|
1
|
Manning G: Genomic overview of protein
kinases. WormBook. 1–19. 2005.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Litchfield DW: Protein kinase CK2:
Structure, regulation and role in cellular decisions of life and
death. Biochem J. 369:1–15. 2003.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Salvi M, Sarno S, Cesaro L, Nakamura H and
Pinna LA: Extraordinary pleiotropy of protein kinase CK2 revealed
by weblogo phosphoproteome analysis. Biochim Biophys Acta.
1793:847–859. 2009.PubMed/NCBI View Article : Google Scholar
|
|
4
|
de Villavicencio-Diaz T, Rabalski AJ and
Litchfield DW: Protein kinase CK2: Intricate relationships within
regulatory cellular networks. Pharmaceuticals (Basel).
10(27)2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Burnett G and Kennedy EP: The enzymatic
phosphorylation of proteins. J Biol Chem. 211:969–980.
1954.PubMed/NCBI
|
|
6
|
Boldyreff B, Meggio F, Pinna LA and
Issinger OG: Protein kinase CK2 structure-function relationship:
Effects of the β subunit on reconstitution and activity. Cell Mol
Biol Res. 40:391–399. 1994.PubMed/NCBI
|
|
7
|
Wirkner U, Voss H, Lichter P, Ansorge W
and Pyerin W: The human gene (CSNK2A1) coding for the casein kinase
II subunit alpha is located on chromosome 20 and contains tandemly
arranged Alu repeats. Genomics. 19:257–265. 1994.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Ackermann K, Neidhart T, Gerber J, Waxmann
A and Pyerin W: The catalytic subunit alpha' gene of human protein
kinase CK2 (CSNK2A2): Genomic organization, promoter identification
and determination of Ets1 as a key regulator. Mol Cell Biochem.
274:91–101. 2005.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Albertella MR, Jones H, Thomson W,
Olavesen MG and Campbell RD: Localization of eight additional genes
in the human major histocompatibility complex, including the gene
encoding the casein kinase II beta subunit (CSNK2B). Genomics.
36:240–251. 1996.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Raaf J, Brunstein E, Issinger OG and
Niefind K: The interaction of CK2alpha and CK2beta, the subunits of
protein kinase CK2, requires CK2beta in a preformed conformation
and is enthalpically driven. Protein Sci. 17:2180–2186.
2008.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Meggio F, Boldyreff BS, Marin O, Pinna LA
and Issinger OG: CK2: Role of the beta-subunit on the stability and
specificity of the recombinant reconstituted holoenzyme. Eur J
Biochem. 204:293–297. 1992.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Boldyreff BS, Meggio F, Pinna LA and
Issinger O-G: Casein kinase-2 structure-function relationship:
Creation of a set of mutants of the β subunit that variably
surrogate the wildtype β subunit function. Biochem Biophys Res
Commun. 188:228–234. 1992.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Rodriguez FA, Contreras C, Bolanos-Garcia
V and Allende JE: Protein kinase CK2 as an ectokinase: The role of
the regulatory CK2beta subunit. Proc Natl Acad Sci USA.
105:5693–5698. 2008.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Lolli G, Pinna LA and Battistutta R:
Structural determinants of protein kinase CK2 regulation by
autoinhibitory polymerization. ACS Chem Biol. 7:1158–1163.
2012.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Lolli G, Naressi D, Sarno S and
Battistutta R: Characterization of the oligomeric states of the CK2
alpha2beta2 holoenzyme in solution. Biochem J. 474:2405–2416.
2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Raaf J, Guerra B, Neundorf I, Bopp B,
Issinger OG, Jose J, Pietsch M and Niefind K: First structure of
protein kinase CK2 catalytic subunit with an effective
CK2β-competitive ligand. ACS Chem Biol. 8:901–907. 2013.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Raaf J, Bischoff N, Klopffleisch K,
Brunstein E, Olsen BB, Vilk G, Litchfield DW, Issinger OG and
Niefind K: Interaction between CK2α and CK2β, the subunits of
protein kinase CK2: Thermodynamic contributions of key residues on
the CK2α surface. Biochemistry. 50:512–522. 2011.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Heriche JK, Lebrin F, Rabilloud T, LeRoy
D, Chambaz EM and Goldberg Y: Regulation of protein phosphatase 2A
by direct interaction with casein kinase 2alpha. Science.
