Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
December-2020 Volume 13 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2020 Volume 13 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Protein kinase CK2 and ion channels (Review)

  • Authors:
    • Mathias Montenarh
    • Claudia Götz
  • View Affiliations / Copyright

    Affiliations: Medical Biochemistry and Molecular Biology, Saarland University, D‑66424 Homburg, Saarland, Germany
    Copyright: © Montenarh et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 55
    |
    Published online on: September 30, 2020
       https://doi.org/10.3892/br.2020.1362
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Protein kinase CK2 appears as a tetramer or higher molecular weight oligomer composed of catalytic CK2α, CK2α' subunits and non‑catalytic regulatory CK2β subunits or as individual subunits. It is implicated in a variety of different regulatory processes, such as Akt signalling, splicing and DNA repair within eukaryotic cells. The present review evaluates the influence of CK2 on ion channels in the plasma membrane. CK2 phosphorylates platform proteins such as calmodulin and ankyrin G, which bind to channel proteins for a physiological transport to and positioning into the membrane. In addition, CK2 directly phosphorylates a variety of channel proteins directly to regulate opening and closing of the channels. Thus, modulation of CK2 activities by specific inhibitors, by siRNA technology or by CRISPR/Cas technology has an influence on intracellular ion concentrations and thereby on cellular signalling. The physiological regulation of the intracellular ion concentration is important for cell survival and correct intracellular signalling. Disturbance of this regulation results in a variety of different diseases including epilepsy, heart failure, cystic fibrosis and diabetes. Therefore, these effects should be considered when using CK2 inhibition as a treatment option for cancer.
View Figures

Figure 1

View References

1 

Manning G: Genomic overview of protein kinases. WormBook. 1–19. 2005.PubMed/NCBI View Article : Google Scholar

2 

Litchfield DW: Protein kinase CK2: Structure, regulation and role in cellular decisions of life and death. Biochem J. 369:1–15. 2003.PubMed/NCBI View Article : Google Scholar

3 

Salvi M, Sarno S, Cesaro L, Nakamura H and Pinna LA: Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim Biophys Acta. 1793:847–859. 2009.PubMed/NCBI View Article : Google Scholar

4 

de Villavicencio-Diaz T, Rabalski AJ and Litchfield DW: Protein kinase CK2: Intricate relationships within regulatory cellular networks. Pharmaceuticals (Basel). 10(27)2017.PubMed/NCBI View Article : Google Scholar

5 

Burnett G and Kennedy EP: The enzymatic phosphorylation of proteins. J Biol Chem. 211:969–980. 1954.PubMed/NCBI

6 

Boldyreff B, Meggio F, Pinna LA and Issinger OG: Protein kinase CK2 structure-function relationship: Effects of the β subunit on reconstitution and activity. Cell Mol Biol Res. 40:391–399. 1994.PubMed/NCBI

7 

Wirkner U, Voss H, Lichter P, Ansorge W and Pyerin W: The human gene (CSNK2A1) coding for the casein kinase II subunit alpha is located on chromosome 20 and contains tandemly arranged Alu repeats. Genomics. 19:257–265. 1994.PubMed/NCBI View Article : Google Scholar

8 

Ackermann K, Neidhart T, Gerber J, Waxmann A and Pyerin W: The catalytic subunit alpha' gene of human protein kinase CK2 (CSNK2A2): Genomic organization, promoter identification and determination of Ets1 as a key regulator. Mol Cell Biochem. 274:91–101. 2005.PubMed/NCBI View Article : Google Scholar

9 

Albertella MR, Jones H, Thomson W, Olavesen MG and Campbell RD: Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II beta subunit (CSNK2B). Genomics. 36:240–251. 1996.PubMed/NCBI View Article : Google Scholar

10 

Raaf J, Brunstein E, Issinger OG and Niefind K: The interaction of CK2alpha and CK2beta, the subunits of protein kinase CK2, requires CK2beta in a preformed conformation and is enthalpically driven. Protein Sci. 17:2180–2186. 2008.PubMed/NCBI View Article : Google Scholar

11 

Meggio F, Boldyreff BS, Marin O, Pinna LA and Issinger OG: CK2: Role of the beta-subunit on the stability and specificity of the recombinant reconstituted holoenzyme. Eur J Biochem. 204:293–297. 1992.PubMed/NCBI View Article : Google Scholar

12 

Boldyreff BS, Meggio F, Pinna LA and Issinger O-G: Casein kinase-2 structure-function relationship: Creation of a set of mutants of the β subunit that variably surrogate the wildtype β subunit function. Biochem Biophys Res Commun. 188:228–234. 1992.PubMed/NCBI View Article : Google Scholar

13 

Rodriguez FA, Contreras C, Bolanos-Garcia V and Allende JE: Protein kinase CK2 as an ectokinase: The role of the regulatory CK2beta subunit. Proc Natl Acad Sci USA. 105:5693–5698. 2008.PubMed/NCBI View Article : Google Scholar

