Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
November-2021 Volume 15 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 15 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review)

  • Authors:
    • Abdelmounaim Errachid
    • Michal Nohawica
    • Marzena Wyganowska‑Swiatkowska
  • View Affiliations / Copyright

    Affiliations: Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60‑812 Poznań, Greater Poland, Poland
    Copyright: © Errachid et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 95
    |
    Published online on: September 21, 2021
       https://doi.org/10.3892/br.2021.1471
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Sjögren's syndrome (SS) is an autoimmune disorder that affects the salivary glands, leading to reduced secretory functions and oral and ocular dryness. The salivary glands are composed of acinar cells that are responsible for the secretion and production of secretory granules, which contain salivary components, such as amylase, mucins and immunoglobulins. This secretion process involves secretory vesicle trafficking, docking, priming and membrane fusion. A failure during any of the steps in exocytosis in the salivary glands results in the altered secretion of saliva. Soluble N‑ethylmaleimide‑sensitive‑factor attachment protein receptors, actin, tight junctions and aquaporin 5 all serve an important role in the trafficking regulation of secretory vesicles in the secretion of saliva via exocytosis. Alterations in the expression and distribution of these selected proteins leads to salivary gland dysfunction, including SS. Several studies have demonstrated that green tea polyphenols, most notably Epigallocatechin gallate (EGCG), possess both anti‑inflammatory and anti‑apoptotic properties in normal human cells. Molecular, cellular and animal studies have indicated that EGCG can provide protective effects against autoimmune and inflammatory reactions in salivary glands in diseases such as SS. The aim of the present article is to provide a comprehensive and up‑to‑date review on the possible therapeutic interactions between EGCG and the selected molecular mechanisms associated with SS.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Liu J and Duan Y: Saliva: A potential media for disease diagnostics and monitoring. Oral Oncol. 48:569–577. 2012.PubMed/NCBI View Article : Google Scholar

2 

Chiappin S, Antonelli G, Gatti R and De Palo EF: Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clin Chim Acta. 383:30–40. 2007.PubMed/NCBI View Article : Google Scholar

3 

Karnati R, Laurie DE and Laurie GW: Lacritin and the tear proteome as natural replacement therapy for dry eye. Exp Eye Res. 117:39–52. 2013.PubMed/NCBI View Article : Google Scholar

4 

Sitaramamma T, Shivaji S and Rao GN: Effect of storage on protein concentration of tear samples. Curr Eye Res. 17:1027–1035. 1998.PubMed/NCBI View Article : Google Scholar

5 

Wilmarth PA, Riviere MA, Rustvold DL, Lauten JD, Madden TE and David LL: Two-dimensional liquid chromatography study of the human whole saliva proteome. J Proteome Res. 3:1017–1023. 2004.PubMed/NCBI View Article : Google Scholar

6 

Humphrey SP and Williamson RT: A review of saliva: Normal composition, flow, and function. J Prosthet Dent. 85:162–169. 2001.PubMed/NCBI View Article : Google Scholar

7 

Tucker AS: Salivary gland development. Semin Cell Dev Biol. 18:237–244. 2007.PubMed/NCBI View Article : Google Scholar

8 

Br H and Mp H: Regulatory mechanisms driving salivary gland organogenesis. Curr Top Dev Biol. 115:111–130. 2015.PubMed/NCBI View Article : Google Scholar

9 

Voulgarelis M and Tzioufas AG: Pathogenetic mechanisms in the initiation and perpetuation of Sjögren's syndrome. Nat Rev Rheumatol. 6:529–537. 2010.PubMed/NCBI View Article : Google Scholar

10 

Mavragani CP and Moutsopoulos HM: The geoepidemiology of Sjögren's syndrome. Autoimmun Rev. 9:A305–A310. 2010.PubMed/NCBI View Article : Google Scholar

11 

Busamia B, Gonzalez-Moles MA, Ruiz-Avila I, Brunotto M, Gil-Montoya JA, Bravo M, Gobbi C and Finkelberg A: Cell apoptosis and proliferation in salivary glands of Sjögren's syndrome. J Oral Pathol Med. 40:721–725. 2011.PubMed/NCBI View Article : Google Scholar

12 

Pedersen AM, Dissing S, Fahrenkrug J, Hannibal J, Reibel J and Nauntofte B: Innervation pattern and Ca2+ signalling in labial salivary glands of healthy individuals and patients with primary Sjögren's syndrome (pSS). J Oral Pathol Med. 29:97–109. 2000.PubMed/NCBI View Article : Google Scholar

13 

Zoukhri D and Kublin CL: Impaired neurotransmitter release from lacrimal and salivary gland nerves of a murine model of Sjögren's syndrome. Invest Ophthalmol Vis Sci. 42:925–932. 2001.PubMed/NCBI

14 

Dawson LJ, Stanbury J, Venn N, Hasdimir B, Rogers SN and Smith PM: Antimuscarinic antibodies in primary Sjögren's syndrome reversibly inhibit the mechanism of fluid secretion by human submandibular salivary acinar cells. Arthritis Rheum. 54:1165–1173. 2006.PubMed/NCBI View Article : Google Scholar

15 

Caulfield VL, Balmer C, Dawson LJ and Smith PM: A role for nitric oxide-mediated glandular hypofunction in a non-apoptotic model for Sjogren's syndrome. Rheumatology (Oxford). 48:727–733. 2009.PubMed/NCBI View Article : Google Scholar