276:952–955. 1997.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Lüscher B and Litchfield DW: Biosynthesis
of casein kinase II in lymphoid cell lines. Eur J Biochem.
220:521–526. 1994.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Guerra B, Siemer S, Boldyreff B and
Issinger OG: Protein kinase CK2: Evidence for a protein kinase CK2β
subunit fraction, devoid of the catalytic CK2α subunit, in mouse
brain and testicles. FEBS Lett. 462:353–357. 1999.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Trembley JH, Wang G, Unger G, Slaton J and
Ahmed K: CK2: A key player in cancer biology. Cell Mol Life Sci.
66:1858–1867. 2009.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Benveniste EN, Gray GK and McFarland BC:
Protein kinase CK2 and dysregulated oncogenic inflammatory
signaling pathways Protein kinase CK2 cellular function in normal
and disease states Springer e-book, 2015.
|
|
23
|
Okur V, Cho MT, Henderson L, Retterer K,
Schneider M, Sattler S, Niyazov D, Azage M, Smith S, Picker J, et
al: De novo mutations in CSNK2A1 are associated with
neurodevelopmental abnormalities and dysmorphic features. Hum
Genet. 135:699–705. 2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Owen CI, Bowden R, Parker MJ, Patterson J,
Patterson J, Price S, Sarkar A, Castle B, Deshpande C, Splitt M, et
al: Extending the phenotype associated with the CSNK2A1-related
Okur-Chung syndrome-A clinical study of 11 individuals. Am J Med
Genet A. 176:1108–1114. 2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Trinh J, Huning I, Budler N, Hingst V,
Lohmann K and Gillessen-Kaesbach G: A novel de novo mutation in
CSNK2A1: Reinforcing the link to neurodevelopmental abnormalities
and dysmorphic features. J Hum Genet. 62:1005–1006. 2017.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Lou DY, Dominguez I, Toselli P,
Landesman-Bollag E, O'Brien C and Seldin DC: The alpha catalytic
subunit of protein kinase CK2 is required for mouse embryonic
development. Mol Cell Biol. 28:131–139. 2008.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Buchou T, Vernet M, Blond O, Jensen HH,
Pointu H, Olsen BB, Cochet C, Issinger OG and Boldyreff B:
Disruption of the regulatory b subunit of protein kinase CK2 in
mice leads to a cell-autonomous defect and early embryonic
lethality. Mol Cell Biol. 23:908–915. 2003.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Xu X, Toselli PA, Russell LD and Seldin
DC: Globozoospermia in mice lacking the casein kinase II a'
catalytic subunit. Nat Genet. 23:118–121. 1999.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Götz C and Montenarh M: Protein kinase CK2
in development and differentiation. Biomed Rep. 6:127–133.
2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Niefind K, Pütter M, Guerra B, Issinger OG
and Schomburg D: CTP plus water mimic ATP in the active site of
protein kinase CK2. Nat Struct Biol. 6:1100–1103. 1999.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Lin WJ, Tuazon PT and Traugh JA:
Characterization of the catalytic subunit of casein kinase II
expressed in Escherichia coli and regulation of activity. J Biol
Chem. 266:5664–5669. 1991.PubMed/NCBI
|
|
32
|
Guerra B: Protein kinase CK2 subunits are
positive regulators of AKT kinase. Int J Oncol. 28:685–693.
2006.PubMed/NCBI
|
|
33
|
Shehata M, Schnabl S, Demirtas D, Hilgarth
M, Hubmann R, Ponath E, Badrnya S, Lehner C, Hoelbl A, Duechler M,
et al: Reconstitution of PTEN activity by CK2 inhibitors and
interference with the PI3-K/Akt cascade counteract the
antiapoptotic effect of human stromal cells in chronic lymphocytic
leukemia. Blood. 116:2513–2521. 2010.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Wang S and Jones KA: CK2 controls the
recruitment of Wnt regulators to target genes in vivo. Curr Biol.