14 

Lolli G, Pinna LA and Battistutta R: Structural determinants of protein kinase CK2 regulation by autoinhibitory polymerization. ACS Chem Biol. 7:1158–1163. 2012.PubMed/NCBI View Article : Google Scholar

15 

Lolli G, Naressi D, Sarno S and Battistutta R: Characterization of the oligomeric states of the CK2 alpha2beta2 holoenzyme in solution. Biochem J. 474:2405–2416. 2017.PubMed/NCBI View Article : Google Scholar

16 

Raaf J, Guerra B, Neundorf I, Bopp B, Issinger OG, Jose J, Pietsch M and Niefind K: First structure of protein kinase CK2 catalytic subunit with an effective CK2β-competitive ligand. ACS Chem Biol. 8:901–907. 2013.PubMed/NCBI View Article : Google Scholar

17 

Raaf J, Bischoff N, Klopffleisch K, Brunstein E, Olsen BB, Vilk G, Litchfield DW, Issinger OG and Niefind K: Interaction between CK2α and CK2β, the subunits of protein kinase CK2: Thermodynamic contributions of key residues on the CK2α surface. Biochemistry. 50:512–522. 2011.PubMed/NCBI View Article : Google Scholar

18 

Heriche JK, Lebrin F, Rabilloud T, LeRoy D, Chambaz EM and Goldberg Y: Regulation of protein phosphatase 2A by direct interaction with casein kinase 2alpha. Science. 276:952–955. 1997.PubMed/NCBI View Article : Google Scholar

19 

Lüscher B and Litchfield DW: Biosynthesis of casein kinase II in lymphoid cell lines. Eur J Biochem. 220:521–526. 1994.PubMed/NCBI View Article : Google Scholar

20 

Guerra B, Siemer S, Boldyreff B and Issinger OG: Protein kinase CK2: Evidence for a protein kinase CK2β subunit fraction, devoid of the catalytic CK2α subunit, in mouse brain and testicles. FEBS Lett. 462:353–357. 1999.PubMed/NCBI View Article : Google Scholar

21 

Trembley JH, Wang G, Unger G, Slaton J and Ahmed K: CK2: A key player in cancer biology. Cell Mol Life Sci. 66:1858–1867. 2009.PubMed/NCBI View Article : Google Scholar

22 

Benveniste EN, Gray GK and McFarland BC: Protein kinase CK2 and dysregulated oncogenic inflammatory signaling pathways Protein kinase CK2 cellular function in normal and disease states Springer e-book, 2015.

23 

Okur V, Cho MT, Henderson L, Retterer K, Schneider M, Sattler S, Niyazov D, Azage M, Smith S, Picker J, et al: De novo mutations in CSNK2A1 are associated with neurodevelopmental abnormalities and dysmorphic features. Hum Genet. 135:699–705. 2016.PubMed/NCBI View Article : Google Scholar

24 

Owen CI, Bowden R, Parker MJ, Patterson J, Patterson J, Price S, Sarkar A, Castle B, Deshpande C, Splitt M, et al: Extending the phenotype associated with the CSNK2A1-related Okur-Chung syndrome-A clinical study of 11 individuals. Am J Med Genet A. 176:1108–1114. 2018.PubMed/NCBI View Article : Google Scholar

25 

Trinh J, Huning I, Budler N, Hingst V, Lohmann K and Gillessen-Kaesbach G: A novel de novo mutation in CSNK2A1: Reinforcing the link to neurodevelopmental abnormalities and dysmorphic features. J Hum Genet. 62:1005–1006. 2017.PubMed/NCBI View Article : Google Scholar

26 

Lou DY, Dominguez I, Toselli P, Landesman-Bollag E, O'Brien C and Seldin DC: The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol. 28:131–139. 2008.PubMed/NCBI View Article : Google Scholar

27 

Buchou T, Vernet M, Blond O, Jensen HH, Pointu H, Olsen BB, Cochet C, Issinger OG and Boldyreff B: Disruption of the regulatory b subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol. 23:908–915. 2003.PubMed/NCBI View Article : Google Scholar

28 

Xu X, Toselli PA, Russell LD and Seldin DC: Globozoospermia in mice lacking the casein kinase II a' catalytic subunit. Nat Genet. 23:118–121. 1999.PubMed/NCBI View Article : Google Scholar

29 

Götz C and Montenarh M: Protein kinase CK2 in development and differentiation. Biomed Rep. 6:127–133. 2016.PubMed/NCBI View Article : Google Scholar

30 

Niefind K, Pütter M, Guerra B, Issinger OG and Schomburg D: CTP plus water mimic ATP in the active site of protein kinase CK2. Nat Struct Biol. 6:1100–1103. 1999.PubMed/NCBI View Article : Google Scholar

31 

Lin WJ, Tuazon PT and Traugh JA: Characterization of the catalytic subunit of casein kinase II expressed in Escherichia coli and regulation of activity. J Biol Chem. 266:5664–5669. 1991.PubMed/NCBI

