Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
December-2022 Volume 17 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2022 Volume 17 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Multiple sclerosis and computational biology (Review)

  • Authors:
    • Io Diakou
    • Eleni Papakonstantinou
    • Louis Papageorgiou
    • Katerina Pierouli
    • Konstantina Dragoumani
    • Demetrios A. Spandidos
    • Flora Bacopoulou
    • George P. Chrousos
    • Georges Ν. Goulielmos
    • Elias Eliopoulos
    • Dimitrios Vlachakis
  • View Affiliations / Copyright

    Affiliations: Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece, University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece, Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
    Copyright: © Diakou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 96
    |
    Published online on: October 18, 2022
       https://doi.org/10.3892/br.2022.1579
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Multiple sclerosis (MS) is an autoimmune neurodegenerative disease whose prevalence has increased worldwide. The resultant symptoms may be debilitating and can substantially reduce the of patients. Computational biology, which involves the use of computational tools to answer biomedical questions, may provide the basis for novel healthcare approaches in the context of MS. The rapid accumulation of health data, and the ever‑increasing computational power and evolving technology have helped to modernize and refine MS research. From the discovery of novel biomarkers to the optimization of treatment and a number of quality‑of‑life enhancements for patients, computational biology methods and tools are shaping the field of MS diagnosis, management and treatment. The final goal in such a complex disease would be personalized medicine, i.e., providing healthcare services that are tailored to the individual patient, in accordance to the particular biology of their disease and the environmental factors to which they are subjected. The present review article summarizes the current knowledge on MS, modern computational biology and the impact of modern computational approaches of MS.
View Figures
View References

1 

Huang WJ, Chen WW and Zhang X: Multiple sclerosis: Pathology, diagnosis and treatments. Exp Ther Med. 13:3163–3166. 2017.PubMed/NCBI View Article : Google Scholar

2 

GBD 2016 Multiple Sclerosis Collaborators: Global, regional, and national burden of multiple sclerosis 1990-2016. A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 18:269–285. 2019.

3 

Cruz-Orengo L, Daniels BP, Dorsey D, Basak SA, Grajales-Reyes JG, McCandless EE, Piccio L, Schmidt RE, Cross AH, Crosby SD and Klein RS: Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility. J Clin Invest. 124:2571–2584. 2014.PubMed/NCBI View Article : Google Scholar

4 

Berger B, Daniels NM and Yu YW: Computational biology in the 21st century: Scaling with compressive algorithms. Commun ACM. 59:72–80. 2016.PubMed/NCBI View Article : Google Scholar

5 

Wang MD: In the spotlight: Bioinformatics, computational biology and systems biology. IEEE Rev Biomed Eng. 4:3–5. 2011.PubMed/NCBI View Article : Google Scholar

6 

Gu RX and Huang Z: Development and application of computational methods in biology and medicine. Curr MedChem. 26:7534–7536. 2020.PubMed/NCBI View Article : Google Scholar

7 

Vlachakis D, Fakourelis P, Megalooikonomou V, Makris C and Kossida S: DrugOn: A fully integrated pharmacophore modeling and structure optimization toolkit. PeerJ. 3(e725)2015.PubMed/NCBI View Article : Google Scholar

8 

Vlachakis D, Papakonstantinou E, Sagar R, Bacopoulou F, Exarchos T, Kourouthanassis P, Karyotis V, Vlamos P, Lyketsos C, Avramopoulos D and Mahairaki V: Improving the utility of polygenic risk scores as a biomarker for Alzheimer's disease. Cells. 10(1627)2021.PubMed/NCBI View Article : Google Scholar

9 

Shakhovska N, Fedushko S, Greguš M, Melnykova N, Shvorob I and Syerov Y: Big data analysis in development of personalized medical system. Procedia Comput Sci. 160:229–234. 2019.

