Open Access

TLR4/MD‑2 is a receptor for extracellular nucleophosmin 1

  • Authors:
    • Kota Nakatomi
    • Hikari Ueno
    • Yuto Ishikawa
    • Ronny Christiadi Salim
    • Yuki Mori
    • Issey Kanemoto
    • Salunya Tancharoen
    • Kiyoshi Kikuchi
    • Naoki Miura
    • Taketo Omori
    • Emiko Okuda‑Ashitaka
    • Kiyoshi Matsumura
    • Hitoshi Imaizumi
    • Yoshihiro Motomiya
    • Ikuro Maruyama
    • Ko-Ichi Kawahara
  • View Affiliations

  • Published online on: December 2, 2020     https://doi.org/10.3892/br.2020.1397
  • Article Number: 21
  • Copyright: © Nakatomi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Nucleophosmin 1 (NPM1) primarily localizes to the nucleus and is passively released into the extracellular milieu by necrotic or damaged cells, or is secreted by monocytes and macrophages. Extracellular NPM1 acts as a potent inflammatory stimulator by promoting cytokine production [e.g., tumor necrosis factor‑α (TNF‑α)], which suggests that NPM1 acts as a damage‑associated molecular pattern. However, the receptor of NPM1 is unknown. Evidence indicates that DAMPs, which include high mobility group box 1 and histones, may bind Toll‑like receptors (TLRs). In the present study, it was shown that NPM1 signaling was mediated via the TLR4 pathway, which suggests that TLR4 is an NPM1 receptor. TLR4 binds myeloid differentiation protein‑2 (MD‑2), which is essential for intracellular signaling. Furthermore, the TLR4 antagonist, LPS‑Rhodobacter sphaeroides (an MD‑2 antagonist) and TAK‑242 (a TLR4 signaling inhibitor) significantly inhibited NPM1‑induced TNF‑α production by differentiated THP‑1 cells as well as reducing ERK1/2 activation. Far‑western blot analysis revealed that NPM1 directly bound MD‑2. Thus, the results of the present study provide compelling evidence that TLR4 binds NPM1, and it is hypothesized that inhibiting NPM1 activity may serve as a novel strategy for treating TLR4‑related diseases.
View Figures
View References

Related Articles

Journal Cover

February-2021
Volume 14 Issue 2

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Nakatomi K, Ueno H, Ishikawa Y, Salim RC, Mori Y, Kanemoto I, Tancharoen S, Kikuchi K, Miura N, Omori T, Omori T, et al: TLR4/MD‑2 is a receptor for extracellular nucleophosmin 1. Biomed Rep 14: 21, 2021
APA
Nakatomi, K., Ueno, H., Ishikawa, Y., Salim, R.C., Mori, Y., Kanemoto, I. ... Kawahara, K. (2021). TLR4/MD‑2 is a receptor for extracellular nucleophosmin 1. Biomedical Reports, 14, 21. https://doi.org/10.3892/br.2020.1397
MLA
Nakatomi, K., Ueno, H., Ishikawa, Y., Salim, R. C., Mori, Y., Kanemoto, I., Tancharoen, S., Kikuchi, K., Miura, N., Omori, T., Okuda‑Ashitaka, E., Matsumura, K., Imaizumi, H., Motomiya, Y., Maruyama, I., Kawahara, K."TLR4/MD‑2 is a receptor for extracellular nucleophosmin 1". Biomedical Reports 14.2 (2021): 21.
Chicago
Nakatomi, K., Ueno, H., Ishikawa, Y., Salim, R. C., Mori, Y., Kanemoto, I., Tancharoen, S., Kikuchi, K., Miura, N., Omori, T., Okuda‑Ashitaka, E., Matsumura, K., Imaizumi, H., Motomiya, Y., Maruyama, I., Kawahara, K."TLR4/MD‑2 is a receptor for extracellular nucleophosmin 1". Biomedical Reports 14, no. 2 (2021): 21. https://doi.org/10.3892/br.2020.1397