16 

Dawson LJ, Fox PC and Smith PM: Sjogrens syndrome-the non-apoptotic model of glandular hypofunction. Rheumatology (Oxford). 45:792–798. 2006.PubMed/NCBI View Article : Google Scholar

17 

Soyfoo MS, Vriese CD, Debaix H, Martin-Martinez MD, Mathieu C, Devuyst O, Steinfeld SD and Delporte C: Modified aquaporin 5 expression and distribution in submandibular glands from NOD mice displaying autoimmune exocrinopathy. Arthritis Rheum. 56:2566–2574. 2007.PubMed/NCBI View Article : Google Scholar

18 

Aktas O, Prozorovski T, Smorodchenko A, Savaskan NE, Lauster R, Kloetzel PM, Infante-Duarte C, Brocke S and Zipp F: Green tea epigallocatechin-3-gallate mediates T cellular NF-kappa B inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol. 173:5794–5800. 2004.PubMed/NCBI View Article : Google Scholar

19 

Gillespie K, Kodani I, Dickinson DP, Ogbureke KU, Camba AM, Wu M, Looney S, Chu TC, Qin H, Bisch F, et al: Effects of oral consumption of the green tea polyphenol EGCG in a murine model for human Sjogren's syndrome, an autoimmune disease. Life Sci. 83:581–588. 2008.PubMed/NCBI View Article : Google Scholar

20 

Dickinson D, Yu H, Ohno S, Thomas C, Derossi S, Ma YH, Yates N, Hahn E, Bisch F, Yamamoto T and Hsu S: Epigallocatechin-3-gallate prevents autoimmune-associated down- regulation of p21 in salivary gland cells through a p53-independent pathway. Inflamm Allergy Drug Targets. 13:15–24. 2014.PubMed/NCBI View Article : Google Scholar

21 

Carsons S: A review and update of Sjögren's syndrome: Manifestations, diagnosis, and treatment. Am J Manag Care. 7:S433–443. 2001.PubMed/NCBI

22 

Zhang NZ, Shi CS, Yao QP, Pan GX, Wang LL, Wen ZX, Li XC and Dong Y: Prevalence of primary Sjögren's syndrome in China. J Rheumatol. 22:659–661. 1995.PubMed/NCBI

23 

Ohno S, Yu H, Dickinson D, Chu TC, Ogbureke K, Derossi S, Yamamoto T and Hsu S: Epigallocatechin-3-gallate modulates antioxidant and DNA repair-related proteins in exocrine glands of a primary Sjogren's syndrome mouse model prior to disease onset. Autoimmunity. 45:540–546. 2012.PubMed/NCBI View Article : Google Scholar

24 

Saito K, Mori S, Date F and Ono M: Epigallocatechin gallate inhibits oxidative stress-induced DNA damage and apoptosis in MRL-Fas(lpr) mice with autoimmune sialadenitis via upregulation of heme oxygenase-1 and Bcl-2. Autoimmunity. 47:13–22. 2014.PubMed/NCBI View Article : Google Scholar

25 

Hsu S and Dickinson D: A new approach to managing oral manifestations of Sjogren's syndrome and skin manifestations of lupus. J Biochem Mol Biol. 39:229–239. 2006.PubMed/NCBI View Article : Google Scholar

26 

Hsu S, Dickinson DP, Qin H, Lapp C, Lapp D, Borke J, Walsh DS, Bollag WB, Stöppler H, Yamamoto T, et al: Inhibition of autoantigen expression by (-)-epigallocatechin-3-gallate (the major constituent of green tea) in normal human cells. J Pharmacol Exp Ther. 315:805–811. 2005.PubMed/NCBI View Article : Google Scholar

27 

Hsu SD, Dickinson DP, Qin H, Borke J, Ogbureke KU, Winger JN, Camba AM, Bollag WB, Stöppler HJ, Sharawy MM and Schuster GS: Green tea polyphenols reduce autoimmune symptoms in a murine model for human Sjogren's syndrome and protect human salivary acinar cells from TNF-alpha-induced cytotoxicity. Autoimmunity. 40:138–147. 2007.PubMed/NCBI View Article : Google Scholar

28 

Guo T, Song D, Cheng L and Zhang X: Interactions of tea catechins with intestinal microbiota and their implication for human health. Food Sci Biotechnol. 28:1617–1625. 2019.PubMed/NCBI View Article : Google Scholar

29 

Chiou YS, Wu JC, Huang Q, Shahidi F, Wang YJ, Ho CT and Pan MH: Metabolic and colonic microbiota transformation may enhance the bioactivities of dietary polyphenols. J Funct Foods. 7:3–25. 2014.

30 

Pervin M, Unno K, Takagaki A, Isemura M and Nakamura Y: Function of green tea catechins in the brain: Epigallocatechin gallate and its metabolites. Int J Mol Sci. 20(3630)2019.PubMed/NCBI View Article : Google Scholar

31 

Kim HS, Quon MJ and Kim J: New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biology. 2:187–195. 2014.PubMed/NCBI View Article : Google Scholar

32 

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al: The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 372(n71)2021.PubMed/NCBI View Article : Google Scholar

33 

Hong W: SNAREs and traffic. Biochim Biophys Acta. 1744:120–144. 2005.PubMed/NCBI View Article : Google Scholar

34 

Grote E, Hao JC, Bennett MK and Kelly RB: A targeting signal in VAMP regulating transport to synaptic vesicles. Cell. 81:581–589. 1995.PubMed/NCBI View Article : Google Scholar

35 

Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P: Transport from the ER through the Golgi Apparatus. Molecular Biology of the Cell 4th edition, 2002.