10 

Moreno-Indias I, Lahti L, Nedyalkova M, Elbere I, Roshchupkin G, Adilovic M, Aydemir O, Bakir-Gungor B, Santa Pau EC, D'Elia D, et al: Statistical and machine learning techniques in human microbiome studies: Contemporary challenges and solutions. Front Microbiol. 12(635781)2021.PubMed/NCBI View Article : Google Scholar

11 

Goetz LH and Schork NJ: Personalized medicine: Motivation, challenges, and progress. Fertil Steril. 109:952–963. 2018.PubMed/NCBI View Article : Google Scholar

12 

Mathur S and Sutton J: Personalized medicine could transform healthcare. Biomed Rep. 7:3–5. 2017.PubMed/NCBI View Article : Google Scholar

13 

Titus HE, Chen Y, Podojil JR, Robinson AP, Balabanov R, Popko B and Miller SD: Pre-clinical and clinical implications of ‘inside-out’ vs ‘outside-in’ paradigms in multiple sclerosis etiopathogenesis. Front Cell Neurosci. 14(599717)2020.PubMed/NCBI View Article : Google Scholar

14 

Dulamea AO: Role of oligodendrocyte dysfunction in demyelination, remyelination and neurodegeneration in multiple sclerosis. Adv Exp Med Biol. 958:91–127. 2017.PubMed/NCBI View Article : Google Scholar

15 

Stys P and Tsutsui S: Recent advances in understanding multiple sclerosis. F1000Res 8: F1000 Faculty Rev-2100, 2019.

16 

Tillery EE, Clements JN and Howard Z: What's new in multiple sclerosis? Ment Health Clin. 7:213–220. 2018.PubMed/NCBI View Article : Google Scholar

17 

Dennison L, Brown M, Kirby S and Galea I: Do people with multiple sclerosis want to know their prognosis? A UK nationwide study. PLoS One. 13(e0193407)2018.PubMed/NCBI View Article : Google Scholar

18 

Bsteh G, Ehling R, Lutterotti A, Hegen H, Di Pauli F, Auer M, Deisenhammer F, Reindl M and Berger T: Long term clinical prognostic factors in relapsing-remitting multiple sclerosis: Insights from a 10-year observational study. PLoS One. 11(e0158978)2016.PubMed/NCBI View Article : Google Scholar

19 

Bosch GJ, Bolk J, Hart BA and Laman JD: Multiple sclerosis is linked to MAPKERK overactivity in microglia. J Mol Med (Berl). 99:1033–1042. 2021.PubMed/NCBI View Article : Google Scholar

20 

Garg N and Smith TW: An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 5(e00362)2015.PubMed/NCBI View Article : Google Scholar

21 

Canto E and Oksenberg JR: Multiple sclerosis genetics. Mult Scler. 24:75–79. 2018.PubMed/NCBI View Article : Google Scholar

22 

Guan Y, Jakimovski D, Ramanathan M, Weinstock-Guttman B and Zivadinov R: The role of Epstein-Barr virus in multiple sclerosis: From molecular pathophysiology to in vivo imaging. Neural Regen Res. 14:373–386. 2019.PubMed/NCBI View Article : Google Scholar

23 

Fernández-Menéndez S, Fernández-Morán M, Fernández-Vega I, Pérez-Álvarez A and Villafani-Echazú J: Epstein-Barr virus and multiple sclerosis. From evidence to therapeutic strategies. J Neurol Sci. 361:213–219. 2016.PubMed/NCBI View Article : Google Scholar

24 

Ascherio A: Environmental factors in multiple sclerosis. Expert Rev Neurother. 13 (Suppl 12):S3–S9. 2013.PubMed/NCBI View Article : Google Scholar

25 

Zhang P, Wang R, Li Z, Wang Y, Gao C, Lv X, Song Y and Li B: The risk of smoking on multiple sclerosis: A meta-analysis based on 20,626 cases from case-control and cohort studies. PeerJ. 4(e1797)2016.PubMed/NCBI View Article : Google Scholar

26 

Hunter SF: Overview and diagnosis of multiple sclerosis. Am J Manag Care. 22 (Suppl 6):s141–s150. 2016.PubMed/NCBI

27 

Ford H: Clinical presentation and diagnosis of multiple sclerosis. Clin Med (Lond). 20:380–383. 2020.PubMed/NCBI View Article : Google Scholar

