Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
March-2023 Volume 18 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2023 Volume 18 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

(−)‑Epigallocatechin‑3‑O‑gallate upregulates the expression levels of miR‑6757‑3p, a suppressor of fibrosis‑related gene expression, in extracellular vesicles derived from human umbilical vein endothelial cells

  • Authors:
    • Motoki Murata
    • Yuki Marugame
    • Mai Morozumi
    • Kyosuke Murata
    • Motofumi Kumazoe
    • Yoshinori Fujimura
    • Hirofumi Tachibana
  • View Affiliations / Copyright

    Affiliations: Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819‑0395, Japan
    Copyright: © Murata et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 19
    |
    Published online on: January 23, 2023
       https://doi.org/10.3892/br.2023.1601
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

As pulmonary fibrosis (PF), a severe interstitial pulmonary disease, has such a poor prognosis, the development of prevention and treatment methods is imperative. (−)‑Epigallocatechin‑3‑O‑gallate (EGCG), one of the major catechins in green tea, exerts an antifibrotic effect, although its mechanism remains unclear. Recently, it has been reported that microRNAs (miRNAs or miRs) transported by extracellular vesicles (EVs) from vascular endothelial cells (VECs) are involved in PF. In the present study, the effects of EGCG on the expression of miRNAs in EVs derived from human umbilical vein endothelial cells (HUVECs) were assessed and miRNAs with antifibrotic activity were identified. miRNA microarray analysis revealed that EGCG modulated the expression levels of 31 miRNAs (a total of 27 miRNAs were upregulated, and 4 miRNAs were downregulated.) in EVs from HUVECs. Furthermore, TargetScan analysis indicated that miR‑6757‑3p in particular, which exhibited the highest degree of change, may target transforming growth factor‑β (TGF‑β) receptor 1 (TGFBR1). To evaluate the effects of miR‑6757‑3p on TGFBR1 expression, human fetal lung fibroblasts (HFL‑1) were transfected with an miR‑6757‑3p mimic. The results demonstrated that the miR‑6757‑3p mimic downregulated the expression of TGFBR1 as well the expression levels of fibrosis‑related genes including fibronectin and α‑smooth muscle actin in TGF‑β‑treated HFL‑1 cells. In summary, EGCG upregulated the expression levels of miR‑6757‑3p, which may target TGFBR1 and downregulate fibrosis‑related genes, in EVs derived from VECs.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Wuyts WA, Agostini C, Antoniou KM, Bouros D, Chambers RC, Cottin V, Egan JJ, Lambrecht BN, Lories R, Parfrey H, et al: The pathogenesis of pulmonary fibrosis: a moving target. Eur Respir J. 41:1207–1218. 2013.PubMed/NCBI View Article : Google Scholar

2 

Thannickal VJ, Toews GB, White ES, Lynch JP III and Martinez FJ: Mechanisms of pulmonary fibrosis. Annu Rev Med. 55:395–417. 2004.PubMed/NCBI View Article : Google Scholar

3 

Richeldi L, Collard HR and Jones MG: Idiopathic pulmonary fibrosis. Lancet. 389:1941–1952. 2017.PubMed/NCBI View Article : Google Scholar

4 

Bouros D and Antoniou KM: Current and future therapeutic approaches in idiopathic pulmonary fibrosis. Eur Respir J. 26:693–703. 2005.PubMed/NCBI View Article : Google Scholar

5 

Luppi F, Cerri S, Beghè B, Fabbri LM and Richeldi L: Corticosteroid and immunomodulatory agents in idiopathic pulmonary fibrosis. Respir Med. 98:1035–1044. 2004.PubMed/NCBI View Article : Google Scholar

6 

Zamora-Ros R, Achaintre D, Rothwell JA, Rinaldi S, Assi N, Ferrari P, Leitzmann M, Boutron-Ruault MC, Fagherazzi G, Auffret A, et al: Urinary excretions of 34 dietary polyphenols and their associations with lifestyle factors in the EPIC cohort study. Sci Rep. 6(26905)2016.PubMed/NCBI View Article : Google Scholar