36 

Whyte JRC and Munro S: Vesicle tethering complexes in membrane traffic. J Cell Sci. 115:2627–2637. 2002.PubMed/NCBI

37 

Chen YA and Scheller RH: SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol. 2:98–106. 2001.PubMed/NCBI View Article : Google Scholar

38 

Han J, Pluhackova K and Böckmann RA: The multifaceted role of SNARE proteins in membrane fusion. Front Physiol. 8(5)2017.PubMed/NCBI View Article : Google Scholar

39 

Srivanitchapoom P, Pandey S and Hallett M: Drooling in Parkinson's Disease: A review. Parkinsonism Relat Disord. 20:1109–1118. 2014.PubMed/NCBI View Article : Google Scholar

40 

Yu GY, Zhu ZH, Mao C, Cai ZG, Zou LH, Lu L, Zhang L, Peng X, Li N and Huang Z: Microvascular autologous submandibular gland transfer in severe cases of keratoconjunctivitis sicca. Int J Oral Maxillofac Surg. 33:235–239. 2004.PubMed/NCBI View Article : Google Scholar

41 

Ewert P, Aguilera S, Alliende C, Kwon YJ, Albornoz A, Molina C, Urzúa U, Quest AF, Olea N, Pérez P, et al: Disruption of tight junction structure in salivary glands from Sjögren's syndrome patients is linked to proinflammatory cytokine exposure. Arthritis Rheum. 62:1280–1289. 2010.PubMed/NCBI View Article : Google Scholar

42 

Wong SH, Zhang T, Xu Y, Subramaniam VN, Griffiths G and Hong W: Endobrevin, a novel synaptobrevin/VAMP-like protein preferentially associated with the early endosome. Mol Biol Cell. 9:1549–1563. 1998.PubMed/NCBI View Article : Google Scholar

43 

Lang T and Jahn R: Core proteins of the secretory machinery. Handb Exp Pharmacol. 107–127. 2008.PubMed/NCBI View Article : Google Scholar

44 

Cosen-Binker LI, Binker MG, Wang CC, Hong W and Gaisano HY: VAMP8 is the v-SNARE that mediates basolateral exocytosis in a mouse model of alcoholic pancreatitis. J Clin Invest. 118:2535–2551. 2008.PubMed/NCBI View Article : Google Scholar

45 

Barrera MJ, Sánchez M, Aguilera S, Alliende C, Bahamondes V, Molina C, Quest AF, Urzúa U, Castro I, González S, et al: Aberrant localization of fusion receptors involved in regulated exocytosis in salivary glands of Sjögren's syndrome patients is linked to ectopic mucin secretion. J Autoimmun. 39:83–92. 2012.PubMed/NCBI View Article : Google Scholar

46 

Wang CC, Shi H, Guo K, Ng CP, Li J, Gan BQ, Chien Liew H, Leinonen J, Rajaniemi H, et al: VAMP8/endobrevin as a general vesicular SNARE for regulated exocytosis of the exocrine system. Mol Biol Cell. 18:1056–1063. 2007.PubMed/NCBI View Article : Google Scholar

47 

Wang CC, Ng CP, Lu L, Atlashkin V, Zhang W, Seet LF and Hong W: A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells. Dev Cell. 7:359–371. 2004.PubMed/NCBI View Article : Google Scholar

48 

Takuma T, Arakawa T and Tajima Y: Interaction of SNARE proteins in rat parotid acinar cells. Arch Oral Biol. 45:369–375. 2000.PubMed/NCBI View Article : Google Scholar

49 

Imai A, Nashida T, Yoshie S and Shimomura H: Intracellular localisation of SNARE proteins in rat parotid acinar cells: SNARE complexes on the apical plasma membrane. Arch Oral Biol. 48:597–604. 2003.PubMed/NCBI View Article : Google Scholar

50 

Stoeckelhuber M, Scherer EQ, Janssen KP, Slotta-Huspenina J, Loeffelbein DJ, Rohleder NH, Nieberler M, Hasler R and Kesting MR: The human submandibular gland: Immunohistochemical analysis of SNAREs and cytoskeletal proteins. J Histochem Cytochem. 60:110–120. 2012.PubMed/NCBI View Article : Google Scholar

51 

Goicovich E, Molina C, Pérez P, Aguilera S, Fernández J, Olea N, Alliende C, Leyton C, Romo R, Leyton L and González MJ: Enhanced degradation of proteins of the basal lamina and stroma by matrix metalloproteinases from the salivary glands of Sjögren's syndrome patients: Correlation with reduced structural integrity of acini and ducts. Arthritis Rheum. 48:2573–2584. 2003.PubMed/NCBI View Article : Google Scholar

52 

Coursey TG, Tukler Henriksson J, Barbosa FL, de Paiva CS and Pflugfelder SC: Interferon-γ-induced unfolded protein response in conjunctival goblet cells as a cause of mucin deficiency in Sjögren syndrome. Am J Pathol. 186:1547–1558. 2016.PubMed/NCBI View Article : Google Scholar

53 

Holt M, Varoqueaux F, Wiederhold K, Takamori S, Urlaub H, Fasshauer D and Jahn R: Identification of SNAP-47, a novel Qbc-SNARE with ubiquitous expression. J Biol Chem. 281:17076–17083. 2006.PubMed/NCBI View Article : Google Scholar