28 

Ziemssen T, Akgün K and Brück W: Molecular biomarkers in multiple sclerosis. J Neuroinflammation. 16(272)2019.PubMed/NCBI View Article : Google Scholar

29 

Paul A, Comabella M and Gandhi R: Biomarkers in multiple sclerosis. Cold Spring Harb Perspect Med. 9(a029058)2018.PubMed/NCBI View Article : Google Scholar

30 

Dennison L, McCloy Smith E, Bradbury K and Galea I: How do people with multiple sclerosis experience prognostic uncertainty and prognosis communication? A qualitative study. PLoS One. 11(e0158982)2016.PubMed/NCBI View Article : Google Scholar

31 

Traboulsee AL, Cornelisseª P, Sandberg-Wollheim M, Uitdehaag BM, Kappos L, Jongen PJ, Constantinescu CS, di Cantogno EV and Li DK: Prognostic factors for long-term outcomes in relapsing-remitting multiple sclerosis. Mult Scler J Exp Transl Clin. 2(2055217316666406)2016.PubMed/NCBI View Article : Google Scholar

32 

Hauser SL and Cree BAC: Treatment of multiple sclerosis: A review. Am J Med. 133:1380–1390.e2. 2020.PubMed/NCBI View Article : Google Scholar

33 

Gajofatto A and Benedetti MD: Treatment strategies for multiple sclerosis: When to start, when to change, when to stop? World J Clin Cases. 3:545–555. 2015.PubMed/NCBI View Article : Google Scholar

34 

Klotz L, Eschborn M, Lindner M, Liebmann M, Herold M, Janoschka C, Torres Garrido B, Schulte-Mecklenbeck A, Gross CC, Breuer J, et al: Teriflunomide treatment for multiple sclerosis modulates T cell mitochondrial respiration with affinity-dependent effects. Sci Transl Med. 11(eaao5563)2019.PubMed/NCBI View Article : Google Scholar

35 

Naismith RT, Wundes A, Ziemssen T, Jasinska E, Freedman MS, Lembo AJ, Selmaj K, Bidollari I, Chen H, Hanna J, et al: Diroximel fumarate demonstrates an improved gastrointestinal tolerability profile compared with dimethyl fumarate in patients with relapsing-remitting multiple sclerosis: Results from the randomized, double-blind, phase III EVOLVE-MS-2 study. CNS Drugs. 34:185–196. 2020.PubMed/NCBI View Article : Google Scholar

36 

Montalban X, Arnold DL, Weber MS, Staikov I, Piasecka-Stryczynska K, Willmer J, Martin EC, Dangond F, Syed S and Wolinsky JS: Evobrutinib Phase 2 Study Group. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med. 380:2406–2417. 2019.PubMed/NCBI View Article : Google Scholar

37 

Torke S and Weber MS: Inhibition of Bruton´s tyrosine kinase as a novel therapeutic approach in multiple sclerosis. Expert Opin Investig Drugs. 29:1143–1150. 2020.PubMed/NCBI View Article : Google Scholar

38 

Weber M, Harp C, Bremer M, Goodyear A, Crawford J, Johnson A and Bar-Or A: Fenebrutinib demonstrates the highest potency of bruton tyrosine kinase inhibitors (BTKis) in phase 3 clinical development for multiple sclerosis (MS) (4437). Neurology. 96 (Suppl 15)(S4437)2021.

39 

Klistorner A and Barnett M: Remyelination trials: Are we expecting the unexpected? Neurol Neuroimmunol Neuroinflamm. 8(e1066)2021.PubMed/NCBI View Article : Google Scholar

40 

Faraco G, Cavone L and Chiarugi A: The therapeutic potential of HDAC inhibitors in the treatment of multiple sclerosis. Mol Med. 17:442–447. 2011.PubMed/NCBI View Article : Google Scholar

41 

Bae D, Lee JY, Ha N, Park J, Baek J, Suh D, Lim HS, Ko SM, Kim T, Som Jeong D and Son WC: CKD-506: A novel HDAC6-selective inhibitor that exerts therapeutic effects in a rodent model of multiple sclerosis. Sci Rep. 11(14466)2021.PubMed/NCBI View Article : Google Scholar