16:2239–2244. 2006.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Gao Y and Wang HY: Casein kinase 2 Is
activated and essential for Wnt/beta-catenin signaling. J Biol
Chem. 281:18394–18400. 2006.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Ponce DP, Yefi R, Cabello P, Maturana JL,
Niechi I, Silva E, Galindo M, Antonelli M, Marcelain K, Armisen R
and Tapia JC: CK2 functionally interacts with AKT/PKB to promote
the β-catenin-dependent expression of survivin and enhance cell
survival. Mol Cell Biochem. 356:127–132. 2011.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ponce DP, Maturana JL, Cabello P, Yefi R,
Niechi I, Silva E, Armisen R, Galindo M, Antonelli M and Tapia JC:
Phosphorylation of AKT/PKB by CK2 is necessary for the
AKT-dependent up-regulation of β-catenin transcriptional activity.
J Cell Physiol. 226:1953–1959. 2011.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Götz C and Montenarh M: Protein kinase CK2
in the ER stress response. Ad Biological Chemistry. 3A:1–5.
2013.
|
|
39
|
Montenarh M: Protein kinase CK2 in DNA
damage and repair. Transl Cancer Res. 5:49–63. 2016.
|
|
40
|
Cozza G, Pinna LA and Moro S: Protein
kinase CK2 inhibitors: A patent review. Expert Opin Ther Pat.
22:1081–1097. 2012.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Cozza G: The development of CK2
inhibitors: From traditional pharmacology to in silico rational
drug design. Pharmaceuticals (Basel). 10(26)2017.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Prudent R and Cochet C: New protein kinase
CK2 inhibitors: Jumping out of the catalytic box. Chem Biol.
16:112–120. 2009.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Bollacke A, Nienberg C, Borgne ML and Jose
J: Toward selective CK2alpha and CK2alpha' inhibitors: Development
of a novel whole-cell kinase assay by Autodisplay of catalytic
CK2alpha'. J Pharm Biomed Anal. 121:253–260. 2016.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Battistutta R, Sarno S, De Moliner E,
Papinutto E, Zanotti G and Pinna LA: The replacement of ATP by the
competitive inhibitor emodin induces conformational modifications
in the catalytic site of protein kinase CK2. J Biol Chem.
275:29618–29622. 2000.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Battistutta R, De Moliner E, Sarno S,
Zanotti G and Pinna LA: Structural features underlying selective
inhibition of protein kinase CK2 by ATP site-directed
tetrabromo-2-benzotriazole. Protein Sci. 10:2200–2206.
2001.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Pagano MA, Bain J, Kazimierczuk Z, Sarno
S, Ruzzene M, Di Maira G, Elliott M, Orzeszko A, Cozza G, Meggio F
and Pinna LA: The selectivity of inhibitors of protein kinase CK2.
An update. Biochem J. 415:353–365. 2008.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Sarno S, De Moliner E, Ruzzene M, Pagano
MA, Battistutta R, Bain J, Fabbro D, Schoepfer J, Elliott M, Furet
P, et al: Biochemical and three-dimensional-structural study of the
specific inhibition of protein kinase CK2 by
[5-oxo-5,6-dihydroindolo-(1,2-a)quinazolin-7-yl]acetic acid (IQA).
Biochem J. 374:639–646. 2003.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Sarno S, Reddy H, Meggio F, Ruzzene M,
Davies SP, Donella-Deana A, Shugar D and Pinna LA: Selectivity of
4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of
protein kinase CK2 (‘casein kinase-2’). FEBS Lett. 496:44–48.
2001.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Pierre F, Chua PC, O'Brien SE,
Siddiqui-Jain A, Bourbon P, Haddach M, Michaux J, Nagasawa J,
Schwaebe MK, Stefan E, et al: Discovery and SAR of
5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid
(CX-4945), the first clinical stage inhibitor of protein kinase CK2
for the treatment of cancer. J Med Chem. 54:635–654.
2011.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Siddiqui-Jain A, Drygin D, Streiner N,
Chua P, Pierre F, O'Brien SE, Bliesath J, Omori M, Huser N, Ho C,
et al: CX-4945, an orally bioavailable selective inhibitor of
protein kinase CK2, inhibits prosurvival and angiogenic signaling
and exhibits antitumor efficacy. Cancer Res. 70:10288–10298.
2010.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Lee JY, Yun JS, Kim WK, Chun HS, Jin H,
Cho S and Chang JH: Structural basis for the selective inhibition
of Cdc2-like kinases by CX-4945. Biomed Res Int.
