|
1
|
Bernard GR, Artigas A, Brigham KL, Carlet
J, Falke K, Hudson L, Lamy M, Legall JR, Morris A and Spragg R: The
American-European consensus conference on ARDS. definitions,
mechanisms, relevant outcomes, and clinical trial coordination. Am
J Respir Crit Care Med. 149:818–824. 1994.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Phua J, Badia JR, Adhikari NK, Friedrich
JO, Fowler RA, Singh JM, Scales DC, Stather DR, Li A, Jones A, et
al: Has mortality from acute respiratory distress syndrome
decreased over time?: A systematic review. Am J Respir Crit Care
Med. 179:220–227. 2009.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Jenne CN and Kubes P: Platelets in
inflammation and infection. Platelets. 26:286–292. 2015.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Maouia A, Rebetz J, Kapur R and Semple JW:
The immune nature of platelets revisited. Transfus Med Rev.
34:209–220. 2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Smyth SS, McEver RP, Weyrich AS, Morrell
CN, Hoffman MR, Arepally GM, French PA, Dauerman HL and Becker RC:
2009 Platelet Colloquium Participants. Platelet functions beyond
hemostasis. J Thromb Haemost. 7:1759–1766. 2009.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Cox D, Kerrigan SW and Watson SP:
Platelets and the innate immune system: Mechanisms of
bacterial-induced platelet activation. J Thromb Haemost.
9:1097–1107. 2011.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Pugin J, Verghese G, Widmer MC and Matthay
MA: The alveolar space is the site of intense inflammatory and
profibrotic reactions in the early phase of acute respiratory
distress syndrome. Crit Care Med. 27:304–312. 1999.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Ware LB and Matthay MA: The acute
respiratory distress syndrome. N Engl J Med. 342:1334–1349.
2000.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Grommes J and Soehnlein O: Contribution of
neutrophils to acute lung injury. Mol Med. 17:293–307.
2011.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Nagase T, Ishii S, Kume K, Uozumi N, Izumi
T, Ouchi Y and Shimizu T: Platelet-activating factor mediates
acid-induced lung injury in genetically engineered mice. J Clin
Invest. 104:1071–1076. 1999.PubMed/NCBI View
Article : Google Scholar
|
|
11
|
Zemans RL, Colgan SP and Downey GP:
Transepithelial migration of neutrophils: Mechanisms and
implications for acute lung injury. Am J Respir Cell Mol Biol.
40:519–535. 2009.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Bhatia M, Zemans RL and Jeyaseelan S: Role
of chemokines in the pathogenesis of acute lung injury. Am J Respir
Cell Mol Biol. 46:566–572. 2012.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Saffarzadeh M, Juenemann C, Queisser MA,
Lochnit G, Barreto G, Galuska SP, Lohmeyer J and Preissner KT:
Neutrophil extracellular traps directly induce epithelial and
endothelial cell death: A predominant role of histones. PLoS One.
7(e32366)2012.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Jeyaseelan S, Chu HW, Young SK, Freeman MW
and Worthen GS: Distinct roles of pattern recognition receptors
CD14 and Toll-like receptor 4 in acute lung injury. Infect Immun.
73:1754–1763. 2005.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Huang JJ, Xia J, Huang LL and Li YC:
HIF-1α promotes NLRP3 inflammasome activation in bleomycin-induced
acute lung injury. Mol Med Rep. 20:3424–3432. 2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Rendu F and Brohard-Bohn B: The platelet
release reaction: Granules' constituents, secretion and functions.
Platelets. 12:261–273. 2001.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Meng R, Wang Y, Yao Y, Zhang Z, Harper DC,
Heijnen HF, Sitaram A, Li W, Raposo G, Weiss MJ, et al: SLC35D3
delivery from megakaryocyte early endosomes is required for
platelet dense granule biogenesis and is differentially defective
in Hermansky-Pudlak syndrome models. Blood. 120:404–414.
2012.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Heijnen H and van der Sluijs P: Platelet
secretory behaviour: As diverse as the granules … or not? J Thromb
Haemost. 13:2141–2151. 2015.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Koyama H, Maeno T, Fukumoto S, Shoji T,
Yamane T, Yokoyama H, Emoto M, Shoji T, Tahara H, Inaba M, et al:
Platelet P-selectin expression is associated with atherosclerotic
wall thickness in carotid artery in humans. Circulation.