42 

Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA and Ferrari R: Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Brief Bioinform. 19:286–302. 2018.PubMed/NCBI View Article : Google Scholar

43 

Li Y and Chen L: Big biological data: Challenges and opportunities. Genomics Proteomics Bioinformatics. 12:187–189. 2014.PubMed/NCBI View Article : Google Scholar

44 

Sousa SA, Leitão JH, Martins RC, Sanches JM, Suri JS and Giorgetti A: Bioinformatics applications in life sciences and technologies. Biomed Res Int. 2016(3603827)2016.PubMed/NCBI View Article : Google Scholar

45 

Vlachakis D, Tsagrasoulis D, Megalooikonomou V and Kossida S: Introducing drugster: A comprehensive and fully integrated drug design, lead and structure optimization toolkit. Bioinformatics. 29:126–128. 2013.PubMed/NCBI View Article : Google Scholar

46 

Koumandou VL, Papageorgiou L, Picasi E, Mantzouni D, Raftopoulou S, Ramm M, Papathanassopoulou A, Hagidimitriou M, Cosmidis N and Vlachakis D: Genomic analysis of the endosymbiotic bacterium candidatus erwinia dacicola provides insights for the management of the olive pest Bactrocera oleae. J Biotechnol. 280(S13)2018.

47 

Rodin AS, Gogoshin G and Boerwinkle E: Systems biology data analysis methodology in pharmacogenomics. Pharmacogenomics. 12:1349–1360. 2011.PubMed/NCBI View Article : Google Scholar

48 

Wierling C, Herwig R and Lehrach H: Resources, standards and tools for systems biology. Brief Funct Genomic Proteomic. 6:240–251. 2007.PubMed/NCBI View Article : Google Scholar

49 

Hillmer RA: Systems biology for biologists. PLoS Pathog. 11(e1004786)2015.PubMed/NCBI View Article : Google Scholar

50 

Wood LB, Winslow AR and Strasser SD: Systems biology of neurodegenerative diseases. Integr Biol (Camb). 7:758–775. 2015.PubMed/NCBI View Article : Google Scholar

51 

Merelli I, Pérez-Sánchez H, Gesing S and D'Agostino D: Managing, analysing, and integrating big data in medical bioinformatics: Open problems and future perspectives. Biomed Res Int. 2014(134023)2014.PubMed/NCBI View Article : Google Scholar

52 

Rehman HU, Khan A and Habib U: Fog computing for bioinformatics applications. Fog Computing, pp529-546, 2020.

53 

Amisha Malik P, Pathania M and Rathaur VK: Overview of artificial intelligence in medicine. J Family Med Prim Care. 8:2328–2331. 2019.PubMed/NCBI View Article : Google Scholar

54 

Chakraborty I, Choudhury A and Banerjee TS: Artificial intelligence in biological data. J Inform Tech Softw Eng. 7:1–6. 2017.

55 

Luo J, Wu M, Gopukumar D and Zhao Y: Big data application in biomedical research and health care: A literature review. Biomed Inform Insights. 8:1–10. 2016.PubMed/NCBI View Article : Google Scholar

56 

Bohr A and Memarzadeh K: The rise of artificial intelligence in healthcare applications. Artificial Intelligence in Healthcare, pp25-60, 2020.

57 

Barrett M, Boyne J, Brandts J, Brunner-La Rocca HP, De Maesschalck L, De Wit K, Dixon L, Eurlings C, Fitzsimons D, Golubnitschaja O, et al: Artificial intelligence supported patient self-care in chronic heart failure: A paradigm shift from reactive to predictive, preventive and personalised care. EPMA J. 10:445–464. 2019.PubMed/NCBI View Article : Google Scholar

58 

Tahri Sqalli M and Al-Thani D: On how chronic conditions affect the patient-AI interaction: A literature review. Healthcare (Basel). 8(313)2020.PubMed/NCBI View Article : Google Scholar

59 

Khakpour A and Colomo-Palacios R: Convergence of gamification and machine learning: A systematic literature review. Technol Knowl Learn. 26:597–636. 2021.

