|
1
|
Stogios PJ and Savchenko A: Molecular
mechanisms of vancomycin resistance. Protein Sci. 29:654–669.
2020.PubMed/NCBI View
Article : Google Scholar
|
|
2
|
Barna JC and Williams DH: The structure
and mode of action of glycopeptide antibiotics of the vancomycin
group. Annu Rev Microbiol. 38:339–357. 1984.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Griffith RS: Vancomycin use - an
historical review. J Antimicrob Chemother. 14 (Suppl D):1–5.
1984.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Mühlberg E, Umstätter F, Kleist C, Domhan
C, Mier W and Uhl P: Renaissance of vancomycin: Approaches for
breaking antibiotic resistance in multidrug-resistant bacteria. Can
J Microbiol. 66:11–16. 2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Reynolds PE: Structure, biochemistry and
mechanism of action of glycopeptide antibiotics. Eur J Clin
Microbiol Infect Dis. 8:943–950. 1989.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Morrison D, Woodford N and Cookson B:
Enterococci as emerging pathogens of humans. J Appl Microbiol. 83
(Suppl 1):89S–99S. 1997.PubMed/NCBI
|
|
7
|
Arthur M, Molinas C, Depardieu F and
Courvalin P: Characterization of Tn1546, a Tn3-related transposon
conferring glycopeptide resistance by synthesis of depsipeptide
peptidoglycan precursors in Enterococcus faecium BM4147. J
Bacteriol. 175:117–127. 1993.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Brisson-Noël A, Dutka-Malen S, Molinas C,
Leclercq R and Courvalin P: Cloning and heterospecific expression
of the resistance determinant vanA encoding high-level resistance
to glycopeptides in Enterococcus faecium BM4147. Antimicrob
Agents Chemother. 34:924–927. 1990.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Noble WC, Virani Z and Cree RGA:
Co-transfer of vancomycin and other resistance genes from
Enterococcus faecalis NCTC 12201 to Staphylococcus
aureus. FEMS Microbiol Lett. 72:195–198. 1992.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Woodford N: Epidemiology of the genetic
elements responsible for acquired glycopeptide resistance in
enterococci. Microb Drug Resist. 7:229–236. 2001.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Bugg TDH, Wright GD, Dutka-Malen S, Arthur
M, Courvalin P and Walsh CT: Molecular basis for vancomycin
resistance in Enterococcus faecium BM4147: Biosynthesis of a
depsipeptide peptidoglycan precursor by vancomycin resistance
proteins VanH and VanA. Biochemistry. 30:10408–10415.
1991.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Pootoolal J, Neu J and Wright GD:
Glycopeptide antibiotic resistance. Annu Rev Pharmacol Toxicol.
42:381–408. 2002.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Bugg TD, Dutka-Malen S, Arthur M,
Courvalin P and Walsh CT: Identification of vancomycin resistance
protein VanA as a D-alanine:D-alanine ligase of altered substrate
specificity. Biochemistry. 30:2017–2021. 1991.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Arthur M, Molinas C, Dutka-Malen S and
Courvalin P: Structural relationship between the vancomycin
resistance protein VanH and 2-hydroxycarboxylic acid
dehydrogenases. Gene. 103:133–134. 1991.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Reynolds PE, Depardieu F, Dutka-Malen S,
Arthur M and Courvalin P: Glycopeptide resistance mediated by
enterococcal transposon Tn1546 requires production of VanX for
hydrolysis of D-alanyl-D-alanine. Mol Microbiol. 13:1065–1070.
1994.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Wu Z, Wright GD and Walsh CT:
Overexpression, purification, and characterization of VanX, a D-,
D-dipeptidase which is essential for vancomycin resistance in
Enterococcus faecium BM4147. Biochemistry. 34:2455–2463.
1995.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Arthur M and Quintiliani R Jr: Regulation
of VanA- and VanB-type glycopeptide resistance in enterococci.
Antimicrob Agents Chemother. 45:375–381. 2001.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Arthur M, Depardieu F, Gerbaud G, Galimand
M, Leclercq R and Courvalin P: The VanS sensor negatively controls
VanR-mediated transcriptional activation of glycopeptide resistance
genes of Tn1546 and related elements in the absence of induction. J
Bacteriol. 179:97–106. 1997.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Arthur M, Depardieu F, Molinas C, Reynolds
P and Courvalin P: The vanZ gene of Tn1546 from Enterococcus
faecium BM4147 confers resistance to teicoplanin. Gene.