32 

Guerra B: Protein kinase CK2 subunits are positive regulators of AKT kinase. Int J Oncol. 28:685–693. 2006.PubMed/NCBI

33 

Shehata M, Schnabl S, Demirtas D, Hilgarth M, Hubmann R, Ponath E, Badrnya S, Lehner C, Hoelbl A, Duechler M, et al: Reconstitution of PTEN activity by CK2 inhibitors and interference with the PI3-K/Akt cascade counteract the antiapoptotic effect of human stromal cells in chronic lymphocytic leukemia. Blood. 116:2513–2521. 2010.PubMed/NCBI View Article : Google Scholar

34 

Wang S and Jones KA: CK2 controls the recruitment of Wnt regulators to target genes in vivo. Curr Biol. 16:2239–2244. 2006.PubMed/NCBI View Article : Google Scholar

35 

Gao Y and Wang HY: Casein kinase 2 Is activated and essential for Wnt/beta-catenin signaling. J Biol Chem. 281:18394–18400. 2006.PubMed/NCBI View Article : Google Scholar

36 

Ponce DP, Yefi R, Cabello P, Maturana JL, Niechi I, Silva E, Galindo M, Antonelli M, Marcelain K, Armisen R and Tapia JC: CK2 functionally interacts with AKT/PKB to promote the β-catenin-dependent expression of survivin and enhance cell survival. Mol Cell Biochem. 356:127–132. 2011.PubMed/NCBI View Article : Google Scholar

37 

Ponce DP, Maturana JL, Cabello P, Yefi R, Niechi I, Silva E, Armisen R, Galindo M, Antonelli M and Tapia JC: Phosphorylation of AKT/PKB by CK2 is necessary for the AKT-dependent up-regulation of β-catenin transcriptional activity. J Cell Physiol. 226:1953–1959. 2011.PubMed/NCBI View Article : Google Scholar

38 

Götz C and Montenarh M: Protein kinase CK2 in the ER stress response. Ad Biological Chemistry. 3A:1–5. 2013.

39 

Montenarh M: Protein kinase CK2 in DNA damage and repair. Transl Cancer Res. 5:49–63. 2016.

40 

Cozza G, Pinna LA and Moro S: Protein kinase CK2 inhibitors: A patent review. Expert Opin Ther Pat. 22:1081–1097. 2012.PubMed/NCBI View Article : Google Scholar

41 

Cozza G: The development of CK2 inhibitors: From traditional pharmacology to in silico rational drug design. Pharmaceuticals (Basel). 10(26)2017.PubMed/NCBI View Article : Google Scholar

42 

Prudent R and Cochet C: New protein kinase CK2 inhibitors: Jumping out of the catalytic box. Chem Biol. 16:112–120. 2009.PubMed/NCBI View Article : Google Scholar

43 

Bollacke A, Nienberg C, Borgne ML and Jose J: Toward selective CK2alpha and CK2alpha' inhibitors: Development of a novel whole-cell kinase assay by Autodisplay of catalytic CK2alpha'. J Pharm Biomed Anal. 121:253–260. 2016.PubMed/NCBI View Article : Google Scholar

44 

Battistutta R, Sarno S, De Moliner E, Papinutto E, Zanotti G and Pinna LA: The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2. J Biol Chem. 275:29618–29622. 2000.PubMed/NCBI View Article : Google Scholar

45 

Battistutta R, De Moliner E, Sarno S, Zanotti G and Pinna LA: Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci. 10:2200–2206. 2001.PubMed/NCBI View Article : Google Scholar

46 

Pagano MA, Bain J, Kazimierczuk Z, Sarno S, Ruzzene M, Di Maira G, Elliott M, Orzeszko A, Cozza G, Meggio F and Pinna LA: The selectivity of inhibitors of protein kinase CK2. An update. Biochem J. 415:353–365. 2008.PubMed/NCBI View Article : Google Scholar

47 

Sarno S, De Moliner E, Ruzzene M, Pagano MA, Battistutta R, Bain J, Fabbro D, Schoepfer J, Elliott M, Furet P, et al: Biochemical and three-dimensional-structural study of the specific inhibition of protein kinase CK2 by [5-oxo-5,6-dihydroindolo-(1,2-a)quinazolin-7-yl]acetic acid (IQA). Biochem J. 374:639–646. 2003.PubMed/NCBI View Article : Google Scholar

48 

Sarno S, Reddy H, Meggio F, Ruzzene M, Davies SP, Donella-Deana A, Shugar D and Pinna LA: Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (‘casein kinase-2’). FEBS Lett. 496:44–48. 2001.PubMed/NCBI View Article : Google Scholar

49 

Pierre F, Chua PC, O'Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M, Michaux J, Nagasawa J, Schwaebe MK, Stefan E, et al: Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J Med Chem. 54:635–654. 2011.PubMed/NCBI View Article : Google Scholar