2019(6125068)2019.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Chua MM, Ortega CE, Sheikh A, Lee M,
Abdul-Rassoul H, Hartshorn KL and Dominguez I: CK2 in cancer:
Cellular and biochemical mechanisms and potential therapeutic
target. Pharmaceuticals (Basel). 10(18)2017.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Faust M, Jung M, Günther J, Zimmermann R
and Montenarh M: Localization of individual subunits of protein
kinase CK2 to the endoplasmic reticulum and to the Golgi apparatus.
Mol Cell Biochem. 227:73–80. 2001.PubMed/NCBI
|
|
54
|
Faust M, Schuster N and Montenarh M:
Specific binding of protein kinase CK2 catalytic subunits to
tubulin. FEBS Letters. 462:51–56. 1999.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Faust M, Günther J, Morgenstern E,
Montenarh M and Götz C: Specific localization of the catalytic
subunits of protein kinase CK2 at the centrosomes. Cell Mol Life
Sci. 59:2155–2164. 2002.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Faust M and Montenarh M: Subcellular
localization of protein kinase CK2: A key to its function? Cell
Tissue Res. 301:329–340. 2000.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Montenarh M and Götz C: Ecto-protein
kinase CK2, the neglected form of CK2 (review). Biomed Rep.
8:307–313. 2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Suhas KS, Parida S, Gokul C, Srivastava V,
Prakash E, Chauhan S, Singh TU, Panigrahi M, Telang AG and Mishra
SK: Casein kinase 2 inhibition impairs spontaneous and
oxytocin-induced contractions in late pregnant mouse uterus. Exp
Physiol. 103:621–628. 2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Gil C, Falques A, Sarro E, Cubi R, Blasi
J, Aguilera J and Itarte E: Protein kinase CK2 associates to lipid
rafts and its pharmacological inhibition enhances neurotransmitter
release. FEBS Lett. 585:414–420. 2010.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Hernandez CM and Richards JR: Physiology,
sodium channels. StatPearls Publishing 2020.
|
|
61
|
Savio-Galimberti E, Gollob MH and Darbar
D: Voltage-gated sodium channels: Biophysics, pharmacology, and
related channelopathies. Front Pharmacol. 3(124)2012.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Brachet A, Leterrier C, Irondelle M, Fache
MP, Racine V, Sibarita JB, Choquet D and Dargent B: Ankyrin G
restricts ion channel diffusion at the axonal initial segment
before the establishment of the diffusion barrier. J Cell Biol.
191:383–395. 2010.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Grubb MS and Burrone J: Building and
maintaining the axon initial segment. Curr Opin Neurobiol.
20:481–488. 2010.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Xu M and Cooper EC: An Ankyrin-G
N-terminal gate and protein kinase CK2 dually regulate binding of
voltage-gated sodium and KCNQ2/3 potassium channels. J Biol Chem.
290:16619–16632. 2015.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Bréchet A, Fache MP, Brachet A, Ferracci
G, Baude A, Irondelle M, Pereira S, Leterrier C and Dargent B:
Protein kinase CK2 contributes to the organization of sodium
channels in axonal membranes by regulating their interactions with
ankyrin G. J Cell Biol. 183:1101–1114. 2008.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Giraldez T, Rojas P, Jou J, Flores C and
Alvarez de la Rosa D: The epithelial sodium channel delta-subunit:
New notes for an old song. Am J Physiol Renal Physiol.
303:F328–F338. 2012.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Baines D: Kinases as targets for ENaC
regulation. Curr Mol Pharmacol. 6:50–64. 2013.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Shi HK, Asher C, Yung YV, Kligman L,
Reuveny E, Seger R and Garty H: Casein kinase 2 specifically binds
to and phosphorylates the carboxy termini of ENaC subunits. Eur J
Biochem. 269:4551–4558. 2002.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Bachhuber T, Almaca J, Aldehni F, Mehta A,
Amaral MD, Schreiber R and Kunzelmann K: Regulation of the
epithelial Na+ channel by protein kinase CK2. J Biol Chem.
283:13225–13232. 2008.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Hanukoglu I and Hanukoglu A: Epithelial
sodium channel (ENaC) family: Phylogeny, structure-function, tissue
distribution, and associated inherited diseases. Gene. 579:95–132.