154:87–92. 1995.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Arthur M, Molinas C and Courvalin P:
Sequence of the vanY gene required for production of a
vancomycin-inducible D,D-carboxypeptidase in Enterococcus
faecium BM4147. Gene. 120:111–114. 1992.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Evers S, Sahm DF and Courvalin P: The VanB
gene of Enterococcus faecalis V583 is structurally related
to genes encoding D-Ala-D-Ala ligases and glycopeptide resistance
proteins VanA and VanC. Gene. 124:143–144. 1993.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Hayden MK, Picken RN and Sahm DF:
Heterogeneous expression of glycopeptide resistance in enterococci
associated with transfer of vanB. Antimicrob Agents Chemother.
41:872–874. 1997.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Poyart C, Pierre C, Quesne G, Pron B,
Berche P and Trieu-Cuot P: Emergence of vancomycin resistance in
the genus Streptococcus: Characterization of a vanB
transferable determinant in Streptococcus bovis. Antimicrob
Agents Chemother. 41:24–29. 1997.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Baptista M, Depardieu F, Courvalin P and
Arthur M: Specificity of induction of glycopeptide resistance genes
in Enterococcus faecalis. Antimicrob Agents Chemother.
40:2291–2295. 1996.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Billot-Klein D, Gutmann L, Sablé S,
Guittet E and van Heijenoort J: Modification of peptidoglycan
precursors is a common feature of the low-level
vancomycin-resistant VANB-type Enterococcus D366 and of the
naturally glycopeptide-resistant species Lactobacillus
casei, Pediococcus pentosaceus, Leuconostoc
mesenteroides, and Enterococcus gallinarum. J Bacteriol.
176:2398–2405. 1994.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Boyle-Valva S, Berke SK, Lee JC and Daum
RS: Reversion of the glycopeptide resistance phenotype in
Staphylococcus aureus clinical isolates. Antimicob Agents
Chemother. 44:272–277. 2000.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Cercenado E, García-Leoni ME, Díaz MD,
Sánchez-Carrillo C, Catalán P, De Quirós JC and Bouza E: Emergence
of teicoplanin-resistant coagulase-negative staphylococci. J Clin
Microbiol. 34:1765–1768. 1996.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Clark NC, Teixeira LM, Facklam RR and
Tenover FC: Detection and differentiation of vanC-1, vanC-2, and
vanC-3 glycopeptide resistance genes in enterococci. J Clin
Microbiol. 36:2294–2297. 1998.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Cui L, Ma X, Sato K, Okuma K, Tenover FC,
Mamizuka EM, Gemmell CG, Kim MN, Ploy MC, El-Solh N, et al: Cell
wall thickening is a common feature of vancomycin resistance in
Staphylococcus aureus. J Clin Microbiol. 41:5–14.
2003.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Dahl KH, Simonsen GS, Olsvik O and
Sundsfjord A: Heterogeneity in the vanB gene cluster of genomically
diverse clinical strains of vancomycin-resistant enterococci.
Antimicrob Agents Chemother. 43:1105–1110. 1999.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Dever LL, Smith SM, Handwerger S and Eng
RH: Vancomycin-dependent Enterococcus faecium isolated from
stool following oral vancomycin therapy. J Clin Microbiol.
33:2770–2773. 1995.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Dunne WM Jr, Qureshi H, Pervez H and
Nafziger DA: Staphylococcus epidermidis with intermediate
resistance to vancomycin: Elusive phenotype or laboratory artifact?
Clin Infect Dis. 33:135–137. 2001.PubMed/NCBI View
Article : Google Scholar
|
|
33
|
Dutka-Malen S, Blaimont B, Wauters G and
Courvalin P: Emergence of high-level resistance to glycopeptides in
Enterococcus gallinarum and Enterococcus
casseliflavus. Antimicrob Agents Chemother. 38:1675–1677.
1994.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Dutka-Malen S, Leclercq R, Coutant V,
Duval J and Courvalin P: Phenotypic and genotypic heterogeneity of
glycopeptide resistance determinants in gram-positive bacteria.
Antimicrob Agents Chemother. 34:1875–1879. 1990.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Eliopoulos GM: Vancomycin-resistant
enterococci. Mechanism and clinical relevance. Infect Dis Clin
North Am. 11:851–865. 1997.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Fahmy K and El-Hendi Y: Emergence of
glycopeptide non-susceptible coagulase negative staphylococci among
renal failure patients undergoing peritoneal dialysis. Egypt J Med
Microbiol. 11:349–356. 2002.
|
|
37
|
Fines M, Perichon B, Reynolds P, Sahm DF
and Courvalin P: VanE, a new type of acquired glycopeptide
resistance in Enterococcus faecalis BM4405. Antimicrob
Agents Chemother. 43:2161–2164. 1999.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Fridkin SK: Vancomycin-intermediate and
-resistant Staphylococcus aureus: What the infectious
disease specialist needs to know. Clin Infect Dis. 32:108–115.
