|
1
|
Butler AE, Janson J, Bonner-Weir S, Ritzel
R, Rizza RA and Butler PC: Beta-cell deficit and increased
beta-cell apoptosis in humans with type 2 diabetes. Diabetes.
52:102–110. 2003.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Wang P, Fiaschi-Taesch NM, Vasavada RC,
Scott DK, García-Ocaña A and Stewart AF: Diabetes mellitus-advances
and challenges in human β-cell proliferation. Nat Rev Endocrinol.
11:201–212. 2015.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Campbell-Thompson M, Fu A, Kaddis JS,
Wasserfall C, Schatz DA, Pugliese A and Atkinson MA: Insulitis and
beta-cell mass in the natural history of type 1 diabetes. Diabetes.
65:719–731. 2016.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Burke GW III, Vendrame F, Virdi SK,
Ciancio G, Chen L, Ruiz P, Messinger S, Reijonen HK and Pugliese A:
Lessons from pancreas transplantation in type 1 diabetes:
Recurrence of islet autoimmunity. Curr Diab Rep.
15(121)2015.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Afelik S and Rovira M: Pancreatic
beta-cell regeneration: Advances in understanding the genes and
signaling pathways involved. Genome Med. 9(42)2017.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Levine F and Itkin-Ansari P: Beta-cell
Regeneration: Neogenesis, replication or both? J Mol Med (Berl).
86:247–258. 2008.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Aguayo-Mazzucato C and Bonner-Weir S:
Pancreatic β cell regeneration as a possible therapy for diabetes.
Cell Metab. 27:57–67. 2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Benthuysen JR, Carrano AC and Sander M:
Advances in beta cell replacement and regeneration strategies for
treating diabetes. J Clin Invest. 126:3651–3660. 2016.PubMed/NCBI View
Article : Google Scholar
|
|
9
|
Xu X, D'Hoker J, Stangé G, Bonné S, De Leu
N, Xiao X, Van de Casteele M, Mellitzer G, Ling Z, Pipeleers D, et
al: Beta cells can be generated from endogenous progenitors in
injured adult mouse pancreas. Cell. 132:197–207. 2008.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Li WC, Rukstalis JM, Nishimura W,
Tchipashvili V, Habener JF, Sharma A and Bonner-Weir S: Activation
of pancreatic-duct-derived progenitor cells during pancreas
regeneration in adult rats. J Cell Sci. 123 (Pt 16):2792–2802.
2010.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Dor Y, Brown J, Martinez OI and Melton DA:
Adult pancreatic beta-cells are formed by self-duplication rather
than stem-cell differentiation. Nature. 429:41–46. 2004.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Teta M, Rankin MM, Long SY, Stein GM and
Kushner JA: Growth and regeneration of adult beta cells does not
involve specialized progenitors. Dev Cell. 12:817–826.
2007.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Thorel F, Népote V, Avril I, Kohno K,
Desgraz R, Chera S and Herrera PL: Conversion of adult pancreatic
alpha-cells to beta-cells after extreme beta-cell loss. Nature.
464:1149–1154. 2010.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Chera S, Baronnier D, Ghila L, Cigliola V,
Jensen JN, Gu G, Furuyama K, Thorel F, Gribble FM, Reimann F and
Herrera PL: Diabetes recovery by age-dependent conversion of
pancreatic δ-cells into insulin producers. Nature. 514:503–507.
2014.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Avrahami D, Li C, Yu M, Jiao Y, Zhang J,
Naji A, Ziaie S, Glaser B and Kaestner KH: Targeting the cell cycle
inhibitor p57Kip2 promotes adult human β cell replication. J Clin
Invest. 124:670–674. 2014.PubMed/NCBI View
Article : Google Scholar
|
|
16
|
Courtney M, Gjernes E, Druelle N, Ravaud
C, Vieira A, Ben-Othman N, Pfeifer A, Avolio F, Leuckx G,
Lacas-Gervais S, et al: The inactivation of Arx in pancreatic
α-cells triggers their neogenesis and conversion into functional
β-like cells. PLoS Genet. 9(e1003934)2013.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Lilly MA, Davis MF, Fabie JE, Terhune EB
and Gallicano GI: Current stem cell based therapies in diabetes. Am
J Stem Cells. 5:87–98. 2016.PubMed/NCBI
|
|
18
|
Domínguez-Bendala J, Lanzoni G, Klein D,
Álvarez-Cubela S and Pastori RL: The human endocrine pancreas: New
insights on replacement and regeneration. Trends Endocrinol Metab.
27:153–162. 2016.PubMed/NCBI View Article : Google Scholar
|
|
19
|
D'Amour KA, Bang AG, Eliazer S, Kelly OG,
Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK and Baetge
EE: Production of pancreatic hormone-expressing endocrine cells
from human embryonic stem cells. Nat Biotechnol. 24:1392–1401.
