Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
March-2022 Volume 16 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2022 Volume 16 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

B1 repetitive sequence methylation enhances wound healing of second‑degree burns in rats

  • Authors:
    • Jiraroch Meevassana
    • Panupong Nacharoenkul
    • Jade Wititsuwannakul
    • Nakarin Kitkumthorn
    • Kevin J. Hamill
    • Apichai Angspatt
    • Apiwat Mutirangura
  • View Affiliations / Copyright

    Affiliations: Department of Anatomy, Center of Excellence in Molecular Genetics of Cancer and Human Disease, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand, Department of Surgery, Division of Plastic and Reconstructive Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand, Department of Medicine, Division of Dermatology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand, Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, United Kingdom
    Copyright: © Meevassana et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 20
    |
    Published online on: February 3, 2022
       https://doi.org/10.3892/br.2022.1503
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The accumulation of DNA damage in burn wounds delays wound healing. DNA methylation by short interspersed nuclear element (SINE) small interfering (si)RNA prevents DNA damage and promotes cell proliferation. Therefore, SINE siRNA may be able to promote burn wound healing. Here, a SINE B1 siRNA was used to treat burn wounds in rats. Second‑degree burn wounds were introduced on the backs of rats. The rats were then divided into three groups: a B1 siRNA‑treated, saline‑treated control, and saline + calcium phosphate‑nanoparticle‑treated control group (n=15/group). The wounds were imaged on days 0, 7, 14, 21 and 28 post‑injury. The tissue sections were processed for methylation, histological and immunohistochemical examination, and scored based on the overall expression of histone H2AX phosphorylated on serine 139 (γH2AX) and 8‑hydroxy‑2'‑deoxyguanosine (8‑OHdG). Burn wound closure improved in the B1 siRNA‑treated group compared with that in the control group, especially from days 14‑28 post‑injury (P<0.001). The overall pathological score and degree of B1 methylation in the B1 siRNA‑treated group improved significantly at days 14‑28 post‑injury, with the maximum improvement observed on day 14 (P<0.01) compared with the NSS and Ca‑P nanoparticle groups. Immunohistochemical staining revealed lower expression of γH2AX and 8‑OHdG in the B1 siRNA‑treated group than in the control groups at days 14‑28 post‑injury; the maximum improvement was observed on days 14 and 21. These data imply that administering SINE siRNA is a promising therapeutic option for managing second‑degree burns.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Chen L, He X, Xian J, Liao J, Chen X, Luo Y, Wang Z and Li N: Development of a framework for managing severe burns through a 17-year retrospective analysis of burn epidemiology and outcomes. Sci Rep. 11(9374)2021.PubMed/NCBI View Article : Google Scholar

2 

Veniaminova NA, Vassetzky NS and Kramerov DA: B1 SINEs in different rodent families. Genomics. 89:678–686. 2007.PubMed/NCBI View Article : Google Scholar

3 

Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H and Jaenisch R: Induction of tumors in mice by genomic hypomethylation. Science. 300:489–492. 2003.PubMed/NCBI View Article : Google Scholar

4 

Slimen IB, Najar T, Ghram A, Dabbebi H, Ben Mrad M and Abdrabbah M: Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia. 30:513–523. 2014.PubMed/NCBI View Article : Google Scholar

5 

Gebhard W, Meitinger T, Höchtl J and Zachau HG: A new family of interspersed repetitive DNA sequences in the mouse genome. J Mol Biol. 157:453–471. 1982.PubMed/NCBI View Article : Google Scholar

6 

Batzer MA and Deininger PL: Alu repeats and human genomic diversity. Nat Rev Genet. 3:370–379. 2002.PubMed/NCBI View Article : Google Scholar

7 

Tsirigos A and Rigoutsos I: Alu and b1 repeats have been selectively retained in the upstream and intronic regions of genes of specific functional classes. PLoS Comput Biol. 5(e1000610)2009.PubMed/NCBI View Article : Google Scholar