54 

Wang W, Hart PS, Piesco NP, Lu X, Gorry MC and Hart TC: Aquaporin expression in developing human teeth and selected orofacial tissues. Calcif Tissue Int. 72:222–227. 2003.PubMed/NCBI View Article : Google Scholar

55 

Gresz V, Kwon TH, Hurley PT, Varga G, Zelles T, Nielsen S, Case RM and Steward MC: Identification and localization of aquaporin water channels in human salivary glands. Am J Physiol Gastrointest Liver Physiol. 281:G247–G254. 2001.PubMed/NCBI View Article : Google Scholar

56 

Steinfeld S, Cogan E, King LS, Agre P, Kiss R and Delporte C: Abnormal distribution of aquaporin-5 water channel protein in salivary glands from Sjögren's syndrome patients. Lab Invest. 81:143–148. 2001.PubMed/NCBI View Article : Google Scholar

57 

Krane CM, Melvin JE, Nguyen HV, Richardson L, Towne JE, Doetschman T and Menon AG: Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J Biol Chem. 276:23413–23420. 2001.PubMed/NCBI View Article : Google Scholar

58 

Ishikawa Y, Cho G, Yuan Z, Inoue N and Nakae Y: Aquaporin-5 water channel in lipid rafts of rat parotid glands. Biochim Biophys Acta. 1758:1053–1060. 2006.PubMed/NCBI View Article : Google Scholar

59 

Ishikawa Y, Cho G, Yuan Z, Skowronski MT, Pan Y and Ishida H: Water channels and zymogen granules in salivary glands. J Pharmacol Sci. 100:495–512. 2006.PubMed/NCBI View Article : Google Scholar

60 

Ishikawa Y, Eguchi T, Skowronski MT and Ishida H: Acetylcholine acts on M3 muscarinic receptors and induces the translocation of aquaporin5 water channel via cytosolic Ca2+ elevation in rat parotid glands. Biochem Biophys Res Commun. 245:835–840. 1998.PubMed/NCBI View Article : Google Scholar

61 

Xiang B, Zhang Y, Li YM, Zhang K, Zhang YY, Wu LL and Yu GY: Effects of phenylephrine on transplanted submandibular gland. J Dent Res. 85:1106–1111. 2006.PubMed/NCBI View Article : Google Scholar

62 

Tsubota K, Hirai S, King LS, Agre P and Ishida N: Defective cellular trafficking of lacrimal gland aquaporin-5 in Sjögren's syndrome. Lancet. 357:688–689. 2001.PubMed/NCBI View Article : Google Scholar

63 

Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ and Verkman AS: Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem. 274:20071–20074. 1999.PubMed/NCBI View Article : Google Scholar

64 

Alam J, Koh JH, Kim N, Kwok SK, Park SH, Song YW, Park K and Choi Y: Detection of autoantibodies against aquaporin-5 in the sera of patients with primary Sjögren's syndrome. Immunol Res. 64:848–856. 2016.PubMed/NCBI View Article : Google Scholar

65 

Alam J, Koh JH, Kwok SK, Park SH, Park K and Choi Y: Functional Epitopes for Anti-Aquaporin 5 Antibodies in Sjögren Syndrome. J Dent Res. 96:1414–1421. 2017.PubMed/NCBI View Article : Google Scholar

66 

Xiao L, Ng TB, Feng YB, Yao T, Wong JH, Yao RM, Li L, Mo FZ, Xiao Y, Shaw PC, et al: Dendrobium candidum extract increases the expression of aquaporin-5 in labial glands from patients with Sjögren's syndrome. Phytomedicine. 18:194–198. 2011.PubMed/NCBI View Article : Google Scholar

67 

Lin X, Shaw PC, Sze SCW, Tong Y and Zhang Y: Dendrobium officinale polysaccharides ameliorate the abnormality of aquaporin 5, pro-inflammatory cytokines and inhibit apoptosis in the experimental Sjögren's syndrome mice. Int Immunopharmacol. 11:2025–2032. 2011.PubMed/NCBI View Article : Google Scholar

68 

Sart S, Errachid A, Schneider YJ and Agathos SN: Modulation of mesenchymal stem cell actin organization on conventional microcarriers for proliferation and differentiation in stirred bioreactors. J Tissue Eng Regen Med. 7:537–551. 2013.PubMed/NCBI View Article : Google Scholar

69 

Nashida T, Yoshie S, Imai A and Shimomura H: Presence of cytoskeleton proteins in parotid glands and their roles during secretion. Arch Oral Biol. 49:975–982. 2004.PubMed/NCBI View Article : Google Scholar

70 

Segawa A, Riva A, Loffredo F, Congiu T, Yamashina S and Testa Riva F: Cytoskeletal regulation of human salivary secretion studied by high resolution electron microscopy and confocal laser microscopy. Eur J Morphol. 36 (Suppl):S41–S45. 1998.PubMed/NCBI

71 

Perrin D, Möller K, Hanke K and Söling HD: cAMP and Ca(2+)-mediated secretion in parotid acinar cells is associated with reversible changes in the organization of the cytoskeleton. J Cell Biol. 116:127–134. 1992.PubMed/NCBI View Article : Google Scholar

72 

Valentijn KM, Gumkowski FD and Jamieson JD: The subapical actin cytoskeleton regulates secretion and membrane retrieval in pancreatic acinar cells. J Cell Sci. 112:81–96. 1999.PubMed/NCBI