108:524–529. 2003.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Wysokinski WE, Cohoon KP, Melduni RM,
Mazur M, Ammash N, Munger T, Konik E, McLeod T, Gosk-Bierska I and
McBane RD: Association between P-selectin levels and left atrial
blood stasis in patients with nonvalvular atrial fibrillation.
Thromb Res. 172:4–8. 2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Wang K, Zhou X, Zhou Z, Mal N, Fan L,
Zhang M, Lincoff AM, Plow EF, Topol EJ and Penn MS: Platelet, not
endothelial, P-selectin is required for neointimal formation after
vascular injury. Arterioscler Thromb Vasc Biol. 25:1584–1589.
2005.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Boilard E, Nigrovic PA, Larabee K, Watts
GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O'Donnell E,
Farndale RW, Ware J and Lee DM: Platelets amplify inflammation in
arthritis via collagen-dependent microparticle production. Science.
327:580–583. 2010.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Semple JW, Italiano JE Jr and Freedman J:
Platelets and the immune continuum. Nat Rev Immunol. 11:264–274.
2011.PubMed/NCBI View
Article : Google Scholar
|
|
24
|
Hasegawa S, Tashiro N, Matsubara T,
Furukawa S and Ra C: A comparison of FcepsilonRI-mediated RANTES
release from human platelets between allergic patients and healthy
individuals. Int Arch Allergy Immunol. 125 (Suppl 1):S42–S47.
2001.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Lapchak PH, Ioannou A, Kannan L, Rani P,
Dalle Lucca JJ and Tsokos GC: Platelet-associated CD40/CD154
mediates remote tissue damage after mesenteric ischemia/reperfusion
injury. PLoS One. 7(e32260)2012.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Ghoshal K and Bhattacharyya M: Overview of
platelet physiology: Its hemostatic and nonhemostatic role in
disease pathogenesis. ScientificWorldJournal.
2014(781857)2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Yeaman MR: Platelets: At the nexus of
antimicrobial defence. Nat Rev Microbiol. 12:426–437.
2014.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Danese S, de la Motte C, Sturm A, Vogel
JD, West GA, Strong SA, Katz JA and Fiocchi C: Platelets trigger a
CD40-dependent inflammatory response in the microvasculature of
inflammatory bowel disease patients. Gastroenterology.
124:1249–1264. 2003.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Kasperska-Zajac A, Brzoza Z and Rogala B:
Seasonal changes in platelet activity in pollen-induced seasonal
allergic rhinitis and asthma. J Asthma. 45:485–487. 2008.PubMed/NCBI View Article : Google Scholar
|
|
30
|
O'Sullivan BP and Michelson AD: The
inflammatory role of platelets in cystic fibrosis. Am J Respir Crit
Care Med. 173:483–490. 2006.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Weyrich AS and Zimmerman GA: Platelets in
lung biology. Annu Rev Physiol. 75:569–591. 2013.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Lefrançais E and Looney MR: Platelet
biogenesis in the lung circulation. Physiology (Bethesda).
34:392–401. 2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Tabuchi A and Kuebler WM:
Endothelium-platelet interactions in inflammatory lung disease.
Vascul Pharmacol. 49:141–150. 2008.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Ho-Tin-Noé B, Demers M and Wagner DD: How
platelets safeguard vascular integrity. J Thromb Haemost. 9 (Suppl
1):S56–S65. 2011.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Middleton EA, Weyrich AS and Zimmerman GA:
Platelets in pulmonary immune responses and inflammatory lung
diseases. Physiol Rev. 96:1211–1259. 2016.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Lê VB, Schneider JG, Boergeling Y, Berri
F, Ducatez M, Guerin JL, Adrian I, Errazuriz-Cerda E, Frasquilho S,
Antunes L, et al: Platelet activation and aggregation promote lung
inflammation and influenza virus pathogenesis. Am J Respir Crit
Care Med. 191:804–819. 2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Looney MR, Nguyen JX, Hu Y, Van Ziffle JA,
Lowell CA and Matthay MA: Platelet depletion and aspirin treatment
protect mice in a two-event model of transfusion-related acute lung
injury. J Clin Invest. 119:3450–3461. 2009.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Yasui H, Donahue DL, Walsh M, Castellino
FJ and Ploplis VA: Early coagulation events induce acute lung
injury in a rat model of blunt traumatic brain injury. Am J Physiol
Lung Cell Mol Physiol. 311:L74–L86. 2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Clark SR, Ma AC, Tavener SA, McDonald B,
Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair
GD, et al: Platelet TLR4 activates neutrophil extracellular traps
to ensnare bacteria in septic blood. Nat Med. 13:463–469.