8 

Roman AC, Benitez DA, Carvajal-Gonzalez JM and Fernandez-Salguero PM: Genome-wide B1 retrotransposon binds the transcription factors dioxin receptor and Slug and regulates gene expression in vivo. Proc Natl Acad Sci USA. 105:1632–1637. 2008.PubMed/NCBI View Article : Google Scholar

9 

Román AC, González-Rico FJ and Fernández-Salguero PM: B1-SINE retrotransposons: Establishing genomic insulatory networks. Mob Genet Elements. 1:66–70. 2011.PubMed/NCBI View Article : Google Scholar

10 

Ti D, Li M, Fu X and Han W: Causes and consequences of epigenetic regulation in wound healing. Wound Repair Regen. 22:305–312. 2014.PubMed/NCBI View Article : Google Scholar

11 

Mutirangura A: A hypothesis to explain how the DNA of elderly people is prone to damage: Genome-wide hypomethylation drives genomic instability in the elderly by reducing youth-associated genome-stabilizing DNA gaps. In: Epigenetics. Meccariello R (ed). IntechOpen, London, 2018.

12 

Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P and Baccarelli A: Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 130:234–239. 2009.PubMed/NCBI View Article : Google Scholar

13 

Li Y, Sawalha AH and Lu Q: Aberrant DNA methylation in skin diseases. J Dermatol Sci. 54:143–149. 2009.PubMed/NCBI View Article : Google Scholar

14 

Udomsinprasert W, Kitkumthorn N, Mutirangura A, Chongsrisawat V, Poovorawan Y and Honsawek S: Global methylation, oxidative stress, and relative telomere length in biliary atresia patients. Sci Rep. 6(26969)2016.PubMed/NCBI View Article : Google Scholar

15 

Patchsung M, Settayanon S, Pongpanich M, Mutirangura D, Jintarith P and Mutirangura A: Alu siRNA to increase Alu element methylation and prevent DNA damage. Epigenomics. 10:175–185. 2018.PubMed/NCBI View Article : Google Scholar

16 

Luo G, Jing X, Yang S, Peng D, Dong J, Li L, Reinach PS and Yan D: DNA methylation regulates corneal epithelial wound healing by targeting miR-200a and CDKN2B. Invest Ophthalmol Vis Sci. 60:650–660. 2019.PubMed/NCBI View Article : Google Scholar

17 

Plikus MV, Guerrero-Juarez CF, Treffeisen E and Gay DL: Epigenetic control of skin and hair regeneration after wounding. Exp Dermatol. 24:167–170. 2015.PubMed/NCBI View Article : Google Scholar

18 

Aguilar C and Gardiner DM: DNA methylation dynamics regulate the formation of a regenerative wound epithelium during axolotl limb regeneration. PLoS One. 10(e0134791)2015.PubMed/NCBI View Article : Google Scholar

19 

Erichsen L, Beermann A, Arauzo-Bravo MJ, Hassan M, Dkhil MA, Al-Quraishy S, Hafiz TA, Fischer JC and Santourlidis S: Genome-wide hypomethylation of LINE-1 and Alu retroelements in cell-free DNA of blood is an epigenetic biomarker of human aging. Saudi J Biol Sci. 25:1220–1226. 2018.PubMed/NCBI View Article : Google Scholar

20 

Mutirangura A: Is global hypomethylation a nidus for molecular pathogenesis of age-related noncommunicable diseases? Epigenomics. 11:577–579. 2019.PubMed/NCBI View Article : Google Scholar

21 

Erdmann RM and Picard CL: RNA-directed DNA methylation. PLoS Genet. 16(e1009034)2020.PubMed/NCBI View Article : Google Scholar

22 

Castanotto D, Tommasi S, Li M, Li H, Yanow S, Pfeifer GP and Rossi JJ: Short hairpin RNA-directed cytosine (CpG) methylation of the RASSF1A gene promoter in HeLa cells. Mol Ther. 12:179–183. 2005.PubMed/NCBI View Article : Google Scholar

23 

Matzke MA and Mosher RA: RNA-directed DNA methylation: An epigenetic pathway of increasing complexity. Nat Rev Genet. 15:394–408. 2014.PubMed/NCBI View Article : Google Scholar