73 

Muallem S, Kwiatkowska K, Xu X and Yin HL: Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol. 128:589–598. 1995.PubMed/NCBI View Article : Google Scholar

74 

Busch L, Sterin-Borda L and Borda E: Differences in the regulatory mechanism of amylase release by rat parotid and submandibular glands. Arch Oral Biol. 47:717–722. 2002.PubMed/NCBI View Article : Google Scholar

75 

Birkenfeld J, Kartmann B, Betz H and Roth D: Cofilin activation during Ca(2+)-triggered secretion from adrenal chromaffin cells. Biochem Biophys Res Commun. 286:493–498. 2001.PubMed/NCBI View Article : Google Scholar

76 

Cui L, Elzakra N, Xu S, Xiao GG, Yang Y and Hu S: Investigation of three potential autoantibodies in Sjogren's syndrome and associated MALT lymphoma. Oncotarget. 8:30039–30049. 2017.PubMed/NCBI View Article : Google Scholar

77 

Zhang Y, Hussain M, Yang X, Chen P, Yang C, Xun Y, Tian Y and Du H: Identification of moesin as a novel autoantigen in patients with Sjögren's syndrome. Protein Pept Lett. 25:350–355. 2018.PubMed/NCBI View Article : Google Scholar

78 

Mitic LL, Van Itallie CM and Anderson JM: Molecular physiology and pathophysiology of tight junctions I. Tight junction structure and function: Lessons from mutant animals and proteins. Am J Physiol Gastrointest Liver Physiol. 279:G250–G254. 2000.PubMed/NCBI View Article : Google Scholar

79 

Beguin P, Errachid A, Larondelle Y and Schneider YJ: Effect of polyunsaturated fatty acids on tight junctions in a model of the human intestinal epithelium under normal and inflammatory conditions. Food Funct. 4:923–931. 2013.PubMed/NCBI View Article : Google Scholar

80 

Flynn AN, Itani OA, Moninger TO and Welsh MJ: Acute regulation of tight junction ion selectivity in human airway epithelia. Proc Natl Acad Sci USA. 106:3591–3596. 2009.PubMed/NCBI View Article : Google Scholar

81 

Fox RI, Kang HI, Ando D, Abrams J and Pisa E: Cytokine mRNA expression in salivary gland biopsies of Sjögren's syndrome. J Immunol. 152:5532–5539. 1994.PubMed/NCBI

82 

Fox PC, Grisius MM, Bermudez DK and Sun D: Cytokine mRNA expression in labial salivary glands and cytokine secretion in parotid saliva in Sjögren's syndrome. Adv Exp Med Biol. 438:909–915. 1998.PubMed/NCBI View Article : Google Scholar

83 

Baker OJ, Camden JM, Redman RS, Jones JE, Seye CI, Erb L and Weisman GA: Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma alter tight junction structure and function in the rat parotid gland Par-C10 cell line. Am J Physiol Cell Physiol. 295:C1191–C1201. 2008.PubMed/NCBI View Article : Google Scholar

84 

Youakim A and Ahdieh M: Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am J Physiol. 276:G1279–G1288. 1999.PubMed/NCBI View Article : Google Scholar

85 

Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA and Said HM: TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol. 286:G367–376. 2004.PubMed/NCBI View Article : Google Scholar

86 

Mankertz J, Tavalali S, Schmitz H, Mankertz A, Riecken EO, Fromm M and Schulzke JD: Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J Cell Sci. 113:2085–2090. 2000.PubMed/NCBI

87 

Utech M, Ivanov AI, Samarin SN, Bruewer M, Turner JR, Mrsny RJ, Parkos CA and Nusrat A: Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: Myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell. 16:5040–5052. 2005.PubMed/NCBI View Article : Google Scholar

88 

Manoussakis MN and Kapsogeorgou EK: The role of epithelial cells in the pathogenesis of Sjögren's syndrome. Clin Rev Allergy Immunol. 32:225–230. 2007.PubMed/NCBI View Article : Google Scholar

89 

Kawedia JD, Nieman ML, Boivin GP, Melvin JE, Kikuchi K, Hand AR, Lorenz JN and Menon AG: Interaction between transcellular and paracellular water transport pathways through Aquaporin 5 and the tight junction complex. Proc Natl Acad Sci USA. 104:3621–3626. 2007.PubMed/NCBI View Article : Google Scholar

90 

Ichiyama T, Nakatani E, Tatsumi K, Hideshima K, Urano T, Nariai Y and Sekine J: Expression of aquaporin 3 and 5 as a potential marker for distinguishing dry mouth from Sjögren's syndrome. J Oral Sci. 60:212–220. 2018.PubMed/NCBI View Article : Google Scholar

91 

Chow HH, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks CA, Dorr RT, Hara Y and Alberts DS: Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res. 9:3312–3319. 2003.PubMed/NCBI

92 

Fürst R and Zündorf I: Plant-derived anti-inflammatory compounds: Hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators Inflamm. 2014(146832)2014.PubMed/NCBI View Article : Google Scholar

93 

Wyganowska-Świątkowska M, Matthews-Kozanecka M, Matthews-Brzozowska T, Skrzypczak-Jankun E and Jankun J: Can EGCG alleviate symptoms of down syndrome by altering proteolytic activity? Int J Mol Sci. 19(248)2018.PubMed/NCBI View Article : Google Scholar

