zhang Y, Li S, Gao J, Wang
XA, Mu J, Hu YP, Jiang L and Dong P: et al Up-regulation of PKM2
promote malignancy and related to adverse prognostic risk factor in
human gallbladder cancer. Sci Rep 6. 26351:2016.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Yu G, Yu W, Jin G, Xu D, Chen Y, Xia T, Yu
A, Fang W, Zhang X and Li Z: et al PKM2 regulates neural invasion
of and predicts poor prognosis for human hilar cholangiocarcinoma.
Mol Cancer 14. 193:2015.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Kotani M, Tanaka I, Ogawa Y, Suganami T,
Matsumoto T, Muro S, Yamamoto Y, Sugawara A, Yoshimasa Y and Sagawa
N: et al Multiple signal transduction pathways through two
prostaglandin E receptor EP3 subtype isoforms expressed in human
uterus. J Clin Endocrinol Metab 85. 4315–4322. 2000.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Ma J, Chen M, Xia SK, Shu W, Guo Y, Wang
YH, Xu Y, Bai XM, Zhang L and Zhang H: et al Prostaglandin E2
promotes liver cancer cell growth by the upregulation of
FUSE-binding protein 1 expression. Int J Oncol 42. 1093–1104.
2013.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Kotelevets L, Foudi N, Louedec L,
Couvelard A, Chastre E and Norel X: A new mRNA splice variant
coding for the human EP3-I receptor isoform. Prostaglandins Leukot
Essent Fatty Acids 77. 195–201. 2007.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Du M, Shi F, Zhang H, Xia S, Zhang M, Ma
J, Bai X, Zhang L, Wang Y and Cheng S: et al Prostaglandin E2
promotes human cholangiocarcinoma cell proliferation, migration and
invasion through the upregulation of β-catenin expression via EP3-4
receptor. Oncol Rep 34. 715–726. 2015.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Uthaisar K, Vaeteewoottacharn K, Seubwai
W, Talabnin C, Sawanyawisuth K, Obchoei S, Kraiklang R, Okada S and
Wongkham S: Establishment and characterization of a novel human
cholangiocarcinoma cell line with high metastatic activity. Oncol
Rep 36. 1435–1446. 2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Neeb A, Hefele S, Bormann S, Parson W,
Adams F, Wolf P, Miernik A, Schoenthaler M, Kroenig M and Wilhelm
K: et al Splice variant transcripts of the anterior gradient 2 gene
as a marker of prostate cancer. Oncotarget 5. 8681–8689.
2014.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Yosudjai J, Inpad C, Chomwong S, Dana P,
Sawanyawisuth K, Phimsen S, Wongkham S, Jirawatnotai S and Kaewkong
W: An aberrantly spliced isoform of anterior gradient-2, AGR2vH
promotes migration and invasion of cholangiocarcinoma cell. Biomed
Pharmacother 107. 109–116. 2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Yang Y and Walsh CE: Spliceosome-mediated
RNA trans-splicing. Mol Ther 12. 1006–1012. 2005.PubMed/NCBI
|
|
76
|
Mansfield SG, Chao H and Walsh CE: RNA
repair using spliceosome-mediated RNA trans-splicing. Trends Mol
Med 10. 263–268. 2004.PubMed/NCBI View Article : Google Scholar
|
|
77
|
He X, Liao J, Liu F, Yan J, Yan J, Shang
H, Dou Q, Chang Y, Lin J and Song Y: Functional repair of p53
mutation in colorectal cancer cells using trans-splicing.
Oncotarget 6. 2034–2045. 2015.PubMed/NCBI View Article : Google Scholar
|
|
78
|
He X, Liu F, Yan J, Zhang Y, Yan J, Shang
H, Dou Q, Zhao Q and Song Y: Trans-splicing repair of mutant p53
suppresses the growth of hepatocellular carcinoma cells in vitro
and in vivo. Sci Rep 5. 8705:2015.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Gout S, Brambilla E, Boudria A, Drissi R,
Lantuejoul S, Gazzeri S and Eymin B: Abnormal expression of the
pre-mRNA splicing regulators SRSF1, SRSF2, SRPK1 and SRPK2 in non
small cell lung carcinoma. PLoS One 7. e46539:2012.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Karni R, de Stanchina E, Lowe SW, Sinha R,
Mu D and Krainer AR: The gene encoding the splicing factor SF2/ASF
is a proto-oncogene. Nat Struct Mol Biol 14. 185–193.
2007.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Loilome W, Yongvanit P, Wongkham C,
Tepsiri N, Sripa B, Sithithaworn P, Hanai S and Miwa M: Altered
gene expression in Opisthorchis viverrini-associated
cholangiocarcinoma in hamster model. Mol Carcinog 45. 279–287.
2006.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Cretu C, Schmitzová J, Ponce-Salvatierra
A, Dybkov O, De Laurentiis EI, Sharma K, Will CL, Urlaub H,
Lührmann R and Pena V: Molecular Architecture of SF3b and
Structural Consequences of Its Cancer-Related Mutations. Mol Cell
64. 307–319. 2016.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Darman RB, Seiler M, Agrawal AA, Lim KH,
Peng S, Aird D, Bailey SL, Bhavsar EB, Chan B and Colla S: et al
Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3' Splice
Site Selection through Use of a Different Branch Point. Cell
Reports 13. 1033–1045. 2015.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Alsafadi S, Houy A, Battistella A, Popova
T, Wassef M, Henry E, Tirode F, Constantinou A, Piperno-Neumann S
and Roman-Roman S: et al Cancer-associated SF3B1 mutations affect
alternative splicing by promoting alternative branchpoint usage.