24 

Mathieu O and Bender J: RNA-directed DNA methylation. J Cell Sci. 117:4881–4888. 2004.PubMed/NCBI View Article : Google Scholar

25 

Reis AH, Vargas FR and Lemos B: Biomarkers of genome instability and cancer epigenetics. Tumour Biol. 37:13029–13038. 2016.PubMed/NCBI View Article : Google Scholar

26 

Kongruttanachok N, Phuangphairoj C, Thongnak A, Ponyeam W, Rattanatanyong P, Pornthanakasem W and Mutirangura A: Replication independent DNA double-strand break retention may prevent genomic instability. Mol Cancer. 9(70)2010.PubMed/NCBI View Article : Google Scholar

27 

Takahashi A, Matsumoto H, Nagayama K, Kitano M, Hirose S, Tanaka H, Mori E, Yamakawa N, Yasumoto J, Yuki K, et al: Evidence for the involvement of double-strand breaks in heat-induced cell killing. Cancer Res. 64:8839–8845. 2004.PubMed/NCBI View Article : Google Scholar

28 

Mah LJ, El-Osta A and Karagiannis TC: gammaH2AX: A sensitive molecular marker of DNA damage and repair. Leukemia. 24:679–686. 2010.PubMed/NCBI View Article : Google Scholar

29 

Mataix M, Rodríguez-Luna A, Gutiérrez-Pérez M, Milani M, Gandarillas A, Espada J and Pérez-Davó A: Deschampsia antarctica extract (Edafence®) as a powerful skin protection tool against the aging exposome. Plast Aesthet Res. 7(69)2020.

30 

Korkmaz KS, Debelec Butuner B and Roggenbuck D: Detection of 8-OHdG as a diagnostic biomarker. J Lab Precis Med. 3(95)2018.

31 

Purschke M, Laubach HJ, Anderson RR and Manstein D: Thermal injury causes DNA damage and lethality in unheated surrounding cells: Active thermal bystander effect. J Invest Dermatol. 130:86–92. 2010.PubMed/NCBI View Article : Google Scholar

32 

Houston BJ, Nixon B, Martin JH, De Iuliis GN, Trigg NA, Bromfield EG, McEwan KE and Aitken RJ: Heat exposure induces oxidative stress and DNA damage in the male germ line. Biol Reprod. 98:593–606. 2018.PubMed/NCBI View Article : Google Scholar

33 

Hintzsche H, Riese T and Stopper H: Hyperthermia-induced micronucleus formation in a human keratinocyte cell line. Mutat Res. 738-739:71–74. 2012.PubMed/NCBI View Article : Google Scholar

34 

Firsanov DV, Solovjeva LV and Svetlova MP: H2AX phosphorylation at the sites of DNA double-strand breaks in cultivated mammalian cells and tissues. Clin Epigenetics. 2:283–297. 2011.PubMed/NCBI View Article : Google Scholar

35 

Kinner A, Wu W, Staudt C and Iliakis G: Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 36:5678–5694. 2008.PubMed/NCBI View Article : Google Scholar

36 

Kaneko H, Igarashi K, Kataoka K and Miura M: Heat shock induces phosphorylation of histone H2AX in mammalian cells. Biochem Biophys Res Commun. 328:1101–1106. 2005.PubMed/NCBI View Article : Google Scholar

37 

Dewhirst MW, Lora-Michiels M, Viglianti BL, Dewey WC and Repacholi M: Carcinogenic effects of hyperthermia. Int J Hyperthermia. 19:236–251. 2003.PubMed/NCBI View Article : Google Scholar

38 

Xu R, Li S, Guo S, Zhao Q, Abramson MJ, Li S and Guo Y: Environmental temperature and human epigenetic modifications: A systematic review. Environ Pollut. 259(113840)2020.PubMed/NCBI View Article : Google Scholar

39 

Bind MC, Coull BA, Baccarelli A, Tarantini L, Cantone L, Vokonas P and Schwartz J: Distributional changes in gene-specific methylation associated with temperature. Environ Res. 150:38–46. 2016.PubMed/NCBI View Article : Google Scholar