2016.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Berman JM, Mironova E and Stockand JD:
Physiological regulation of the epithelial Na+ channel by casein
kinase II. Am J Physiol Renal Physiol. 314:F367–F372.
2017.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Wulff H, Castle NA and Pardo LA:
Voltage-gated potassium channels as therapeutic targets. Nat Rev
Drug Discov. 8:982–1001. 2009.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Misonou H: Precise localizations of
voltage-gated sodium and potassium channels in neurons. Dev
Neurobiol. 78:271–282. 2018.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Lezmy J, Lipinsky M, Khrapunsky Y, Patrich
E, Shalom L, Peretz A, Fleidervish IA and Attali B: M-current
inhibition rapidly induces a unique CK2-dependent plasticity of the
axon initial segment. Proc Natl Acad Sci USA. 114:E10234–E10243.
2017.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Kang S, Xu M, Cooper EC and Hoshi N:
Channel anchored protein kinase CK2 and protein phosphatase 1
reciprocally regulate KCNQ2-containing M-channels via
phosphorylation of calmodulin. J Biol Chem. 289:11536–11544.
2014.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Jentsch TJ: Neuronal KCNQ potassium
channels: Physiology and role in disease. Nat Rev Neurosci.
1:21–30. 2000.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Greene DL and Hoshi N: Modulation of Kv7
channels and excitability in the brain. Cell Mol Life Sci.
74:495–508. 2017.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Kshatri AS, Gonzalez-Hernandez A and
Giraldez T: Physiological roles and therapeutic potential of
Ca2+ activated potassium channels in the nervous system.
Front Mol Neurosci. 11(258)2018.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Meggio F, Boldyreff BS, Marin O, Marchiori
F, Perich JW, Issinger OG and Pinna LA: The effect of polylysine on
CK-2 activity is influenced by both the structure of the
protein/peptide substrates and subunit composition of the enzyme.
Eur J Biochem. 205:939–945. 1992.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Meggio F, Brunati AM and Pinna LA:
Polycation-dependent, Ca2+-antagonized phosphorylation of
calmodulin by casein kinase-2 and a spleen tyrosine protein kinase.
FEBS Lett. 215:241–246. 1987.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Sacks DB, Davis HW, Crimmins DL and
McDonald JM: Insulin-stimulated phosphorylation of calmodulin.
Biochem J. 286:211–216. 1992.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Maingret F, Coste B, Hao J, Giamarchi A,
Allen D, Crest M, Litchfield DW, Adelman JP and Delmas P:
Neurotransmitter modulation of small-conductance Ca2+-activated K+
channels by regulation of Ca2+ gating. Neuron. 59:439–449.
2008.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Bildl W, Strassmaier T, Thurm H, Andersen
J, Eble S, Oliver D, Knipper M, Mann M, Schulte U, Adelman JP and
Fakler B: Protein kinase CK2 is coassembled with small conductance
Ca2+-activated K+ channels and regulates
channel gating. Neuron. 43:847–858. 2004.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Allen D, Fakler B, Maylie J and Adelman
JP: Organization and regulation of small conductance Ca2+-activated
K+ channel multiprotein complexes. J Neurosci. 27:2369–2376.
2007.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Pallas DC, Shahrik LK, Martin BL, Jaspers
S, Miller TB, Brautigan DL and Roberts TM: Polyoma small and middle
T antigens and SV40 small t antigen form stable complexes with
protein phosphatase 2A. Cell. 60:167–176. 1990.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Zhang M, Meng XY, Cui M, Pascal JM,
Logothetis DE and Zhang JF: Selective phosphorylation modulates the
PIP2 sensitivity of the CaM-SK channel complex. Nat Chem Biol.
10:753–759. 2014.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Stocker M, Krause M and Pedarzani P: An
apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal
neurons. Proc Natl Acad Sci USA. 96:4662–4667. 1999.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Jiang ZS, Srisakuldee w, Soulet F, Bouche
G and Kardami E: Non-angiogenic FGF-2 protects the ischemic heart
from injury, in the presence or absence of reperfusion. Cardiovasc
Res. 62:154–166. 2004.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Li X, Hu H, Wang Y, Xue M, Li X, Cheng W,
Xuan Y, Yin J, Yang N and Yan S: Valsartan Upregulates Kir2.1 in
Rats Suffering from Myocardial Infarction via Casein Kinase 2.