50 

Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O'Brien SE, Bliesath J, Omori M, Huser N, Ho C, et al: CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res. 70:10288–10298. 2010.PubMed/NCBI View Article : Google Scholar

51 

Lee JY, Yun JS, Kim WK, Chun HS, Jin H, Cho S and Chang JH: Structural basis for the selective inhibition of Cdc2-like kinases by CX-4945. Biomed Res Int. 2019(6125068)2019.PubMed/NCBI View Article : Google Scholar

52 

Chua MM, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL and Dominguez I: CK2 in cancer: Cellular and biochemical mechanisms and potential therapeutic target. Pharmaceuticals (Basel). 10(18)2017.PubMed/NCBI View Article : Google Scholar

53 

Faust M, Jung M, Günther J, Zimmermann R and Montenarh M: Localization of individual subunits of protein kinase CK2 to the endoplasmic reticulum and to the Golgi apparatus. Mol Cell Biochem. 227:73–80. 2001.PubMed/NCBI

54 

Faust M, Schuster N and Montenarh M: Specific binding of protein kinase CK2 catalytic subunits to tubulin. FEBS Letters. 462:51–56. 1999.PubMed/NCBI View Article : Google Scholar

55 

Faust M, Günther J, Morgenstern E, Montenarh M and Götz C: Specific localization of the catalytic subunits of protein kinase CK2 at the centrosomes. Cell Mol Life Sci. 59:2155–2164. 2002.PubMed/NCBI View Article : Google Scholar

56 

Faust M and Montenarh M: Subcellular localization of protein kinase CK2: A key to its function? Cell Tissue Res. 301:329–340. 2000.PubMed/NCBI View Article : Google Scholar

57 

Montenarh M and Götz C: Ecto-protein kinase CK2, the neglected form of CK2 (review). Biomed Rep. 8:307–313. 2018.PubMed/NCBI View Article : Google Scholar

58 

Suhas KS, Parida S, Gokul C, Srivastava V, Prakash E, Chauhan S, Singh TU, Panigrahi M, Telang AG and Mishra SK: Casein kinase 2 inhibition impairs spontaneous and oxytocin-induced contractions in late pregnant mouse uterus. Exp Physiol. 103:621–628. 2018.PubMed/NCBI View Article : Google Scholar

59 

Gil C, Falques A, Sarro E, Cubi R, Blasi J, Aguilera J and Itarte E: Protein kinase CK2 associates to lipid rafts and its pharmacological inhibition enhances neurotransmitter release. FEBS Lett. 585:414–420. 2010.PubMed/NCBI View Article : Google Scholar

60 

Hernandez CM and Richards JR: Physiology, sodium channels. StatPearls Publishing 2020.

61 

Savio-Galimberti E, Gollob MH and Darbar D: Voltage-gated sodium channels: Biophysics, pharmacology, and related channelopathies. Front Pharmacol. 3(124)2012.PubMed/NCBI View Article : Google Scholar

62 

Brachet A, Leterrier C, Irondelle M, Fache MP, Racine V, Sibarita JB, Choquet D and Dargent B: Ankyrin G restricts ion channel diffusion at the axonal initial segment before the establishment of the diffusion barrier. J Cell Biol. 191:383–395. 2010.PubMed/NCBI View Article : Google Scholar

63 

Grubb MS and Burrone J: Building and maintaining the axon initial segment. Curr Opin Neurobiol. 20:481–488. 2010.PubMed/NCBI View Article : Google Scholar

64 

Xu M and Cooper EC: An Ankyrin-G N-terminal gate and protein kinase CK2 dually regulate binding of voltage-gated sodium and KCNQ2/3 potassium channels. J Biol Chem. 290:16619–16632. 2015.PubMed/NCBI View Article : Google Scholar

65 

Bréchet A, Fache MP, Brachet A, Ferracci G, Baude A, Irondelle M, Pereira S, Leterrier C and Dargent B: Protein kinase CK2 contributes to the organization of sodium channels in axonal membranes by regulating their interactions with ankyrin G. J Cell Biol. 183:1101–1114. 2008.PubMed/NCBI View Article : Google Scholar

66 

Giraldez T, Rojas P, Jou J, Flores C and Alvarez de la Rosa D: The epithelial sodium channel delta-subunit: New notes for an old song. Am J Physiol Renal Physiol. 303:F328–F338. 2012.PubMed/NCBI View Article : Google Scholar

67 

Baines D: Kinases as targets for ENaC regulation. Curr Mol Pharmacol. 6:50–64. 2013.PubMed/NCBI View Article : Google Scholar

68 

Shi HK, Asher C, Yung YV, Kligman L, Reuveny E, Seger R and Garty H: Casein kinase 2 specifically binds to and phosphorylates the carboxy termini of ENaC subunits. Eur J Biochem. 269:4551–4558. 2002.PubMed/NCBI View Article : Google Scholar