2006.PubMed/NCBI View
Article : Google Scholar
|
|
20
|
Kroon E, Martinson LA, Kadoya K, Bang AG,
Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J,
et al: Pancreatic endoderm derived from human embryonic stem cells
generates glucose-responsive insulin-secreting cells in vivo. Nat
Biotechnol. 26:443–452. 2008.PubMed/NCBI View
Article : Google Scholar
|
|
21
|
Rezania A, Bruin JE, Riedel MJ, Mojibian
M, Asadi A, Xu J, Gauvin R, Narayan K, Karanu F, O'Neil JJ, et al:
Maturation of human embryonic stem cell-derived pancreatic
progenitors into functional islets capable of treating pre-existing
diabetes in mice. Diabetes. 61:2016–2029. 2012.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Pagliuca FW, Millman JR, Gürtler M, Segel
M, Van Dervort A, Ryu JH, Peterson QP, Greiner D and Melton DA:
Generation of functional human pancreatic beta cells in vitro.
Cell. 159:428–439. 2014.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Bruin JE, Rezania A, Xu J, Narayan K, Fox
JK, O'Neil JJ and Kieffer TJ: Maturation and function of human
embryonic stem cell-derived pancreatic progenitors in
macroencapsulation devices following transplant into mice.
Diabetologia. 56:1987–1998. 2013.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Kirk K, Hao E, Lahmy R and Itkin-Ansari P:
Human embryonic stem cell derived islet progenitors mature inside
an encapsulation device without evidence of increased biomass or
cell escape. Stem Cell Res. 12:807–814. 2014.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Vegas AJ, Veiseh O, Gürtler M, Millman JR,
Pagliuca FW, Bader AR, Doloff JC, Li J, Chen M, Olejnik K, et al:
Long-term glycemic control using polymer-encapsulated human stem
cell-derived beta cells in immune-competent mice. Nat Med.
22:306–311. 2016.PubMed/NCBI View
Article : Google Scholar
|
|
26
|
Xie R, Everett LJ, Lim HW, Patel NA, Schug
J, Kroon E, Kelly OG, Wang A, D'Amour KA, Robins AJ, et al: Dynamic
chromatin remodeling mediated by polycomb proteins orchestrates
pancreatic differentiation of human embryonic stem cells. Cell Stem
Cell. 12:224–237. 2013.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Rezania A, Bruin JE, Arora P, Rubin A,
Batushansky I, Asadi A, O'Dwyer S, Quiskamp N, Mojibian M, Albrecht
T, et al: Reversal of diabetes with insulin-producing cells derived
in vitro from human pluripotent stem cells. Nat Biotechnol.
32:1121–1133. 2014.PubMed/NCBI View
Article : Google Scholar
|
|
28
|
Millman JR, Xie C, Van Dervort A, Gürtler
M, Pagliuca FW and Melton DA: Generation of stem cell-derived
beta-cells from patients with type 1 diabetes. Nat Commun.
7(11463)2016.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Navarro-Tableros V, Gomez Y, Brizzi MF and
Camussi G: Generation of human stem cell-derived pancreatic
organoids (POs) for regenerative medicine. Adv Exp Med Biol.
1212:179–220. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Van de Casteele M, Leuckx G, Baeyens L,
Cai Y, Yuchi Y, Coppens V, De Groef S, Eriksson M, Svensson C,
Ahlgren U, et al: Neurogenin 3+ cells contribute to β-cell
neogenesis and proliferation in injured adult mouse pancreas. Cell
Death Dis. 4(e523)2013.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Lee SH, Hao E and Levine F: β-Cell
replication and islet neogenesis following partial pancreatectomy.
Islets. 3:188–195. 2011.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Gao R, Ustinov J, Korsgren O and Otonkoski
T: In vitro neogenesis of human islets reflects the plasticity of
differentiated human pancreatic cells. Diabetologia. 48:2296–2304.
2005.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Lechner A, Nolan AL, Blacken RA and
Habener JF: Redifferentiation of insulin-secreting cells after in
vitro expansion of adult human pancreatic islet tissue. Biochem
Biophys Res Commun. 327:581–588. 2005.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Gershengorn MC, Hardikar AA, Wei C,
Geras-Raaka E, Marcus-Samuels B and Raaka BM:
Epithelial-to-mesenchymal transition generates proliferative human
islet precursor cells. Science. 306:2261–2264. 2004.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Seaberg RM, Smukler SR, Kieffer TJ,
Enikolopov G, Asghar Z, Wheeler MB, Korbutt G and van der Kooy D:
Clonal identification of multipotent precursors from adult mouse
pancreas that generate neural and pancreatic lineages. Nat
Biotechnol. 22:1115–1124. 2004.PubMed/NCBI View
Article : Google Scholar
|
|
36
|
Bonner-Weir S, Toschi E, Inada A, Reitz P,
Fonseca SY, Aye T and Sharma A: The pancreatic ductal epithelium
serves as a potential pool of progenitor cells. Pediatr Diabetes. 5
(Suppl 2):S16–S22. 2004.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Otonkoski T, Gao R and Lundin K: Stem
cells in the treatment of diabetes. Ann Med. 37:513–520.
2005.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Corritore E, Lee YS, Sokal EM and Lysy PA:
β-cell replacement sources for type 1 diabetes: A focus on
pancreatic ductal cells. Ther Adv Endocrinol Metab. 7:182–199.