40 

Hao Y, Cui Y and Gu X: Genome-wide DNA methylation profiles changes associated with constant heat stress in pigs as measured by bisulfite sequencing. Sci Rep. 6(27507)2016.PubMed/NCBI View Article : Google Scholar

41 

Varriale A and Bernardi G: DNA methylation and body temperature in fishes. Gene. 385:111–121. 2006.PubMed/NCBI View Article : Google Scholar

42 

Vinoth A, Thirunalasundari T, Shanmugam M, Uthrakumar A, Suji S and Rajkumar U: Evaluation of DNA methylation and mRNA expression of heat shock proteins in thermal manipulated chicken. Cell Stress Chaperones. 23:235–252. 2018.PubMed/NCBI View Article : Google Scholar

43 

Bind MA, Zanobetti A, Gasparrini A, Peters A, Coull B, Baccarelli A, Tarantini L, Koutrakis P, Vokonas P and Schwartz J: Effects of temperature and relative humidity on DNA methylation. Epidemiology. 25:561–569. 2014.PubMed/NCBI View Article : Google Scholar

44 

Dridi S: Alu mobile elements: From junk DNA to genomic gems. Scientifica (Cairo). 2012(545328)2012.PubMed/NCBI View Article : Google Scholar

45 

Marquardt N, Feja M, Hünigen H, Plendl J, Menken L, Fink H and Bert B: Euthanasia of laboratory mice: Are isoflurane and sevoflurane real alternatives to carbon dioxide? PLoS One. 13(e0203793)2018.PubMed/NCBI View Article : Google Scholar

46 

Cai EZ, Ang CH, Raju A, Tan KB, Hing EC, Loo Y, Wong YC, Lee H, Lim J, Moochhala SM, et al: Creation of consistent burn wounds: A rat model. Arch Plast Surg. 41:317–324. 2014.PubMed/NCBI View Article : Google Scholar

47 

Zhao D, Wang CQ, Zhuo RX and Cheng SX: Modification of nanostructured calcium carbonate for efficient gene delivery. Colloids Surf B Biointerfaces. 118:111–116. 2014.PubMed/NCBI View Article : Google Scholar

48 

Wu X, Yamamoto H, Nakanishi H, Yamamoto Y, Inoue A, Tei M, Hirose H, Uemura M, Nishimura J, Hata T, et al: Innovative delivery of siRNA to solid tumors by super carbonate apatite. PLoS One. 10(e0116022)2015.PubMed/NCBI View Article : Google Scholar

49 

Mostaghaci B, Loretz B and Lehr CM: Calcium phosphate system for gene delivery: Historical background and emerging opportunities. Curr Pharm Des. 22:1529–1533. 2016.PubMed/NCBI View Article : Google Scholar

50 

Xie Y, Chen Y, Sun M and Ping Q: A mini review of biodegradable calcium phosphate nanoparticles for gene delivery. Curr Pharm Biotechnol. 14:918–925. 2013.PubMed/NCBI View Article : Google Scholar

51 

Xu X, Li Z, Zhao X, Keen L and Kong X: Calcium phosphate nanoparticles-based systems for siRNA delivery. Regen Biomater. 3:187–195. 2016.PubMed/NCBI View Article : Google Scholar

52 

Levingstone TJ, Herbaj S, Redmond J, McCarthy HO and Dunne NJ: Calcium phosphate nanoparticles-based systems for RNAi delivery: Applications in bone tissue regeneration. Nanomaterials (Basel). 10(146)2020.PubMed/NCBI View Article : Google Scholar

53 

Wang F, Zieman A and Coulombe PA: Skin keratins. Methods Enzymol. 568:303–350. 2016.PubMed/NCBI View Article : Google Scholar

54 

Tanideh N, Rokhsari P, Mehrabani D, Mohammadi Samani S, Sabet Sarvestani F, Ashraf MJ, Koohi Hosseinabadi O, Shamsian S and Ahmadi N: The healing effect of licorice on Pseudomonas aeruginosa infected burn wounds in experimental rat model. World J Plast Surg. 3:99–106. 2014.PubMed/NCBI