7 

van Dam RM, Naidoo N and Landberg R: Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: Review of recent findings. Curr Opin Lipidol. 24:25–33. 2013.PubMed/NCBI View Article : Google Scholar

8 

Wang X, Ouyang YY, Liu J and Zhao G: Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. Br J Nutr. 111:1–11. 2014.PubMed/NCBI View Article : Google Scholar

9 

Xing L, Zhang H, Qi R, Tsao R and Mine Y: Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J Agric Food Chem. 67:1029–1043. 2019.PubMed/NCBI View Article : Google Scholar

10 

Azambuja JH, Mancuso RI, Via FID, Torello CO and Saad STO: Protective effect of green tea and epigallocatechin-3-gallate in a LPS-induced systemic inflammation model. J Nutr Biochem. 101(108920)2022.PubMed/NCBI View Article : Google Scholar

11 

Sae-tan S, Grove KA and Lambert JD: Weight control and prevention of metabolic syndrome by green tea. Pharmacol Res. 64:146–154. 2011.PubMed/NCBI View Article : Google Scholar

12 

Tsai CF, Hsu YW, Ting HC, Huang CF and Yen CC: The in vivo antioxidant and antifibrotic properties of green tea (Camellia sinensis, Theaceae). Food Chem. 136:1337–1344. 2013.PubMed/NCBI View Article : Google Scholar

13 

Wei H, Ge Q, Zhang LY, Xie J, Gan RH, Lu YG and Zheng DL: EGCG inhibits growth of tumoral lesions on lip and tongue of K-Ras transgenic mice through the Notch pathway. J Nutr Biochem. 99(108843)2022.PubMed/NCBI View Article : Google Scholar

14 

Wang M, Zhong H, Zhang X, Huang X, Wang J, Li Z, Chen M and Xiao Z: EGCG promotes PRKCA expression to alleviate LPS-induced acute lung injury and inflammatory response. Sci Rep. 11(11014)2021.PubMed/NCBI View Article : Google Scholar

15 

Meng J, Chen Y, Wang J, Qiu J, Chang C, Bi F, Wu X and Liu W: EGCG protects vascular endothelial cells from oxidative stress-induced damage by targeting the autophagy-dependent PI3K-AKT-mTOR pathway. Ann Transl Med. 8(200)2020.PubMed/NCBI View Article : Google Scholar

16 

Sriram N, Kalayarasan S and Sudhandiran G: Epigallocatechin-3-gallate exhibits anti-fibrotic effect by attenuating bleomycin-induced glycoconjugates, lysosomal hydrolases and ultrastructural changes in rat model pulmonary fibrosis. Chem Biol Interact. 180:271–280. 2009.PubMed/NCBI View Article : Google Scholar

17 

Sriram N, Kalayarasan S and Sudhandiran G: Enhancement of antioxidant defense system by epigallocatechin-3-gallate during bleomycin induced experimental pulmonary fibrosis. Biol Pharm Bull. 31:1306–1311. 2008.PubMed/NCBI View Article : Google Scholar

18 

Cai Y, Yu X, Hu S and Yu J: A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 7:147–154. 2009.PubMed/NCBI View Article : Google Scholar

19 

Shenoy A and Blelloch RH: Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol. 15:565–576. 2014.PubMed/NCBI View Article : Google Scholar

20 

Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS, Merkwirth C, Kashkar H, Olkkonen VM, Böttger T, et al: Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol. 13:434–446. 2011.PubMed/NCBI View Article : Google Scholar

21 

Nejad C, Stunden HJ and Gantier MP: A guide to miRNAs in inflammation and innate immune responses. FEBS J. 285:3695–3716. 2018.PubMed/NCBI View Article : Google Scholar

22 

O'Reilly S: MicroRNAs in fibrosis: Opportunities and challenges. Arthritis Res Ther. 18(11)2016.PubMed/NCBI View Article : Google Scholar

23 

Bayraktar R, Van Roosbroeck K and Calin GA: Cell-to-cell communication: microRNAs as hormones. Mol Oncol. 11:1673–1686. 2017.PubMed/NCBI View Article : Google Scholar