2007.PubMed/NCBI View
Article : Google Scholar
|
|
40
|
Zarbock A, Polanowska-Grabowska RK and Ley
K: Platelet-neutrophil-interactions: Linking hemostasis and
inflammation. Blood Rev. 21:99–111. 2007.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Nurden AT: Platelets, inflammation and
tissue regeneration. Thromb Haemost. 105 (Suppl 1):S13–S33.
2011.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Xie RF, Hu P, Wang ZC, Yang J, Yang YM,
Gao L, Fan HH and Zhu YM: Platelet-derived microparticles induce
polymorphonuclear leukocyte-mediated damage of human pulmonary
microvascular endothelial cells. Transfusion. 55:1051–1057.
2015.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Barry OP, Pratico D, Lawson JA and
FitzGerald GA: Transcellular activation of platelets and
endothelial cells by bioactive lipids in platelet microparticles. J
Clin Invest. 99:2118–2127. 1997.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Bulut D, Becker V and Mügge A:
Acetylsalicylate reduces endothelial and platelet-derived
microparticles in patients with coronary artery disease. Can J
Physiol Pharmacol. 89:239–244. 2011.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Zhou Q, Lian Y, Zhang Y, Li L, Li H, Shen
D, Zhou Y, Zhang M, Lu Y, Liu J, et al: Platelet-derived
microparticles from recurrent miscarriage associated with
antiphospholipid antibody syndrome influence behaviours of
trophoblast and endothelial cells. Mol Hum Reprod. 25:483–494.
2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Bhattacharya J and Matthay MA: Regulation
and repair of the alveolar-capillary barrier in acute lung injury.
Annu Rev Physiol. 75:593–615. 2013.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Zarbock A, Singbartl K and Ley K: Complete
reversal of acid-induced acute lung injury by blocking of
platelet-neutrophil aggregation. J Clin Invest. 116:3211–3219.
2006.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Bdeir K, Gollomp K, Stasiak M, Mei J,
Papiewska-Pajak I, Zhao G, Worthen GS, Cines DB, Poncz M and
Kowalska MA: Platelet-specific chemokines contribute to the
pathogenesis of acute lung injury. Am J Respir Cell Mol Biol.
56:261–270. 2017.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Medford AR and Millar AB: Vascular
endothelial growth factor (VEGF) in acute lung injury (ALI) and
acute respiratory distress syndrome (ARDS): Paradox or paradigm?
Thorax. 61:621–626. 2006.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Barratt S, Medford AR and Millar AB:
Vascular endothelial growth factor in acute lung injury and acute
respiratory distress syndrome. Respiration. 87:329–342.
2014.PubMed/NCBI View Article : Google Scholar
|
|
51
|
André P, Nannizzi-Alaimo L, Prasad SK and
Phillips DR: Platelet-derived CD40L: The switch-hitting player of
cardiovascular disease. Circulation. 106:896–899. 2002.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Henn V, Slupsky JR, Gräfe M,
Anagnostopoulos I, Förster R, Müller-Berghaus G and Kroczek RA:
CD40 ligand on activated platelets triggers an inflammatory
reaction of endothelial cells. Nature. 391:591–594. 1998.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Rahman M, Zhang S, Chew M, Ersson A,
Jeppsson B and Thorlacius H: Platelet-derived CD40L (CD154)
mediates neutrophil upregulation of Mac-1 and recruitment in septic
lung injury. Ann Surg. 250:783–790. 2009.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Coxon CH, Geer MJ and Senis YA: ITIM
receptors: More than just inhibitors of platelet activation. Blood.
129:3407–3418. 2017.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Watson SP, Herbert JM and Pollitt AY: GPVI
and CLEC-2 in hemostasis and vascular integrity. J Thromb Haemost.