Cardiovasc Drugs Ther. 29:209–218. 2015.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Stocker M and Pedarzani P: Differential
distribution of three Ca(2+)-activated K(+) channel subunits, SK1,
SK2, and SK3, in the adult rat central nervous system. Mol Cell
Neurosci. 15:476–493. 2000.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Xia XM, Fakler B, Rivard A, Wayman G,
Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko
S, et al: Mechanism of calcium gating in small-conductance
calcium-activated potassium channels. Nature. 395:503–507.
1998.PubMed/NCBI View
Article : Google Scholar
|
|
92
|
Brehme H, Kirschstein T, Schulz R and
Kohling R: In vivo treatment with the casein kinase 2 inhibitor
4,5,6,7-tetrabromotriazole augments the slow afterhyperpolarizing
potential and prevents acute epileptiform activity. Epilepsia.
55:175–183. 2013.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Bajorat R, Porath K, Kuhn J, Gossla E,
Goerss D, Sellmann T, Köhling R and Kirschstein T: Oral
administration of the casein kinase 2 inhibitor TBB leads to
persistent KCa2.2 channel up-regulation in the epileptic CA1 area
and cortex, but lacks anti-seizure efficacy in the pilocarpine
epilepsy model. Epilepsy Res. 147:42–50. 2018.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Schulze F, Muller S, Guli X, Schumann L,
Brehme H, Riffert T, Rohde M, Goerss D, Rackow S, Einsle A,
Kirschstein T and Kohling R: CK2 inhibition prior to status
epilepticus persistently enhances KCa 2 function in CA1
which slows down disease progression. Front Cell Neurosci.
14(33)2020.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Clapham DE: Calcium signaling. Cell.
131:1047–1058. 2007.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Afzal M, Kren BT, Naveed AK, Trembley JH
and Ahmed K: Protein kinase CK2 impact on intracellular calcium
homeostasis in prostate cancer. Mol Cell Biochem. 470:131–143.
2020.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Pankratov Y and Lalo U: Calcium
permeability of ligand-gated Ca2+ channels. Eur J Pharmacol.
739:60–73. 2014.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Prakriya M and Lewis RS: Store-operated
calcium channels. Physiol Rev. 95:1383–1436. 2015.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Zamponi GW, Striessnig J, Koschak A and
Dolphin AC: The physiology, pathology, and pharmacology of
voltage-gated calcium channels and their future therapeutic
potential. Pharmacol Rev. 67:821–870. 2015.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Zamponi GW: A crash course in calcium
channels. ACS Chem Neurosci. 8:2583–2585. 2017.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Catterall WA: Structure and regulation of
voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol. 16:521–555.
2000.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Christel C and Lee A: Ca2+-dependent
modulation of voltage-gated Ca2+ channels. Biochim Biophys Acta.
1820:1243–1252. 2012.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Xu L, Sun L, Xie L, Mou S, Zhang D, Zhu J
and Xu P: Advance in L-type calcium channel structures, functions
and molecular modeling. Curr Med Chem: Jul 14, 2020, Doi:
10.2174/0929867327666200714154059 Online ahead of print.
|
|
104
|
Weiss S, Oz S, Benmocha A and Dascal N:
Regulation of cardiac L-type Ca2+ channel CaV1.2 via the
β-adrenergic-cAMP-protein kinase A pathway: Old dogmas, advances,
and new uncertainties. Circ Res. 113:617–631. 2013.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Hulme JT, Lin TW, Westenbroek RE, Scheuer
T and Catterall WA: Beta-adrenergic regulation requires direct
anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper
interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci
USA. 100:13093–13098. 2003.PubMed/NCBI View Article : Google Scholar
|
|
106
|
De Jongh KS, Murphy BJ, Colvin AA, Hell
JW, Takahashi M and Catterall WA: Specific phosphorylation of a
site in the full-length form of the alpha 1 subunit of the cardiac
L-type calcium channel by adenosine 3',5'-cyclic
monophosphate-dependent protein kinase. Biochemistry.