2001.PubMed/NCBI View
Article : Google Scholar
|
|
39
|
Geisel R, Schmitz FJ, Fluit AC and
Labischinski H: Emergence, mechanism, and clinical implications of
reduced glycopeptide susceptibility in Staphylococcus
aureus. Eur J Clin Microbiol Infect Dis. 20:685–697.
2001.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Hiramatsu K: Vancomycin-resistant
Staphylococcus aureus: A new model of antibiotic resistance.
Lancet Infect Dis. 1:147–155. 2001.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Asadpour L and Ghazanfari N: Detection of
vancomycin nonsusceptible strains in clinical isolates of
Staphylococcus aureus in northern Iran. Int Microbiol.
22:411–417. 2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Wu Q, Sabokroo N, Wang Y, Hashemian M,
Karamollahi S and Kouhsari E: Systematic review and meta-analysis
of the epidemiology of vancomycin-resistance Staphylococcus
aureus isolates. Antimicrob Resist Infect Control.
10(101)2021.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Murray BE: Vancomycin-resistant
enterococcal infections. N Engl J Med. 342:710–721. 2000.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Nicas TI, Cole CT, Preston DA, Schabel AA
and Nagarajan R: Activity of glycopeptides against
vancomycin-resistant gram-positive bacteria. Antimicrob Agents
Chemother. 33:1477–1481. 1989.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Ostrowsky BE, Clark NC, Thauvin-Eliopoulos
C, Venkataraman L, Samore MH, Tenover FC, Eliopoulos GM, Moellering
RC Jr and Gold HS: A cluster of VanD vancomycin-resistant
Enterococcus faecium: Molecular characterization and
clinical epidemiology. J Infect Dis. 180:1177–1185. 1999.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Perichon B, Reynolds P and Courvalin P:
VanD-type glycopeptide-resistant Enterococcus faecium
BM4339. Antimicrob Agents Chemother. 41:2016–2018. 1997.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Rajashekaraiah KR, Rice T, Rao VS, Marsh
D, Ramakrishna B and Kallick CA: Clinical significance of tolerant
strains of Staphylococcus aureus in patients with
endocarditis. Ann Intern Med. 93:796–801. 1980.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Reynolds PE, Snaith HA, Maguire AJ,
Dutka-Malen S and Courvalin P: Analysis of peptidoglycan precursors
in vancomycin-resistant Enterococcus gallinarum BM4174.
Biochem J. 301:5–8. 1994.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Rodriguez-Cerrato V, McCoig CC, Saavedra
J, Barton T, Michelow IC, Hardy RD, Bowlware K, Iglehart J, Katz K
and McCracken GH Jr: Garenoxacin (BMS-284756) and moxifloxacin in
experimental meningitis caused by vancomycin-tolerant pneumococci.
Antimicrob Agents Chemother. 47:211–215. 2003.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Rybak MJ and Akins RL: Emergence of
methicillin-resistant Staphylococcus aureus with
intermediate glycopeptide resistance: Clinical significance and
treatment options. Drugs. 61:1–7. 2001.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Shariati A, Dadashi M, Moghadam MT, van
Belkum A, Yaslianifard S and Dar ban Sarokhalil DJ: Global
prevalence and distribution of vancomycin resistant, vancomycin
intermediate and heterogeneously vancomycin intermediate
Staphylococcus aureus clinical isolates: a systematic review
and meta analysis. Sci Rep. 10:1–16. 2020.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Sieradzki K, Villari P and Tomasz A:
Decreased susceptibilities to teicoplanin and vancomycin among
coagulase-negative methicillin-resistant clinical isolates of
staphylococci. Antimicrob Agents Chemother. 42:100–107.
1998.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Cong Y, Yang S and Rao X: Vancomycin
resistant Staphylococcus aureus infections: A review of case
updating and clinical features. J Adv Res. 21:169–176.
2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Walsh TR and Howe RA: The prevalence and
mechanisms of vancomycin resistance in Staphylococcus
aureus. Annu Rev Microbiol. 56:657–675. 2002.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Wong SSY, Ho PL, Woo PCY and Yuen KY:
Bacteremia caused by staphylococci with inducible vancomycin
heteroresistance. Clin Infect Dis. 29:760–767. 1999.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Tacconelli E, Tumbarello M, Donati KG,
Bettio M, Spanu T, Leone F, Sechi LA, Zanetti S, Fadda G and Cauda
R: Glycopeptide resistance among coagulase-negative staphylococci
that cause bacteremia: Epidemiological and clinical findings from a
case-control study. Clin Infect Dis. 33:1628–1635. 2001.PubMed/NCBI View Article : Google Scholar
|