Nat Commun 7. 10615:2016.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Furney SJ, Pedersen M, Gentien D, Dumont
AG, Rapinat A, Desjardins L, Turajlic S, Piperno-Neumann S, de la
Grange P and Roman-Roman S: et al SF3B1 mutations are associated
with alternative splicing in uveal melanoma. Cancer Discov 3.
1122–1129. 2013.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Maguire SL, Leonidou A, Wai P, Marchiò C,
Ng CK, Sapino A, Salomon AV, Reis-Filho JS, Weigelt B and Natrajan
RC: SF3B1 mutations constitute a novel therapeutic target in breast
cancer. J Pathol 235. 571–580. 2015.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Fu X, Tian M, Gu J, Cheng T, Ma D, Feng L
and Xin X: SF3B1 mutation is a poor prognostic indicator in luminal
B and progesterone receptor-negative breast cancer patients.
Oncotarget 8. 115018–115027. 2017.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Woolard J, Vousden W, Moss SJ,
Krishnakumar A, Gammons MV, Nowak DG, Dixon N, Micklefield J,
Spannhoff A and Bedford MT: et al Borrelidin modulates the
alternative splicing of VEGF in favour of anti-angiogenic isoforms.
Chem Sci (Camb) 2011. 273–278. 2011.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Kaida D, Motoyoshi H, Tashiro E, Nojima T,
Hagiwara M, Ishigami K, Watanabe H, Kitahara T, Yoshida T and
Nakajima H: et al Spliceostatin A targets SF3b and inhibits both
splicing and nuclear retention of pre-mRNA. Nat Chem Biol 3.
576–583. 2007.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Folco EG, Coil KE and Reed R: The
anti-tumor drug E7107 reveals an essential role for SF3b in
remodeling U2 snRNP to expose the branch point-binding region.
Genes Dev 25. 440–444. 2011.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Roybal GA and Jurica MS: Spliceostatin A
inhibits spliceosome assembly subsequent to prespliceosome
formation. Nucleic Acids Res 38. 6664–6672. 2010.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Satoh T and Kaida D: Upregulation of p27
cyclin-dependent kinase inhibitor and a C-terminus truncated form
of p27 contributes to G1 phase arrest. Sci Rep 6.
27829:2016.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Furumai R, Uchida K, Komi Y, Yoneyama M,
Ishigami K, Watanabe H, Kojima S and Yoshida M: Spliceostatin A
blocks angiogenesis by inhibiting global gene expression including
VEGF. Cancer Sci 101. 2483–2489. 2010.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Radhakrishnan A, Nanjappa V, Raja R, Sathe
G, Chavan S, Nirujogi RS, Patil AH, Solanki H, Renuse S and
Sahasrabuddhe NA: et al Dysregulation of splicing proteins in head
and neck squamous cell carcinoma. Cancer Biol Ther 17. 219–229.
2016.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Araki S, Dairiki R, Nakayama Y, Murai A,
Miyashita R, Iwatani M, Nomura T and Nakanishi O: Inhibitors of CLK
protein kinases suppress cell growth and induce apoptosis by
modulating pre-mRNA splicing. PLoS One 10. e0116929:2015.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Massiello A, Salas A, Pinkerman RL, Roddy
P, Roesser JR and Chalfant CE: Identification of two RNA
cis-elements that function to regulate the 5' splice site selection
of Bcl-x pre-mRNA in response to ceramide. J Biol Chem 279.
15799–15804. 2004.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Dewaele M, Tabaglio T, Willekens K, Bezzi
M, Teo SX, Low DH, Koh CM, Rambow F, Fiers M and Rogiers A: et al
Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs
tumor growth. J Clin Invest 126. 68–84. 2016.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Nielsen TO, Sorensen S, Dagnæs-Hansen F,
Kjems J and Sorensen BS: Directing HER4 mRNA expression towards the
CYT2 isoform by antisense oligonucleotide decreases growth of
breast cancer cells in vitro and in vivo. Br J Cancer 108.
2291–2298. 2013.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Bauman JA, Li SD, Yang A, Huang L and Kole
R: Anti-tumor activity of splice-switching oligonucleotides.
Nucleic Acids Res 38. 8348–8356. 2010.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Li Z, Li Q, Han L, Tian N, Liang Q, Li Y,
Zhao X, Du C and Tian Y: Pro-apoptotic effects of splice-switching
oligonucleotides targeting Bcl-x pre-mRNA in human glioma cell
lines. Oncol Rep 35. 1013–1019. 2016.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Eskens FA, Ramos FJ, Burger H, O'Brien JP,
Piera A, de Jonge MJ, Mizui Y, Wiemer EA, Carreras MJ and Baselga
J: et al Phase I pharmacokinetic and pharmacodynamic study of the
first-in-class spliceosome inhibitor E7107 in patients with
advanced solid tumors. Clin Cancer Res 19. 6296–6304.
2013.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Hong DS, Kurzrock R, Naing A, Wheler JJ,
Falchook GS, Schiffman JS, Faulkner N, Pilat MJ, O'Brien J and
LoRusso P: A phase I, open-label, single-arm, dose-escalation study
of E7107, a precursor messenger ribonucleic acid (pre-mRNA)
splicesome inhibitor administered intravenously on days 1 and 8
every 21 days to patients with solid tumors. Invest New Drugs 32.
436–444. 2014.PubMed/NCBI View Article : Google Scholar
|