55 

Farghali HA, Abdelkader NA, Khattab MS and Abubakr HO: Evaluation of subcutaneous infiltration of autologous platelet-rich plasma on skin-wound healing in dogs. Biosci Rep. 37(BSR20160503)2017.PubMed/NCBI View Article : Google Scholar

56 

Tavares Pereira Ddos S, Lima-Ribeiro MH, De Pontes-Filho NT, Carneiro-Leão AM and Correia MT: Development of animal model for studying deep second-degree thermal burns. J Biomed Biotechnol. 2012(460841)2012.PubMed/NCBI View Article : Google Scholar

57 

Haghdoost F, Baradaran Mahdavi MM, Zandifar A, Sanei MH, Zolfaghari B and Javanmard SH: Pistacia atlantica resin has a dose-dependent effect on angiogenesis and skin burn wound healing in rat. Evid Based Complement Alternat Med. 2013(893425)2013.PubMed/NCBI View Article : Google Scholar

58 

Edraki M, Akbarzadeh A, Hosseinzadeh M, Tanideh N, Salehi A and Koohi-Hosseinabadi O: Healing effect of sea buckthorn, olive oil, and their mixture on full-thickness burn wounds. Adv Skin Wound Care. 27:317–323. 2014.PubMed/NCBI View Article : Google Scholar

59 

Ahmed I, Islam M, Arshad W, Mannan A, Ahmad W and Mirza B: High-quality plant DNA extraction for PCR: An easy approach. J Appl Genet. 50:105–107. 2009.PubMed/NCBI View Article : Google Scholar

60 

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M and Rozen SG: Primer3-New capabilities and interfaces. Nucleic Acids Res. 40(e115)2012.PubMed/NCBI View Article : Google Scholar

61 

Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, Chan RK, Christy RJ and Chung KK: Burn wound healing and treatment: Review and advancements. Crit Care. 19(243)2015.PubMed/NCBI View Article : Google Scholar

62 

Lewis CJ, Mardaryev AN, Sharov AA, Fessing MY and Botchkarev VA: The epigenetic regulation of wound healing. Adv Wound Care (New Rochelle). 3:468–475. 2014.PubMed/NCBI View Article : Google Scholar

63 

Chalertpet K, Pin-On P, Aporntewan C, Patchsung M, Ingrungruanglert P, Israsena N and Mutirangura A: Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells. Front Genet. 10(645)2019.PubMed/NCBI View Article : Google Scholar

64 

Kantidze OL, Velichko AK, Luzhin AV and Razin SV: Heat stress-induced DNA damage. Acta Naturae. 8:75–78. 2016.PubMed/NCBI

65 

Velichko AK, Petrova NV, Razin SV and Kantidze OL: Mechanism of heat stress-induced cellular senescence elucidates the exclusive vulnerability of early S-phase cells to mild genotoxic stress. Nucleic Acids Res. 43:6309–6320. 2015.PubMed/NCBI View Article : Google Scholar

66 

Koturbash I, Miousse IR, Sridharan V, Nzabarushimana E, Skinner CM, Melnyk SB, Pavliv O, Hauer-Jensen M, Nelson GA and Boerma M: Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart. Mutat Res. 787:43–53. 2016.PubMed/NCBI View Article : Google Scholar

67 

Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K and Herman JG: Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 10:687–692. 2001.PubMed/NCBI View Article : Google Scholar

68 

Kim JH: Chromatin remodeling and epigenetic regulation in plant DNA damage repair. Int J Mol Sci. 20(4093)2019.PubMed/NCBI View Article : Google Scholar

69 

Grewal SI and Jia S: Heterochromatin revisited. Nat Rev Genet. 8:35–46. 2007.PubMed/NCBI View Article : Google Scholar

70 

Xu Y, Xu C and Price BD: Mechanistic links between ATM and histone methylation codes during DNA repair. Prog Mol Biol Transl Sci. 110:263–288. 2012.PubMed/NCBI View Article : Google Scholar