60 

Hulse JV, Khoshgoftaar TM and Napolitano A: Experimental perspectives on learning from imbalanced data. In: Proceedings of the 24th International Conference on Machine Learning (ICML 2007). ACM, New York, pp935-942, 2007.

61 

Richter AN and Khoshgoftaar TM: Sample size determination for biomedical big data with limited labels. Netw Model Anal Health Inform Bioinforma. 9(12)2020.

62 

McShane LM and Polley MYC: Development of omics-based clinical tests for prognosis and therapy selection: The challenge of achieving statistical robustness and clinical utility. Clin Trials. 10:653–665. 2013.PubMed/NCBI View Article : Google Scholar

63 

Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A, Levenez F, Tramontano M, Driessen M, Hercog R, Jung FE, et al: Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol. 35:1069–1076. 2017.PubMed/NCBI View Article : Google Scholar

64 

Tam V, Patel N, Turcotte M, Bossé Y, Paré G and Meyre D: Benefits and limitations of genome-wide association studies. Nat Rev Genet. 20:467–484. 2019.PubMed/NCBI View Article : Google Scholar

65 

Cotsapas C and Mitrovic M: Genome-wide association studies of multiple sclerosis. Clin Transl Immunology. 7(e1018)2018.PubMed/NCBI View Article : Google Scholar

66 

Baranzini SE and Oksenberg JR: The genetics of multiple sclerosis: From 0 to 200 in 50 years. Trends Genet. 33:960–970. 2017.PubMed/NCBI View Article : Google Scholar

67 

Zhang C, Shang G, Gui X, Zhang X, Bai XC and Chen ZJ: Structural basis of STING binding with and phosphorylation by TBK1. Nature. 567:394–398. 2019.PubMed/NCBI View Article : Google Scholar

68 

Cervantes-Gracia K and Husi H: Integrative analysis of multiple sclerosis using a systems biology approach. Sci Rep. 8(5633)2018.PubMed/NCBI View Article : Google Scholar

69 

Chimusa ER, Dalvie S, Dandara C, Wonkam A and Mazandu GK: Post genome-wide association analysis: Dissecting computational pathway/network-based approaches. Brief Bioinform. 20:690–700. 2019.PubMed/NCBI View Article : Google Scholar

70 

Muñoz-Culla M, Irizar H and Otaegui D: The genetics of multiple sclerosis: Review of current and emerging candidates. Appl Clin Genet. 6:63–73. 2013.PubMed/NCBI View Article : Google Scholar

71 

Rodriguez-Esteban R and Jiang X: Differential gene expression in disease: A comparison between high-throughput studies and the literature. BMC Med Genomics. 10(59)2017.PubMed/NCBI View Article : Google Scholar

72 

Paraboschi EM, Cardamone G, Rimoldi V, Gemmati D, Spreafico M, Duga S, Soldà G and Asselta R: Meta-analysis of multiple sclerosis microarray data reveals dysregulation in RNA splicing regulatory genes. Int J Mol Sci. 16:23463–23481. 2015.PubMed/NCBI View Article : Google Scholar

73 

Liu M, Hou X, Zhang P, Hao Y, Yang Y, Wu X, Zhu D and Guan Y: Microarray gene expression profiling analysis combined with bioinformatics in multiple sclerosis. Mol Biol Rep. 40:3731–3737. 2013.PubMed/NCBI View Article : Google Scholar

74 

International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 365(eaav7188)2019.PubMed/NCBI View Article : Google Scholar

75 

Shang Z, Sun W, Zhang M, Xu L, Jia X, Zhang R and Fu S: Identification of key genes associated with multiple sclerosis based on gene expression data from peripheral blood mononuclear cells. PeerJ. 8(e8357)2020.PubMed/NCBI View Article : Google Scholar

76 

Villoslada P and Baranzini S: Data integration and systems biology approaches for biomarker discovery: Challenges and opportunities for multiple sclerosis. J Neuroimmunol. 248:58–65. 2012.PubMed/NCBI View Article : Google Scholar

77 

Tomioka R and Matsui M: Biomarkers for multiple sclerosis. Intern Med. 53:361–365. 2014.PubMed/NCBI View Article : Google Scholar