94 

Yan X, Li Y, Yu H, Wang W, Wu C, Yang Y, Hu Y, Shi X and Li J: Epigallocatechin-3-gallate inhibits H2O2-induced apoptosis in mouse vascular smooth muscle cells via 67kD laminin receptor. Sci Rep. 7(7774)2017.PubMed/NCBI View Article : Google Scholar

95 

Wyganowska-Swiatkowska M, Nohawica M, Grocholewicz K and Nowak G: Influence of herbal medicines on HMGB1 release, SARS-CoV-2 viral attachment, acute respiratory failure, and sepsis. A literature review. Int J Mol Sci. 21(4639)2020.PubMed/NCBI View Article : Google Scholar

96 

Soldatenkov VA and Smulson M: Poly(ADP-ribose) polymerase in DNA damage-response pathway: Implications for radiation oncology. Int J Cancer. 90:59–67. 2000.PubMed/NCBI View Article : Google Scholar

97 

Zhang Y, Duan W, Owusu L, Wu D and Xin Y: Epigallocatechin-3-gallate induces the apoptosis of hepatocellular carcinoma LM6 cells but not non-cancerous liver cells. Int J Mol Med. 35:117–124. 2015.PubMed/NCBI View Article : Google Scholar

98 

Harakeh S, Abu-El-Ardat K, Diab-Assaf M, Niedzwiecki A, El-Sabban M and Rath M: Epigallocatechin-3-gallate induces apoptosis and cell cycle arrest in HTLV-1-positive and -negative leukemia cells. Med Oncol. 25:30–39. 2008.PubMed/NCBI View Article : Google Scholar

99 

Lancaster OM and Baum B: Shaping up to divide: Coordinating actin and microtubule cytoskeletal remodelling during mitosis. Semin Cell Dev Biol. 34:109–115. 2014.PubMed/NCBI View Article : Google Scholar

100 

Desouza M, Gunning PW and Stehn JR: The actin cytoskeleton as a sensor and mediator of apoptosis. Bioarchitecture. 2:75–87. 2012.PubMed/NCBI View Article : Google Scholar

101 

Mayr C, Wagner A, Neureiter D, Pichler M, Jakab M, Illig R, Berr F and Kiesslich T: The green tea catechin epigallocatechin gallate induces cell cycle arrest and shows potential synergism with cisplatin in biliary tract cancer cells. BMC Complement Altern Med. 15(194)2015.PubMed/NCBI View Article : Google Scholar

102 

Yang CS, Lee MJ and Chen L: Human salivary tea catechin levels and catechin esterase activities: Implication in human cancer prevention studies. Cancer Epidemiol Biomarkers Prev. 8:83–89. 1999.PubMed/NCBI

103 

Wheeler DS, Catravas JD, Odoms K, Denenberg A, Malhotra V and Wong HR: Epigallocatechin-3-gallate, a green tea-derived polyphenol, inhibits IL-1 beta-dependent proinflammatory signal transduction in cultured respiratory epithelial cells. J Nutr. 134:1039–1044. 2004.PubMed/NCBI View Article : Google Scholar

104 

Ahn SC, Kim GY, Kim JH, Baik SW, Han MK, Lee HJ, Moon DO, Lee CM, Kang JH, Kim BH, et al: Epigallocatechin-3-gallate, constituent of green tea, suppresses the LPS-induced phenotypic and functional maturation of murine dendritic cells through inhibition of mitogen-activated protein kinases and NF-kappaB. Biochem Biophys Res Commun. 313:148–155. 2004.PubMed/NCBI View Article : Google Scholar

105 

Saito K, Mori S, Date F and Hong G: Epigallocatechin gallate stimulates the neuroreactive salivary secretomotor system in autoimmune sialadenitis of MRL-Fas(lpr) mice via activation of cAMP-dependent protein kinase A and inactivation of nuclear factor κB. Autoimmunity. 48:379–388. 2015.PubMed/NCBI View Article : Google Scholar

106 

Schieven GL: The biology of p38 kinase: A central role in inflammation. Curr Top Med Chem. 5:921–928. 2005.PubMed/NCBI View Article : Google Scholar

107 

Stillman A, Connors M, Miller M, Qazzaz H and Dryden G: P-145 oral administration of EGCG, a green tea polyphenol, both suppresses and rescues mice from DSS-induced colitis. Inflamm Bowel Dis. 22:S54. 2016.

108 

Sakai M, Ohnishi K, Masuda M, Ohminami H, Yamanaka-Okumura H, Hara T and Taketani Y: Isorhamnetin, a 3'-methoxylated flavonol, enhances the lysosomal proteolysis in J774.1 murine macrophages in a TFEB-independent manner. Biosci Biotechnol Biochem. 84:1221–1231. 2020.PubMed/NCBI View Article : Google Scholar

109 

Holczer M, Besze B, Zámbó V, Csala M, Bánhegyi G and Kapuy O: Epigallocatechin-3-Gallate (EGCG) promotes autophagy-dependent survival via influencing the balance of mTOR-AMPK pathways upon endoplasmic reticulum stress. Oxid Med Cell Longev. 2018(e6721530)2018.PubMed/NCBI View Article : Google Scholar

110 

Zhang S, Cao M and Fang F: The role of Epigallocatechin-3-Gallate in autophagy and endoplasmic reticulum stress (ERS)-induced apoptosis of human diseases. Med Sci Monit. 26(e924558)2020.PubMed/NCBI View Article : Google Scholar