8:1456–1467. 2010.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Kerrigan AM, Dennehy KM, Mourão-Sá D,
Faro-Trindade I, Willment JA, Taylor PR, Eble JA, Reis e Sousa C
and Brown GD: CLEC-2 is a phagocytic activation receptor expressed
on murine peripheral blood neutrophils. J Immunol. 182:4150–4157.
2009.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Badolia R, Kostyak JC, Dangelmaier C and
Kunapuli SP: Syk activity is dispensable for platelet GP1b-IX-V
signaling. Int J Mol Sci. 18(1238)2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Suzuki-Inoue K: Roles of the
CLEC-2-podoplanin interaction in tumor progression. Platelets: Jun
4, 2018 (Epub ahead of print). doi:
10.1080/09537104.2018.1478401.
|
|
59
|
Quintanilla M, Montero-Montero L, Renart J
and Martín-Villar E: Podoplanin in inflammation and cancer. Int J
Mol Sci. 20(707)2019.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Mammadova-Bach E, Gil-Pulido J,
Sarukhanyan E, Burkard P, Shityakov S, Schonhart C, Stegner D,
Remer K, Nurden P, Nurden AT, et al: Platelet glycoprotein VI
promotes metastasis through interaction with cancer cell-derived
galectin-3. Blood. 135:1146–1160. 2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Huang JS, Ramamurthy SK, Lin X and Le
Breton GC: Cell signalling through thromboxane A2 receptors. Cell
Signal. 16:521–533. 2004.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Goff CD, Corbin RS, Theiss SD, Frierson HF
Jr, Cephas GA, Tribble CG, Kron IL and Young JS: Postinjury
thromboxane receptor blockade ameliorates acute lung injury. Ann
Thorac Surg. 64:826–829. 1997.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Zhang S, Yuan J, Yu M, Fan H, Guo ZQ, Yang
R, Guo HP, Liao YH and Wang M: IL-17A facilitates platelet function
through the ERK2 signaling pathway in patients with acute coronary
syndrome. PLoS One. 7(e40641)2012.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Caudrillier A, Kessenbrock K, Gilliss BM,
Nguyen JX, Marques MB, Monestier M, Toy P, Werb Z and Looney MR:
Platelets induce neutrophil extracellular traps in
transfusion-related acute lung injury. J Clin Invest.
122:2661–2671. 2012.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Holm S, Kared H, Michelsen AE, Kong XY,
Dahl TB, Schultz NH, Nyman TA, Fladeby C, Seljeflot I, Ueland T, et
al: Immune complexes, innate immunity, and NETosis in ChAdOx1
vaccine-induced thrombocytopenia. Eur Heart J. 42:4064–4072.
2021.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Brinkmann V, Reichard U, Goosmann C,
Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y and Zychlinsky A:
Neutrophil extracellular traps kill bacteria. Science.
303:1532–1535. 2004.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Fuchs TA, Brill A, Duerschmied D,
Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW,
Hartwig JH and Wagner DD: Extracellular DNA traps promote
thrombosis. Proc Natl Acad Sci USA. 107:15880–15885.
2010.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Worth RG, Chien CD, Chien P, Reilly MP,
McKenzie SE and Schreiber AD: Platelet FcgammaRIIA binds and
internalizes IgG-containing complexes. Exp Hematol. 34:1490–1495.
2006.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Antczak AJ, Vieth JA, Singh N and Worth
RG: Internalization of IgG-coated targets results in activation and
secretion of soluble CD40 ligand and RANTES by human platelets.
Clin Vaccine Immunol. 18:210–216. 2011.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Semple JW, Rebetz J, Maouia A and Kapur R:
An update on the pathophysiology of immune thrombocytopenia. Curr
Opin Hematol. 27:423–429. 2020.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Sowa JM, Crist SA, Ratliff TL and Elzey
BD: Platelet influence on T- and B-cell responses. Arch Immunol
Ther Exp (Warsz). 57:235–241. 2009.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Romo GM, Dong JF, Schade AJ, Gardiner EE,
Kansas GS, Li CQ, McIntire LV, Berndt MC and López JA: The
glycoprotein Ib-IX-V complex is a platelet counterreceptor for
P-selectin. J Exp Med. 190:803–814. 1999.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Srivastava K, Cockburn IA, Swaim A,
Thompson LE, Tripathi A, Fletcher CA, Shirk EM, Sun H, Kowalska MA,
Fox-Talbot K, et al: Platelet factor 4 mediates inflammation in
experimental cerebral malaria. Cell Host Microbe. 4:179–187.