69 

Bachhuber T, Almaca J, Aldehni F, Mehta A, Amaral MD, Schreiber R and Kunzelmann K: Regulation of the epithelial Na+ channel by protein kinase CK2. J Biol Chem. 283:13225–13232. 2008.PubMed/NCBI View Article : Google Scholar

70 

Hanukoglu I and Hanukoglu A: Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene. 579:95–132. 2016.PubMed/NCBI View Article : Google Scholar

71 

Berman JM, Mironova E and Stockand JD: Physiological regulation of the epithelial Na+ channel by casein kinase II. Am J Physiol Renal Physiol. 314:F367–F372. 2017.PubMed/NCBI View Article : Google Scholar

72 

Wulff H, Castle NA and Pardo LA: Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 8:982–1001. 2009.PubMed/NCBI View Article : Google Scholar

73 

Misonou H: Precise localizations of voltage-gated sodium and potassium channels in neurons. Dev Neurobiol. 78:271–282. 2018.PubMed/NCBI View Article : Google Scholar

74 

Lezmy J, Lipinsky M, Khrapunsky Y, Patrich E, Shalom L, Peretz A, Fleidervish IA and Attali B: M-current inhibition rapidly induces a unique CK2-dependent plasticity of the axon initial segment. Proc Natl Acad Sci USA. 114:E10234–E10243. 2017.PubMed/NCBI View Article : Google Scholar

75 

Kang S, Xu M, Cooper EC and Hoshi N: Channel anchored protein kinase CK2 and protein phosphatase 1 reciprocally regulate KCNQ2-containing M-channels via phosphorylation of calmodulin. J Biol Chem. 289:11536–11544. 2014.PubMed/NCBI View Article : Google Scholar

76 

Jentsch TJ: Neuronal KCNQ potassium channels: Physiology and role in disease. Nat Rev Neurosci. 1:21–30. 2000.PubMed/NCBI View Article : Google Scholar

77 

Greene DL and Hoshi N: Modulation of Kv7 channels and excitability in the brain. Cell Mol Life Sci. 74:495–508. 2017.PubMed/NCBI View Article : Google Scholar

78 

Kshatri AS, Gonzalez-Hernandez A and Giraldez T: Physiological roles and therapeutic potential of Ca2+ activated potassium channels in the nervous system. Front Mol Neurosci. 11(258)2018.PubMed/NCBI View Article : Google Scholar

79 

Meggio F, Boldyreff BS, Marin O, Marchiori F, Perich JW, Issinger OG and Pinna LA: The effect of polylysine on CK-2 activity is influenced by both the structure of the protein/peptide substrates and subunit composition of the enzyme. Eur J Biochem. 205:939–945. 1992.PubMed/NCBI View Article : Google Scholar

80 

Meggio F, Brunati AM and Pinna LA: Polycation-dependent, Ca2+-antagonized phosphorylation of calmodulin by casein kinase-2 and a spleen tyrosine protein kinase. FEBS Lett. 215:241–246. 1987.PubMed/NCBI View Article : Google Scholar

81 

Sacks DB, Davis HW, Crimmins DL and McDonald JM: Insulin-stimulated phosphorylation of calmodulin. Biochem J. 286:211–216. 1992.PubMed/NCBI View Article : Google Scholar

82 

Maingret F, Coste B, Hao J, Giamarchi A, Allen D, Crest M, Litchfield DW, Adelman JP and Delmas P: Neurotransmitter modulation of small-conductance Ca2+-activated K+ channels by regulation of Ca2+ gating. Neuron. 59:439–449. 2008.PubMed/NCBI View Article : Google Scholar

83 

Bildl W, Strassmaier T, Thurm H, Andersen J, Eble S, Oliver D, Knipper M, Mann M, Schulte U, Adelman JP and Fakler B: Protein kinase CK2 is coassembled with small conductance Ca2+-activated K+ channels and regulates channel gating. Neuron. 43:847–858. 2004.PubMed/NCBI View Article : Google Scholar

84 

Allen D, Fakler B, Maylie J and Adelman JP: Organization and regulation of small conductance Ca2+-activated K+ channel multiprotein complexes. J Neurosci. 27:2369–2376. 2007.PubMed/NCBI View Article : Google Scholar

85 

Pallas DC, Shahrik LK, Martin BL, Jaspers S, Miller TB, Brautigan DL and Roberts TM: Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell. 60:167–176. 1990.PubMed/NCBI View Article : Google Scholar

86 

Zhang M, Meng XY, Cui M, Pascal JM, Logothetis DE and Zhang JF: Selective phosphorylation modulates the PIP2 sensitivity of the CaM-SK channel complex. Nat Chem Biol. 10:753–759. 2014.PubMed/NCBI View Article : Google Scholar

87 

Stocker M, Krause M and Pedarzani P: An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc Natl Acad Sci USA. 96:4662–4667. 1999.PubMed/NCBI View Article : Google Scholar