78 

Gul M, Jafari AA, Shah M, Mirmoeeni S, Haider SU, Moinuddin S and Chaudhry A: Molecular biomarkers in multiple sclerosis and its related disorders: A critical review. Int J Mol Sci. 21(6020)2020.PubMed/NCBI View Article : Google Scholar

79 

Harris VK, Tuddenham JF and Sadiq SA: Biomarkers of multiple sclerosis: Current findings. Degener Neurol Neuromuscul Dis. 7:19–29. 2017.PubMed/NCBI View Article : Google Scholar

80 

Afzal HMR, Luo S, Ramadan S and Lechner-Scott J: The emerging role of artificial intelligence in multiple sclerosis imaging. Mult Scler. 28:849–858. 2022.PubMed/NCBI View Article : Google Scholar

81 

Arani LA, Hosseini A, Asadi F, Masoud SA and Nazemi E: Intelligent computer systems for multiple sclerosis diagnosis: A systematic review of reasoning techniques and methods. Acta Inform Med. 26:258–264. 2018.PubMed/NCBI View Article : Google Scholar

82 

Ion-Mărgineanu A, Kocevar G, Stamile C, Sima DM, Durand-Dubief F, Van Huffel S and Sappey-Marinier D: Machine learning approach for classifying multiple sclerosis courses by combining clinical data with lesion loads and magnetic resonance metabolic features. Front Neurosci. 11(398)2017.PubMed/NCBI View Article : Google Scholar

83 

Roca P, Attye A, Colas L, Tucholka A, Rubini P, Cackowski S, Ding J, Budzik JF, Renard F, Doyle S, et al: Artificial intelligence to predict clinical disability in patients with multiple sclerosis using FLAIR MRI. Diagn Interv Imaging. 101:795–802. 2020.PubMed/NCBI View Article : Google Scholar

84 

Saccà V, Sarica A, Novellino F, Barone S, Tallarico T, Filippelli E, Granata A, Chiriaco C, Bruno Bossio R, Valentino P and Quattrone A: Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data. Brain Imaging Behav. 13:1103–1114. 2019.PubMed/NCBI View Article : Google Scholar

85 

Brosch T, Tang LY, Yoo Y, Li DK, Traboulsee A and Tam R: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging. 35:1229–1239. 2016.PubMed/NCBI View Article : Google Scholar

86 

Nedjati-Gilani GL, Schneider T, Hall MG, Cawley N, Hill I, Ciccarelli O, Drobnjak I, Wheeler-Kingshott CAMG and Alexander DC: Machine learning based compartment models with permeability for white matter microstructure imaging. NeuroImage. 150:119–135. 2017.PubMed/NCBI View Article : Google Scholar

87 

Branco D, di Martino B, Esposito A, Tedeschi G, Bonavita S and Lavorgna L: Machine learning techniques for prediction of multiple sclerosis progression. Soft Comput. 26:12041–12055. 2022.PubMed/NCBI View Article : Google Scholar

88 

Kocevar G, Stamile C, Hannoun S, Cotton F, Vukusic S, Durand-Dubief F and Sappey-Marinier D: Graph theory-based brain connectivity for automatic classification of multiple sclerosis clinical courses. Front Neurosci. 10(478)2016.PubMed/NCBI View Article : Google Scholar

89 

Eshaghi A, Young AL, Wijeratne PA, Prados F, Arnold DL, Narayanan S, Guttmann CRG, Barkhof F, Alexander DC, Thompson AJ, et al: Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat Commun. 12(2078)2021.PubMed/NCBI View Article : Google Scholar

90 

Tommasin S, Cocozza S, Taloni A, Giannì C, Petsas N, Pontillo G, Petracca M, Ruggieri S, De Giglio L, Pozzilli C, et al: Machine learning classifier to identify clinical and radiological features relevant to disability progression in multiple sclerosis. J Neurol. 268:4834–4845. 2021.PubMed/NCBI View Article : Google Scholar

91 

Derfuss T: Personalized medicine in multiple sclerosis: Hope or reality? BMC Med. 10(116)2012.PubMed/NCBI View Article : Google Scholar