35:10392–10402. 1996.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Peterson BZ, DeMaria CD, Adelman JP and
Yue DT: Calmodulin is the Ca2+ sensor for Ca2+ -dependent
inactivation of L-type calcium channels. Neuron. 22:549–558.
1999.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Fuller MD, Emrick MA, Sadilek M, Scheuer T
and Catterall WA: Molecular mechanism of calcium channel regulation
in the fight-or-flight response. Sci Signal. 3(ra70)2010.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Fu Y, Westenbroek RE, Scheuer T and
Catterall WA: Basal and β-adrenergic regulation of the cardiac
calcium channel CaV1.2 requires phosphorylation of serine 1700.
Proc Natl Acad Sci USA. 111:16598–16603. 2014.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Fu Y, Westenbroek RE, Scheuer T and
Catterall WA: Phosphorylation sites required for regulation of
cardiac calcium channels in the fight-or-flight response. Proc Natl
Acad Sci USA. 110:19621–19626. 2013.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Kashihara T, Nakada T, Kojima K, Takeshita
T and Yamada M: Angiotensin II activates CaV 1.2 Ca2+
channels through β-arrestin2 and casein kinase 2 in mouse immature
cardiomyocytes. J Physiol. 595:4207–4225. 2017.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Hauck L, Harms C, Rohne J, Gertz K, Dietz
R, Endres M and von HR: Protein kinase CK2 links extracellular
growth factor signaling with the control of p27(Kip1) stability in
the heart. Nat Med. 14:315–324. 2008.PubMed/NCBI View
Article : Google Scholar
|
|
113
|
Gomez-Ospina N, Tsuruta F, Barreto-Chang
O, Hu L and Dolmetsch R: The C terminus of the L-type voltage-gated
calcium channel Ca(V)1.2 encodes a transcription factor. Cell.
127:591–606. 2006.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Feng R, Xu J, Minobe E, Kameyama A, Yang
L, Yu L, Hao L and Kameyama M: Adenosine triphosphate regulates the
activity of guinea pig Cav1.2 channel by direct binding to the
channel in a dose-dependent manner. Am J Physiol Cell Physiol.
306:C856–C863. 2014.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Braun M, Ramracheya R, Bengtsson M, Zhang
Q, Karanauskaite J, Partridge C, Johnson PR and Rorsman P:
Voltage-gated ion channels in human pancreatic beta-cells:
Electrophysiological characterization and role in insulin
secretion. Diabetes. 57:1618–1628. 2008.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Yang SN and Berggren PO: The role of
voltage-gated calcium channels in pancreatic beta-cell physiology
and pathophysiology. Endocr Rev. 27:621–676. 2006.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Scheuer R, Philipp SE, Becker A, Nalbach
L, Ampofo E, Montenarh M and Götz C: Protein kinase CK2 controls
CaV2.1-dependent calcium currents and insulin release in pancreatic
β-cells. Int J Mol Sci. 21(4668)2020.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Lolli G, Cozza G, Mazzorana M, Tibaldi E,
Cesaro L, Donella-Deana A, Meggio F, Venerando A, Franchin C, Sarno
S, et al: Inhibition of protein kinase CK2 by flavonoids and
tyrphostins. A structural insight. Biochemistry. 51:6097–6107.
2012.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Catterall WA: Voltage-gated calcium
channels. Cold Spring Harb Perspect Biol. 3(a003947)2011.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Kahle JJ, Gulbahce N, Shaw CA, Lim J, Hill
DE, Barabási AL and Zoghbi HY: Comparison of an expanded ataxia
interactome with patient medical records reveals a relationship
between macular degeneration and ataxia. Hum Mol Genet. 20:510–527.
2011.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Rettig J, Sheng ZH, Kim DK, Hodson CD,
Snutch TP and Catterall WA: Isoform-specific interaction of the
alpha1A subunits of brain Ca2+ channels with the presynaptic
proteins syntaxin and SNAP-25. Proc Natl Acad Sci USA.
93:7363–7368. 1996.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Hilfiker S, Pieribone VA, Nordstedt C,
Greengard P and Czernik AJ: Regulation of synaptotagmin I
phosphorylation by multiple protein kinases. J Neurochem.