88 

Jiang ZS, Srisakuldee w, Soulet F, Bouche G and Kardami E: Non-angiogenic FGF-2 protects the ischemic heart from injury, in the presence or absence of reperfusion. Cardiovasc Res. 62:154–166. 2004.PubMed/NCBI View Article : Google Scholar

89 

Li X, Hu H, Wang Y, Xue M, Li X, Cheng W, Xuan Y, Yin J, Yang N and Yan S: Valsartan Upregulates Kir2.1 in Rats Suffering from Myocardial Infarction via Casein Kinase 2. Cardiovasc Drugs Ther. 29:209–218. 2015.PubMed/NCBI View Article : Google Scholar

90 

Stocker M and Pedarzani P: Differential distribution of three Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol Cell Neurosci. 15:476–493. 2000.PubMed/NCBI View Article : Google Scholar

91 

Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, et al: Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature. 395:503–507. 1998.PubMed/NCBI View Article : Google Scholar

92 

Brehme H, Kirschstein T, Schulz R and Kohling R: In vivo treatment with the casein kinase 2 inhibitor 4,5,6,7-tetrabromotriazole augments the slow afterhyperpolarizing potential and prevents acute epileptiform activity. Epilepsia. 55:175–183. 2013.PubMed/NCBI View Article : Google Scholar

93 

Bajorat R, Porath K, Kuhn J, Gossla E, Goerss D, Sellmann T, Köhling R and Kirschstein T: Oral administration of the casein kinase 2 inhibitor TBB leads to persistent KCa2.2 channel up-regulation in the epileptic CA1 area and cortex, but lacks anti-seizure efficacy in the pilocarpine epilepsy model. Epilepsy Res. 147:42–50. 2018.PubMed/NCBI View Article : Google Scholar

94 

Schulze F, Muller S, Guli X, Schumann L, Brehme H, Riffert T, Rohde M, Goerss D, Rackow S, Einsle A, Kirschstein T and Kohling R: CK2 inhibition prior to status epilepticus persistently enhances KCa 2 function in CA1 which slows down disease progression. Front Cell Neurosci. 14(33)2020.PubMed/NCBI View Article : Google Scholar

95 

Clapham DE: Calcium signaling. Cell. 131:1047–1058. 2007.PubMed/NCBI View Article : Google Scholar

96 

Afzal M, Kren BT, Naveed AK, Trembley JH and Ahmed K: Protein kinase CK2 impact on intracellular calcium homeostasis in prostate cancer. Mol Cell Biochem. 470:131–143. 2020.PubMed/NCBI View Article : Google Scholar

97 

Pankratov Y and Lalo U: Calcium permeability of ligand-gated Ca2+ channels. Eur J Pharmacol. 739:60–73. 2014.PubMed/NCBI View Article : Google Scholar

98 

Prakriya M and Lewis RS: Store-operated calcium channels. Physiol Rev. 95:1383–1436. 2015.PubMed/NCBI View Article : Google Scholar

99 

Zamponi GW, Striessnig J, Koschak A and Dolphin AC: The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 67:821–870. 2015.PubMed/NCBI View Article : Google Scholar

100 

Zamponi GW: A crash course in calcium channels. ACS Chem Neurosci. 8:2583–2585. 2017.PubMed/NCBI View Article : Google Scholar

101 

Catterall WA: Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol. 16:521–555. 2000.PubMed/NCBI View Article : Google Scholar

102 

Christel C and Lee A: Ca2+-dependent modulation of voltage-gated Ca2+ channels. Biochim Biophys Acta. 1820:1243–1252. 2012.PubMed/NCBI View Article : Google Scholar

103 

Xu L, Sun L, Xie L, Mou S, Zhang D, Zhu J and Xu P: Advance in L-type calcium channel structures, functions and molecular modeling. Curr Med Chem: Jul 14, 2020, Doi: 10.2174/0929867327666200714154059 Online ahead of print.

104 

Weiss S, Oz S, Benmocha A and Dascal N: Regulation of cardiac L-type Ca2+ channel CaV1.2 via the β-adrenergic-cAMP-protein kinase A pathway: Old dogmas, advances, and new uncertainties. Circ Res. 113:617–631. 2013.PubMed/NCBI View Article : Google Scholar

105 

Hulme JT, Lin TW, Westenbroek RE, Scheuer T and Catterall WA: Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci USA. 100:13093–13098. 2003.PubMed/NCBI View Article : Google Scholar

106 

De Jongh KS, Murphy BJ, Colvin AA, Hell JW, Takahashi M and Catterall WA: Specific phosphorylation of a site in the full-length form of the alpha 1 subunit of the cardiac L-type calcium channel by adenosine 3',5'-cyclic monophosphate-dependent protein kinase. Biochemistry. 35:10392–10402. 1996.PubMed/NCBI View Article : Google Scholar

107 

Peterson BZ, DeMaria CD, Adelman JP and Yue DT: Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron. 22:549–558. 1999.PubMed/NCBI View Article : Google Scholar