92 

Hansen MR and Okuda DT: Precision medicine for multiple sclerosis promotes preventative medicine. Ann NY Acad Sci. 1420:62–71. 2018.PubMed/NCBI View Article : Google Scholar

93 

Schork NJ: Artificial intelligence and personalized medicine. Cancer Treat Res. 178:265–283. 2019.PubMed/NCBI View Article : Google Scholar

94 

Chase HS, Mitrani LR, Lu GG and Fulgieri DJ: Early recognition of multiple sclerosis using natural language processing of the electronic health record. BMC Med Inform Decis Mak. 17(24)2017.PubMed/NCBI View Article : Google Scholar

95 

Zhao Y, Healy BC, Rotstein D, Guttmann CR, Bakshi R, Weiner HL, Brodley CE and Chitnis T: Exploration of machine learning techniques in predicting multiple sclerosis disease course. PLoS One. 12(e0174866)2017.PubMed/NCBI View Article : Google Scholar

96 

Ziemssen T, Kern R, Voigt I and Haase R: Data collection in multiple sclerosis: The MSDS approach. Front Neurol. 11(445)2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Diakou I, Papakonstantinou E, Papageorgiou L, Pierouli K, Dragoumani K, Spandidos DA, Bacopoulou F, Chrousos GP, Goulielmos GΝ, Eliopoulos E, Eliopoulos E, et al: Multiple sclerosis and computational biology (Review). Biomed Rep 17: 96, 2022.
APA
Diakou, I., Papakonstantinou, E., Papageorgiou, L., Pierouli, K., Dragoumani, K., Spandidos, D.A. ... Vlachakis, D. (2022). Multiple sclerosis and computational biology (Review). Biomedical Reports, 17, 96. https://doi.org/10.3892/br.2022.1579
MLA
Diakou, I., Papakonstantinou, E., Papageorgiou, L., Pierouli, K., Dragoumani, K., Spandidos, D. A., Bacopoulou, F., Chrousos, G. P., Goulielmos, G. Ν., Eliopoulos, E., Vlachakis, D."Multiple sclerosis and computational biology (Review)". Biomedical Reports 17.6 (2022): 96.
Chicago
Diakou, I., Papakonstantinou, E., Papageorgiou, L., Pierouli, K., Dragoumani, K., Spandidos, D. A., Bacopoulou, F., Chrousos, G. P., Goulielmos, G. Ν., Eliopoulos, E., Vlachakis, D."Multiple sclerosis and computational biology (Review)". Biomedical Reports 17, no. 6 (2022): 96. https://doi.org/10.3892/br.2022.1579
Copy and paste a formatted citation
x
Spandidos Publications style
Diakou I, Papakonstantinou E, Papageorgiou L, Pierouli K, Dragoumani K, Spandidos DA, Bacopoulou F, Chrousos GP, Goulielmos GΝ, Eliopoulos E, Eliopoulos E, et al: Multiple sclerosis and computational biology (Review). Biomed Rep 17: 96, 2022.
APA
Diakou, I., Papakonstantinou, E., Papageorgiou, L., Pierouli, K., Dragoumani, K., Spandidos, D.A. ... Vlachakis, D. (2022). Multiple sclerosis and computational biology (Review). Biomedical Reports, 17, 96. https://doi.org/10.3892/br.2022.1579
MLA
Diakou, I., Papakonstantinou, E., Papageorgiou, L., Pierouli, K., Dragoumani, K., Spandidos, D. A., Bacopoulou, F., Chrousos, G. P., Goulielmos, G. Ν., Eliopoulos, E., Vlachakis, D."Multiple sclerosis and computational biology (Review)". Biomedical Reports 17.6 (2022): 96.
Chicago
Diakou, I., Papakonstantinou, E., Papageorgiou, L., Pierouli, K., Dragoumani, K., Spandidos, D. A., Bacopoulou, F., Chrousos, G. P., Goulielmos, G. Ν., Eliopoulos, E., Vlachakis, D."Multiple sclerosis and computational biology (Review)". Biomedical Reports 17, no. 6 (2022): 96. https://doi.org/10.3892/br.2022.1579
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team