2008.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Hagiwara S, Iwasaka H, Hasegawa A, Oyama
M, Imatomi R, Uchida T and Noguchi T: Adenosine diphosphate
receptor antagonist clopidogrel sulfate attenuates LPS-induced
systemic inflammation in a rat model. Shock. 35:289–292.
2011.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Asaduzzaman M, Lavasani S, Rahman M, Zhang
S, Braun OO, Jeppsson B and Thorlacius H: Platelets support
pulmonary recruitment of neutrophils in abdominal sepsis. Crit Care
Med. 37:1389–1396. 2009.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Cognasse F, Tariket S, Hamzeh-Cognasse H,
Arthaud CA, Eyraud MA, Bourlet T, Berthelot P, Laradi S,
Fauteux-Daniel S and Garraud O: Platelet depletion limits the
severity but does not prevent the occurrence of experimental
transfusion-related acute lung injury. Transfusion. 60:713–723.
2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Zhou J, Lee S, Guo CL, Chang C, Liu T,
Leung KSK, Wai AKC, Cheung BMY, Tse G and Zhang Q: Anticoagulant or
antiplatelet use and severe COVID-19 disease: A propensity
score-matched territory-wide study. Pharmacol Res.
165(105473)2021.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Zhu Y, Wang J, Meng X, Xie H, Tan J, Guo
X, Han P and Wang R: A positive feedback loop promotes HIF-1α
stability through miR-210-mediated suppression of RUNX3 in
paraquat-induced EMT. J Cell Mol Med. 21:3529–3539. 2017.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Zhou N, Liu Q, Qi X, Zhang X, Ru Z, Ma Y,
Yu T, Zhang M, Li Y, Zhang Y and Cao Z: Paraquat exposure impairs
porcine oocyte meiotic maturation. Theriogenology. 179:60–68.
2021.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Zu Y, Ban J, Xia Z, Wang J, Cai Y, Ping W
and Sun W: Genetic variation in a miR-335 binding site in BIRC5
alters susceptibility to lung cancer in Chinese Han populations.
Biochem Biophys Res Commun. 430:529–534. 2013.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Zuo X, Xu W, Xu M, Tian R, Moussalli MJ,
Mao F, Zheng X, Wang J, Morris JS, Gagea M, et al: Metastasis
regulation by PPARD expression in cancer cells. JCI Insight.
2(e91419)2017.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Zu L, Xue Y and Wang J, Fu Y, Wang X, Xiao
G, Hao M, Sun X, Wang Y, Fu G and Wang J: The feedback loop between
miR-124 and TGF-β pathway plays a significant role in non-small
cell lung cancer metastasis. Carcinogenesis. 37:333–343.
2016.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Zou W, Chen L, Mao W, Hu S, Liu Y and Hu
C: Identification of inflammatory response-related gene signature
associated with immune status and prognosis of lung adenocarcinoma.
Front Bioeng Biotechnol. 9(772206)2021.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Zou M, Xia S, Zhuang L, Han N, Chu Q, Chao
T, Peng P, Chen Y, Gui Q and Yu S: Knockdown of the Bcl-2 gene
increases sensitivity to EGFR tyrosine kinase inhibitors in the
H1975 lung cancer cell line harboring T790M mutation. Int J Oncol.
42:2094–2102. 2013.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Zou K, Tong E, Xu Y, Deng X and Zou L:
Down regulation of mammalian target of rapamycin decreases HIF-1α
and survivin expression in anoxic lung adenocarcinoma A549 cell to
elemene and/or irradiation. Tumour Biol. 35:9735–9741.
2014.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Zong L, Sun Q, Zhang H, Chen Z, Deng Y, Li
D and Zhang L: Increased expression of circRNA_102231 in lung
cancer and its clinical significance. Biomed Pharmacother.
102:639–644. 2018.PubMed/NCBI View Article : Google Scholar
|