108 

Fuller MD, Emrick MA, Sadilek M, Scheuer T and Catterall WA: Molecular mechanism of calcium channel regulation in the fight-or-flight response. Sci Signal. 3(ra70)2010.PubMed/NCBI View Article : Google Scholar

109 

Fu Y, Westenbroek RE, Scheuer T and Catterall WA: Basal and β-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700. Proc Natl Acad Sci USA. 111:16598–16603. 2014.PubMed/NCBI View Article : Google Scholar

110 

Fu Y, Westenbroek RE, Scheuer T and Catterall WA: Phosphorylation sites required for regulation of cardiac calcium channels in the fight-or-flight response. Proc Natl Acad Sci USA. 110:19621–19626. 2013.PubMed/NCBI View Article : Google Scholar

111 

Kashihara T, Nakada T, Kojima K, Takeshita T and Yamada M: Angiotensin II activates CaV 1.2 Ca2+ channels through β-arrestin2 and casein kinase 2 in mouse immature cardiomyocytes. J Physiol. 595:4207–4225. 2017.PubMed/NCBI View Article : Google Scholar

112 

Hauck L, Harms C, Rohne J, Gertz K, Dietz R, Endres M and von HR: Protein kinase CK2 links extracellular growth factor signaling with the control of p27(Kip1) stability in the heart. Nat Med. 14:315–324. 2008.PubMed/NCBI View Article : Google Scholar

113 

Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L and Dolmetsch R: The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell. 127:591–606. 2006.PubMed/NCBI View Article : Google Scholar

114 

Feng R, Xu J, Minobe E, Kameyama A, Yang L, Yu L, Hao L and Kameyama M: Adenosine triphosphate regulates the activity of guinea pig Cav1.2 channel by direct binding to the channel in a dose-dependent manner. Am J Physiol Cell Physiol. 306:C856–C863. 2014.PubMed/NCBI View Article : Google Scholar

115 

Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, Johnson PR and Rorsman P: Voltage-gated ion channels in human pancreatic beta-cells: Electrophysiological characterization and role in insulin secretion. Diabetes. 57:1618–1628. 2008.PubMed/NCBI View Article : Google Scholar

116 

Yang SN and Berggren PO: The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev. 27:621–676. 2006.PubMed/NCBI View Article : Google Scholar

117 

Scheuer R, Philipp SE, Becker A, Nalbach L, Ampofo E, Montenarh M and Götz C: Protein kinase CK2 controls CaV2.1-dependent calcium currents and insulin release in pancreatic β-cells. Int J Mol Sci. 21(4668)2020.PubMed/NCBI View Article : Google Scholar

118 

Lolli G, Cozza G, Mazzorana M, Tibaldi E, Cesaro L, Donella-Deana A, Meggio F, Venerando A, Franchin C, Sarno S, et al: Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight. Biochemistry. 51:6097–6107. 2012.PubMed/NCBI View Article : Google Scholar

119 

Catterall WA: Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 3(a003947)2011.PubMed/NCBI View Article : Google Scholar

120 

Kahle JJ, Gulbahce N, Shaw CA, Lim J, Hill DE, Barabási AL and Zoghbi HY: Comparison of an expanded ataxia interactome with patient medical records reveals a relationship between macular degeneration and ataxia. Hum Mol Genet. 20:510–527. 2011.PubMed/NCBI View Article : Google Scholar

121 

Rettig J, Sheng ZH, Kim DK, Hodson CD, Snutch TP and Catterall WA: Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. Proc Natl Acad Sci USA. 93:7363–7368. 1996.PubMed/NCBI View Article : Google Scholar

122 

Hilfiker S, Pieribone VA, Nordstedt C, Greengard P and Czernik AJ: Regulation of synaptotagmin I phosphorylation by multiple protein kinases. J Neurochem. 73:921–932. 1999.PubMed/NCBI View Article : Google Scholar

123 

Castillo MA, Ghose S, Tamminga CA and Ulery-Reynolds PG: Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex. Biol Psychiatry. 67:208–216. 2010.PubMed/NCBI View Article : Google Scholar

124 

Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI and Destefano S: Structural mechanisms of CFTR function and dysfunction. J Gen Physiol. 150:539–570. 2018.PubMed/NCBI View Article : Google Scholar

125 

Fajac I and De BK: New horizons for cystic fibrosis treatment. Pharmacol Ther. 170:205–211. 2017.PubMed/NCBI View Article : Google Scholar

126 

Csanady L, Vergani P and Gadsby DC: Structure, gating, and regulation of the CFTR anion channel. Physiol Rev. 99:707–738. 2019.PubMed/NCBI View Article : Google Scholar

127 

Cesaro L, Marin O, Venerando A, Donella-Deana A and Pinna LA: Phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) serine-511 by the combined action of tyrosine kinases and CK2: The implication of tyrosine-512 and phenylalanine-508. Amino Acids. 45:1423–1429. 2013.PubMed/NCBI View Article : Google Scholar