111 

Zhang L, Wang H, Xu J, Zhu J and Ding K: Inhibition of cathepsin S induces autophagy and apoptosis in human glioblastoma cell lines through ROS-mediated PI3K/AKT/mTOR/p70S6K and JNK signaling pathways. Toxicol Lett. 228:248–259. 2014.PubMed/NCBI View Article : Google Scholar

112 

Hamm-Alvarez SF, Janga SR, Edman MC, Madrigal S, Shah M, Frousiakis SE, Renduchintala K, Zhu J, Bricel S, Silka K, et al: Tear cathepsin S as a candidate biomarker for Sjögren's syndrome. Arthritis Rheumatol. 66:1872–1881. 2014.PubMed/NCBI View Article : Google Scholar

113 

Zhang B, Wang B, Cao S and Wang Y: Epigallocatechin-3-Gallate (EGCG) attenuates traumatic brain injury by inhibition of edema formation and oxidative stress. Korean J Physiol Pharmacol. 19:491–497. 2015.PubMed/NCBI View Article : Google Scholar

114 

Ge R, Zhu Y, Diao Y, Tao L, Yuan W and Xiong X: Anti-edema effect of epigallocatechin gallate on spinal cord injury in rats. Brain Res. 1527:40–46. 2013.PubMed/NCBI View Article : Google Scholar

115 

Kim JE, Park H, Jeong MJ and Kang TC: Epigallocatechin-3-Gallate and PEDF 335 peptide, 67LR activators, attenuate vasogenic edema, and astroglial degeneration following status epilepticus. Antioxidants (Basel). 9(854)2020.PubMed/NCBI View Article : Google Scholar

116 

Nakamura Y, Tsuchiya T, Hara-Chikuma M, Yasui M and Fukui Y: Identification of compounds in red wine that effectively upregulate aquaporin-3 as a potential mechanism of enhancement of skin moisturizing. Biochem Biophys Rep. 24(100864)2020.PubMed/NCBI View Article : Google Scholar

117 

Wang X, Yang L, Wang J, Zhang Y, Dong R, Wu X, Yang CS, Zhang Z and Zhang J: A mouse model of subacute liver failure with ascites induced by step-wise increased doses of (-)-epigallocatechin-3-gallate. Sci Rep. 9(18102)2019.PubMed/NCBI View Article : Google Scholar

118 

Yan C, Yang J, Shen L and Chen X: Inhibitory effect of Epigallocatechin gallate on ovarian cancer cell proliferation associated with aquaporin 5 expression. Arch Gynecol Obstet. 285:459–467. 2012.PubMed/NCBI View Article : Google Scholar

119 

Tepedelen BE, Soya E and Korkmaz M: Epigallocatechin-3-gallate reduces the proliferation of benign prostatic hyperplasia cells via regulation of focal adhesions. Life Sci. 191:74–81. 2017.PubMed/NCBI View Article : Google Scholar

120 

Fong-Ngern K, Vinaiphat A and Thongboonkerd V: Microvillar injury in renal tubular epithelial cells induced by calcium oxalate crystal and the protective role of epigallocatechin-3-gallate. FASEB J. 31:120–131. 2017.PubMed/NCBI View Article : Google Scholar

121 

Magro F, Fraga S and Soares-da-Silva P: Interferon-gamma-induced STAT1-mediated membrane retention of NHE1 and associated proteins ezrin, radixin and moesin in HT-29 cells. Biochem Pharmacol. 70:1312–1319. 2005.PubMed/NCBI View Article : Google Scholar

122 

Meng M, Li YQ, Yan MX, Kou Y and Ren HB: Effects of epigallocatechin gallate on diethyldithiocarbamate-induced pancreatic fibrosis in rats. Biol Pharm Bull. 30:1091–1096. 2007.PubMed/NCBI View Article : Google Scholar

123 

Higashi N, Kohjima M, Fukushima M, Ohta S, Kotoh K, Enjoji M, Kobayashi N and Nakamuta M: Epigallocatechin-3-gallate, a green-tea polyphenol, suppresses Rho signaling in TWNT-4 human hepatic stellate cells. J Lab Clin Med. 145:316–322. 2005.PubMed/NCBI View Article : Google Scholar

124 

Asaumi H, Watanabe S, Taguchi M, Tashiro M, Nagashio Y, Nomiyama Y, Nakamura H and Otsuki M: Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits ethanol-induced activation of pancreatic stellate cells. Eur J Clin Invest. 36:113–122. 2006.PubMed/NCBI View Article : Google Scholar

125 

Cano A, Ettcheto M, Chang JH, Barroso E, Espina M, Kühne BA, Barenys M, Auladell C, Folch J, Souto EB, et al: Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model. J Control Release. 301:62–75. 2019.PubMed/NCBI View Article : Google Scholar

126 

Qiu J, Kitamura Y, Miyata Y, Tamaru S, Tanaka K, Tanaka T and Matsui T: Transepithelial transport of theasinensins through Caco-2 cell monolayers and their absorption in Sprague-Dawley rats after oral administration. J Agric Food Chem. 60:8036–8043. 2012.PubMed/NCBI View Article : Google Scholar

127 

Lagha AB and Grenier D: Tea polyphenols protect gingival keratinocytes against TNF-α-induced tight junction barrier dysfunction and attenuate the inflammatory response of monocytes/macrophages. Cytokine. 115:64–75. 2019.PubMed/NCBI View Article : Google Scholar