71 

Jakob B, Splinter J, Conrad S, Voss KO, Zink D, Durante M, Löbrich M and Taucher-Scholz G: DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res. 39:6489–6499. 2011.PubMed/NCBI View Article : Google Scholar

72 

Rerkasem K, Rattanatanyong P, Rerkasem A, Wongthanee A, Rungruengthanakit K, Mangklabruks A and Mutirangura A: Higher Alu methylation levels in catch-up growth in twenty-year-old offsprings. PLoS One. 10(e0120032)2015.PubMed/NCBI View Article : Google Scholar

73 

Jintaridth P, Tungtrongchitr R, Preutthipan S and Mutirangura A: Hypomethylation of Alu elements in post-menopausal women with osteoporosis. PLoS One. 8(e70386)2013.PubMed/NCBI View Article : Google Scholar

74 

Thongsroy J, Patchsung M and Mutirangura A: The association between Alu hypomethylation and severity of type 2 diabetes mellitus. Clin Epigenetics. 9(93)2017.PubMed/NCBI View Article : Google Scholar

75 

Han L, Liu Y, Duan S, Perry B, Li W and He Y: DNA methylation and hypertension: Emerging evidence and challenges. Brief Funct Genomics. 15:460–469. 2016.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Meevassana J, Nacharoenkul P, Wititsuwannakul J, Kitkumthorn N, Hamill KJ, Angspatt A and Mutirangura A: B1 repetitive sequence methylation enhances wound healing of second‑degree burns in rats. Biomed Rep 16: 20, 2022.
APA
Meevassana, J., Nacharoenkul, P., Wititsuwannakul, J., Kitkumthorn, N., Hamill, K.J., Angspatt, A., & Mutirangura, A. (2022). B1 repetitive sequence methylation enhances wound healing of second‑degree burns in rats. Biomedical Reports, 16, 20. https://doi.org/10.3892/br.2022.1503
MLA
Meevassana, J., Nacharoenkul, P., Wititsuwannakul, J., Kitkumthorn, N., Hamill, K. J., Angspatt, A., Mutirangura, A."B1 repetitive sequence methylation enhances wound healing of second‑degree burns in rats". Biomedical Reports 16.3 (2022): 20.
Chicago
Meevassana, J., Nacharoenkul, P., Wititsuwannakul, J., Kitkumthorn, N., Hamill, K. J., Angspatt, A., Mutirangura, A."B1 repetitive sequence methylation enhances wound healing of second‑degree burns in rats". Biomedical Reports 16, no. 3 (2022): 20. https://doi.org/10.3892/br.2022.1503
Copy and paste a formatted citation
x
Spandidos Publications style
Meevassana J, Nacharoenkul P, Wititsuwannakul J, Kitkumthorn N, Hamill KJ, Angspatt A and Mutirangura A: B1 repetitive sequence methylation enhances wound healing of second‑degree burns in rats. Biomed Rep 16: 20, 2022.
APA
Meevassana, J., Nacharoenkul, P., Wititsuwannakul, J., Kitkumthorn, N., Hamill, K.J., Angspatt, A., & Mutirangura, A. (2022). B1 repetitive sequence methylation enhances wound healing of second‑degree burns in rats. Biomedical Reports, 16, 20. https://doi.org/10.3892/br.2022.1503
MLA
Meevassana, J., Nacharoenkul, P., Wititsuwannakul, J., Kitkumthorn, N., Hamill, K. J., Angspatt, A., Mutirangura, A."B1 repetitive sequence methylation enhances wound healing of second‑degree burns in rats". Biomedical Reports 16.3 (2022): 20.
Chicago
Meevassana, J., Nacharoenkul, P., Wititsuwannakul, J., Kitkumthorn, N., Hamill, K. J., Angspatt, A., Mutirangura, A."B1 repetitive sequence methylation enhances wound healing of second‑degree burns in rats". Biomedical Reports 16, no. 3 (2022): 20. https://doi.org/10.3892/br.2022.1503
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team