128 

Luz S, Kongsuphol P, Mendes AI, Romeiras F, Sousa M, Schreiber R, Matos P, Jordan P, Mehta A, Amaral MD, et al: Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking and protein kinase A-induced activity. Mol Cell Biol. 31:4392–4404. 2011.PubMed/NCBI View Article : Google Scholar

129 

Mehta A: Cystic fibrosis as a bowel cancer syndrome and the potential role of CK2. Mol Cell Biochem. 316:169–175. 2008.PubMed/NCBI View Article : Google Scholar

130 

Pagano MA, Arrigoni G, Marin O, Sarno S, Meggio F, Treharne KJ, Mehta A and Pinna LA: Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis. Biochemistry. 47:7925–7936. 2008.PubMed/NCBI View Article : Google Scholar

131 

Treharne KJ, Xu Z, Chen JH, Best OG, Cassidy DM, Gruenert DC, Hegyi P, Gray MA, Sheppard DN, Kunzelmann K and Mehta A: Inhibition of protein kinase CK2 closes the CFTR Cl channel, but has no effect on the cystic fibrosis mutant deltaF508-CFTR. Cell Physiol Biochem. 24:347–360. 2009.PubMed/NCBI View Article : Google Scholar

132 

Venerando A, Pagano MA, Tosoni K, Meggio F, Cassidy D, Stobbart M, Pinna LA and Mehta A: Understanding protein kinase CK2 mis-regulation upon F508del CFTR expression. Naunyn Schmiedebergs Arch Pharmacol. 384:473–488. 2011.PubMed/NCBI View Article : Google Scholar

133 

Pagano MA, Marin O, Cozza G, Sarno S, Meggio F, Treharne KJ, Mehta A and Pinna LA: Cystic fibrosis transmembrane regulator fragments with the Phe508 deletion exert a dual allosteric control over the master kinase CK2. Biochem J. 426:19–29. 2010.PubMed/NCBI View Article : Google Scholar

134 

Pinto MC, Schreiber R, Lerias J, Ousingsawat J, Duarte A, Amaral M and Kunzelmann K: Regulation of TMEM16A by CK2 and its role in cellular proliferation. Cells. 9(1138)2020.PubMed/NCBI View Article : Google Scholar

135 

Roosbeek S, Peelman F, Verhee A, Labeur C, Caster H, Lensink MF, Cirulli C, Grooten J, Cochet C, Vandekerckhove JL, et al: Phosphorylation by protein kinase CK2 modulates the activity of the ATP binding cassette A1 transporter. J Biol Chem. 279:37779–37788. 2004.PubMed/NCBI View Article : Google Scholar

136 

Bai X, Moraes TF and Reithmeier RAF: Structural biology of solute carrier (SLC) membrane transport proteins. Mol Membr Biol. 34:1–32. 2017.PubMed/NCBI View Article : Google Scholar

137 

Ibrahim SH, Turner MJ, Saint-Criq V, Garnett J, Haq IJ, Brodlie M, Ward C, Borgo C, Salvi M, Venerando A and Gray MA: CK2 is a key regulator of SLC4A2-mediated Cl-/HCO3-exchange in human airway epithelia. Pflugers Arch. 469:1073–1091. 2017.PubMed/NCBI View Article : Google Scholar

138 

Stolk M, Cooper E, Vilk G, Litchfield DW and Hammond JR: Subtype-specific regulation of equilibrative nucleoside transporters by protein kinase CK2. Biochem J. 386:281–289. 2005.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Montenarh M and Götz C: Protein kinase CK2 and ion channels (Review). Biomed Rep 13: 55, 2020.
APA
Montenarh, M., & Götz, C. (2020). Protein kinase CK2 and ion channels (Review). Biomedical Reports, 13, 55. https://doi.org/10.3892/br.2020.1362
MLA
Montenarh, M., Götz, C."Protein kinase CK2 and ion channels (Review)". Biomedical Reports 13.6 (2020): 55.
Chicago
Montenarh, M., Götz, C."Protein kinase CK2 and ion channels (Review)". Biomedical Reports 13, no. 6 (2020): 55. https://doi.org/10.3892/br.2020.1362
Copy and paste a formatted citation
x
Spandidos Publications style
Montenarh M and Götz C: Protein kinase CK2 and ion channels (Review). Biomed Rep 13: 55, 2020.
APA
Montenarh, M., & Götz, C. (2020). Protein kinase CK2 and ion channels (Review). Biomedical Reports, 13, 55. https://doi.org/10.3892/br.2020.1362
MLA
Montenarh, M., Götz, C."Protein kinase CK2 and ion channels (Review)". Biomedical Reports 13.6 (2020): 55.
Chicago
Montenarh, M., Götz, C."Protein kinase CK2 and ion channels (Review)". Biomedical Reports 13, no. 6 (2020): 55. https://doi.org/10.3892/br.2020.1362
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team