128 

Li J, Ye L, Wang X, Liu J, Wang Y, Zhou Y and Ho W: (-)-Epigallocatechin gallate inhibits endotoxin-induced expression of inflammatory cytokines in human cerebral microvascular endothelial cells. J Neuroinflammation. 9(161)2012.PubMed/NCBI View Article : Google Scholar

129 

Lagha AB, Groeger S, Meyle J and Grenier D: Green tea polyphenols enhance gingival keratinocyte integrity and protect against invasion by Porphyromonas gingivalis. Pathog Dis. 76:2018.PubMed/NCBI View Article : Google Scholar

130 

Watson JL, Ansari S, Cameron H, Wang A, Akhtar M and McKay DM: Green tea polyphenol (-)-epigallocatechin gallate blocks epithelial barrier dysfunction provoked by IFN-gamma but not by IL-4. Am J Physiol Gastrointest Liver Physiol. 287:G954–961. 2004.PubMed/NCBI View Article : Google Scholar

131 

Suzuki T and Hara H: Role of flavonoids in intestinal tight junction regulation. J Nutr Biochem. 22:401–408. 2011.PubMed/NCBI View Article : Google Scholar

132 

Amerongen AV, Bolscher JG and Veerman EC: Salivary mucins: Protective functions in relation to their diversity. Glycobiology. 5:733–740. 1995.PubMed/NCBI View Article : Google Scholar

133 

Alliende C, Kwon YJ, Brito M, Molina C, Aguilera S, Pérez P, Leyton L, Quest AF, Mandel U, Veerman E, et al: Reduced sulfation of muc5b is linked to xerostomia in patients with Sjögren syndrome. Ann Rheum Dis. 67:1480–1487. 2008.PubMed/NCBI View Article : Google Scholar

134 

Xu H, Shan XF, Cong X, Yang NY, Wu LL, Yu GY, Zhang Y and Cai ZG: Pre- and post-synaptic effects of botulinum toxin A on submandibular glands. J Dent Res. 94:1454–1462. 2015.PubMed/NCBI View Article : Google Scholar

135 

Besserer A, Burnotte E, Bienert GP, Chevalier AS, Errachid A, Grefen C, Blatt MR and Chaumont F: Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121. Plant Cell. 24:3463–3481. 2012.PubMed/NCBI View Article : Google Scholar

136 

Noda Y, Horikawa S, Kanda E, Yamashita M, Meng H, Eto K, Li Y, Kuwahara M, Hirai K, Pack C, et al: Reciprocal interaction with G-actin and tropomyosin is essential for aquaporin-2 trafficking. J Cell Biol. 182:587–601. 2008.PubMed/NCBI View Article : Google Scholar

137 

Beroukas D, Hiscock J, Jonsson R, Waterman SA and Gordon TP: Subcellular distribution of aquaporin 5 in salivary glands in primary Sjögren's syndrome. Lancet. 358:1875–1876. 2001.PubMed/NCBI View Article : Google Scholar

138 

Nashida T, Yoshie S, Haga-Tsujimura M, Imai A and Shimomura H: Atrophy of myoepithelial cells in parotid glands of diabetic mice; detection using skeletal muscle actin, a novel marker. FEBS Open Bio. 3:130–134. 2013.PubMed/NCBI View Article : Google Scholar

139 

Mei M, Xiang RL, Cong X, Zhang Y, Li J, Yi X, Park K, Han JY, Wu LL and Yu GY: Claudin-3 is required for modulation of paracellular permeability by TNF-α through ERK1/2/slug signaling axis in submandibular gland. Cell Signal. 27:1915–1927. 2015.PubMed/NCBI View Article : Google Scholar

140 

Cong X, Zhang XM, Zhang Y, Wei T, He QH, Zhang LW, Hua H, Lee SW, Park K, Yu GY and Wu LL: Disruption of endothelial barrier function is linked with hyposecretion and lymphocytic infiltration in salivary glands of Sjögren's syndrome. Biochim Biophys Acta Mol Basis Dis. 1864:3154–3163. 2018.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Errachid A, Nohawica M and Wyganowska‑Swiatkowska M: A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review). Biomed Rep 15: 95, 2021.
APA
Errachid, A., Nohawica, M., & Wyganowska‑Swiatkowska, M. (2021). A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review). Biomedical Reports, 15, 95. https://doi.org/10.3892/br.2021.1471
MLA
Errachid, A., Nohawica, M., Wyganowska‑Swiatkowska, M."A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review)". Biomedical Reports 15.5 (2021): 95.
Chicago
Errachid, A., Nohawica, M., Wyganowska‑Swiatkowska, M."A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review)". Biomedical Reports 15, no. 5 (2021): 95. https://doi.org/10.3892/br.2021.1471
Copy and paste a formatted citation
x
Spandidos Publications style
Errachid A, Nohawica M and Wyganowska‑Swiatkowska M: A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review). Biomed Rep 15: 95, 2021.
APA
Errachid, A., Nohawica, M., & Wyganowska‑Swiatkowska, M. (2021). A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review). Biomedical Reports, 15, 95. https://doi.org/10.3892/br.2021.1471
MLA
Errachid, A., Nohawica, M., Wyganowska‑Swiatkowska, M."A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review)". Biomedical Reports 15.5 (2021): 95.
Chicago
Errachid, A., Nohawica, M., Wyganowska‑Swiatkowska, M."A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review)". Biomedical Reports 15, no. 5 (2021): 95. https://doi.org/10.3892/br.2021.1471
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team