73:921–932. 1999.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Castillo MA, Ghose S, Tamminga CA and
Ulery-Reynolds PG: Deficits in syntaxin 1 phosphorylation in
schizophrenia prefrontal cortex. Biol Psychiatry. 67:208–216.
2010.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI
and Destefano S: Structural mechanisms of CFTR function and
dysfunction. J Gen Physiol. 150:539–570. 2018.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Fajac I and De BK: New horizons for cystic
fibrosis treatment. Pharmacol Ther. 170:205–211. 2017.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Csanady L, Vergani P and Gadsby DC:
Structure, gating, and regulation of the CFTR anion channel.
Physiol Rev. 99:707–738. 2019.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Cesaro L, Marin O, Venerando A,
Donella-Deana A and Pinna LA: Phosphorylation of cystic fibrosis
transmembrane conductance regulator (CFTR) serine-511 by the
combined action of tyrosine kinases and CK2: The implication of
tyrosine-512 and phenylalanine-508. Amino Acids. 45:1423–1429.
2013.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Luz S, Kongsuphol P, Mendes AI, Romeiras
F, Sousa M, Schreiber R, Matos P, Jordan P, Mehta A, Amaral MD, et
al: Contribution of casein kinase 2 and spleen tyrosine kinase to
CFTR trafficking and protein kinase A-induced activity. Mol Cell
Biol. 31:4392–4404. 2011.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Mehta A: Cystic fibrosis as a bowel cancer
syndrome and the potential role of CK2. Mol Cell Biochem.
316:169–175. 2008.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Pagano MA, Arrigoni G, Marin O, Sarno S,
Meggio F, Treharne KJ, Mehta A and Pinna LA: Modulation of protein
kinase CK2 activity by fragments of CFTR encompassing F508 may
reflect functional links with cystic fibrosis pathogenesis.
Biochemistry. 47:7925–7936. 2008.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Treharne KJ, Xu Z, Chen JH, Best OG,
Cassidy DM, Gruenert DC, Hegyi P, Gray MA, Sheppard DN, Kunzelmann
K and Mehta A: Inhibition of protein kinase CK2 closes the CFTR Cl
channel, but has no effect on the cystic fibrosis mutant
deltaF508-CFTR. Cell Physiol Biochem. 24:347–360. 2009.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Venerando A, Pagano MA, Tosoni K, Meggio
F, Cassidy D, Stobbart M, Pinna LA and Mehta A: Understanding
protein kinase CK2 mis-regulation upon F508del CFTR expression.
Naunyn Schmiedebergs Arch Pharmacol. 384:473–488. 2011.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Pagano MA, Marin O, Cozza G, Sarno S,
Meggio F, Treharne KJ, Mehta A and Pinna LA: Cystic fibrosis
transmembrane regulator fragments with the Phe508 deletion exert a
dual allosteric control over the master kinase CK2. Biochem J.
426:19–29. 2010.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Pinto MC, Schreiber R, Lerias J,
Ousingsawat J, Duarte A, Amaral M and Kunzelmann K: Regulation of
TMEM16A by CK2 and its role in cellular proliferation. Cells.
9(1138)2020.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Roosbeek S, Peelman F, Verhee A, Labeur C,
Caster H, Lensink MF, Cirulli C, Grooten J, Cochet C,
Vandekerckhove JL, et al: Phosphorylation by protein kinase CK2
modulates the activity of the ATP binding cassette A1 transporter.
J Biol Chem. 279:37779–37788. 2004.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Bai X, Moraes TF and Reithmeier RAF:
Structural biology of solute carrier (SLC) membrane transport
proteins. Mol Membr Biol. 34:1–32. 2017.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Ibrahim SH, Turner MJ, Saint-Criq V,
Garnett J, Haq IJ, Brodlie M, Ward C, Borgo C, Salvi M, Venerando A
and Gray MA: CK2 is a key regulator of SLC4A2-mediated
Cl-/HCO3-exchange in human airway epithelia.
Pflugers Arch. 469:1073–1091. 2017.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Stolk M, Cooper E, Vilk G, Litchfield DW
and Hammond JR: Subtype-specific regulation of equilibrative
nucleoside transporters by protein kinase CK2. Biochem J.
386:281–289. 2005.PubMed/NCBI View Article : Google Scholar
|