2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Ramiya VK, Maraist M, Arfors KE, Schatz
DA, Peck AB and Cornelius JG: Reversal of insulin-dependent
diabetes using islets generated in vitro from pancreatic stem
cells. Nat Med. 6:278–282. 2000.PubMed/NCBI View
Article : Google Scholar
|
|
40
|
Bonner-Weir S, Taneja M, Weir GC,
Tatarkiewicz K, Song KH, Sharma A and O'Neil JJ: In vitro
cultivation of human islets from expanded ductal tissue. Proc Natl
Acad Sci USA. 97:7999–8004. 2000.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Gmyr V, Belaich S, Muharram G, Lukowiak B,
Vandewalle B, Pattou F and Kerr-Conte J: Rapid purification of
human ductal cells from human pancreatic fractions with surface
antibody CA19-9. Biochem Biophys Res Commun. 320:27–33.
2004.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Lee J, Sugiyama T, Liu Y, Wang J, Gu X,
Lei J, Markmann JF, Miyazaki S, Miyazaki J, Szot GL, et al:
Expansion and conversion of human pancreatic ductal cells into
insulin-secreting endocrine cells. Elife. 2(e00940)2013.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Yatoh S, Dodge R, Akashi T, Omer A, Sharma
A, Weir GC and Bonner-Weir S: Differentiation of affinity-purified
human pancreatic duct cells to beta-cells. Diabetes. 56:1802–1809.
2007.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Rescan C, Le Bras S, Lefebvre VH, Frandsen
U, Klein T, Foschi M, Pipeleers DG, Scharfmann R, Madsen OD and
Heimberg H: EGF-induced proliferation of adult human pancreatic
duct cells is mediated by the MEK/ERK cascade. Lab Invest.
85:65–74. 2005.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Hoesli CA, Johnson JD and Piret JM:
Purified human pancreatic duct cell culture conditions defined by
serum-free high-content growth factor screening. PLoS One.
7(e33999)2012.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Abdel Aziz MT, El-Asmar MF, Rezq AM,
Mahfouz SM, Wassef MA, Fouad HH, Ahmed HH and Taha FM: The effect
of a novel curcumin derivative on pancreatic islet regeneration in
experimental type-1 diabetes in rats (long term study). Diabetol
Metab Syndr. 5(75)2013.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Stolovich-Rain M, Hija A, Grimsby J,
Glaser B and Dor Y: Pancreatic beta cells in very old mice retain
capacity for compensatory proliferation. J Biol Chem.
287:27407–27414. 2012.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Al-Hasani K, Pfeifer A, Courtney M,
Ben-Othman N, Gjernes E, Vieira A, Druelle N, Avolio F, Ravassard
P, Leuckx G, et al: Adult duct-lining cells can reprogram into
β-like cells able to counter repeated cycles of toxin-induced
diabetes. Dev Cell. 26:86–100. 2013.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Collombat P, Xu X, Ravassard P,
Sosa-Pineda B, Dussaud S, Billestrup N, Madsen OD, Serup P,
Heimberg H and Mansouri A: The ectopic expression of Pax4 in the
mouse pancreas converts progenitor cells into alpha and
subsequently beta cells. Cell. 138:449–462. 2009.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Pfeifer A, Courtney M, Ben-Othman N,
Al-Hasani K, Gjernes E, Vieira A, Druelle N, Avolio F, Faurite B,
Mansouri A and Collombat P: Induction of multiple cycles of
pancreatic β-cell replacement. Cell Cycle. 12:3243–3244.
2013.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Gu D and Sarvetnick N: Epithelial cell
proliferation and islet neogenesis in IFN-g transgenic mice.
Development. 118:33–46. 1993.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Wang TC, Bonner-Weir S, Oates PS, Chulak
M, Simon B, Merlino GT, Schmidt EV and Brand SJ: Pancreatic gastrin
stimulates islet differentiation of transforming growth factor
alpha-induced ductular precursor cells. J Clin Invest.
92:1349–1356. 1993.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Sancho R, Gruber R, Gu G and Behrens A:
Loss of Fbw7 reprograms adult pancreatic ductal cells into α, δ,
and β cells. Cell Stem Cell. 15:139–153. 2014.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Baeyens L, De Breuck S, Lardon J, Mfopou
JK, Rooman I and Bouwens L: In vitro generation of
insulin-producing beta cells from adult exocrine pancreatic cells.
Diabetologia. 48:49–57. 2005.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Baeyens L, Lemper M, Leuckx G, De Groef S,
Bonfanti P, Stangé G, Shemer R, Nord C, Scheel DW, Pan FC, et al:
Transient cytokine treatment induces acinar cell reprogramming and
regenerates functional beta cell mass in diabetic mice. Nat
Biotechnol. 32:76–83. 2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Rong Z, Wang M, Hu Z, Stradner M, Zhu S,
Kong H, Yi H, Goldrath A, Yang YG, Xu Y and Fu X: An effective
approach to prevent immune rejection of human ESC-derived
allografts. Cell Stem Cell. 14:121–130. 2014.PubMed/NCBI View Article : Google Scholar
|