24 

Xie H, Gao YM, Zhang YC, Jia MW, Peng F, Meng QH and Wang YC: Low let-7d exosomes from pulmonary vascular endothelial cells drive lung pericyte fibrosis through the TGFβRI/FoxM1/Smad/β-catenin pathway. J Cell Mol Med. 24:13913–13926. 2020.PubMed/NCBI View Article : Google Scholar

25 

Joven J, Espinel E, Rull A, Aragonès G, Rodríguez-Gallego E, Camps J, Micol V, Herranz-López M, Menéndez JA, Borrás I, et al: Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice. Biochim Biophys Acta. 1820:894–899. 2012.PubMed/NCBI View Article : Google Scholar

26 

Gismondi A, Nanni V, Monteleone V, Colao C, Di Marco G and Canini A: Plant miR171 modulates mTOR pathway in HEK293 cells by targeting GNA12. Mol Biol Rep. 48:435–449. 2021.PubMed/NCBI View Article : Google Scholar

27 

Cione E, La Torre C, Cannataro R, Caroleo MC, Plastina P and Gallelli L: Quercetin, epigallocatechin gallate, curcumin, and resveratrol: From dietary sources to human MicroRNA modulation. Molecules. 25(63)2019.PubMed/NCBI View Article : Google Scholar

28 

Ou HC, Song TY, Yeh YC, Huang CY, Yang SF, Chiu TH, Tsai KL, Chen KL, Wu YJ, Tsai CS, et al: EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signaling. J Appl Physiol (1985). 108:1745–1756. 2010.PubMed/NCBI View Article : Google Scholar

29 

Kanlaya R, Peerapen P, Nilnumkhum A, Plumworasawat S, Sueksakit K and Thongboonkerd V: Epigallocatechin-3-gallate prevents TGF-β1-induced epithelial-mesenchymal transition and fibrotic changes of renal cells via GSK-3β/β-catenin/Snail1 and Nrf2 pathways. J Nutr Biochem. 76(108266)2020.PubMed/NCBI View Article : Google Scholar

30 

Marugame Y, Takeshita N, Yamada S, Yoshitomi R, Kumazoe M, Fujimura Y and Tachibana H: Sesame lignans upregulate glutathione S-transferase expression and downregulate microRNA-669c-3p. Biosci Microbiota Food Health. 41:66–72. 2022.PubMed/NCBI View Article : Google Scholar

31 

Tan Z, Jiang X, Zhou W, Deng B, Cai M, Deng S, Xu Y, Ding W, Chen G, Chen R, et al: Taohong siwu decoction attenuates myocardial fibrosis by inhibiting fibrosis proliferation and collagen deposition via TGFBR1 signaling pathway. J Ethnopharmacol. 270(113838)2021.PubMed/NCBI View Article : Google Scholar

32 

Xu Z, He B, Jiang Y, Zhang M, Tian Y, Zhou N, Zhou Y, Chen M, Tang M, Gao J and Peng F: Igf2bp2 knockdown improves CCl4-induced liver fibrosis and TGF-β-activated mouse hepatic stellate cells by regulating Tgfbr1. Int Immunopharmacol. 110(108987)2022.PubMed/NCBI View Article : Google Scholar

33 

Schnaper HW, Hayashida T and Poncelet AC: It's a Smad world: Regulation of TGF-beta signaling in the kidney. J Am Soc Nephrol. 13:1126–1128. 2002.PubMed/NCBI View Article : Google Scholar

34 

Sonnylal S, Denton CP, Zheng B, Keene DR, He R, Adams HP, Vanpelt CS, Geng YJ, Deng JM, Behringer RR and de Crombrugghe B: Postnatal induction of transforming growth factor beta signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis Rheum. 56:334–344. 2007.PubMed/NCBI View Article : Google Scholar

35 

Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ, et al: Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest. 127:3770–3783. 2017.PubMed/NCBI View Article : Google Scholar

36 

Masuda A, Nakamura T, Abe M, Iwamoto H, Sakaue T, Tanaka T, Suzuki H, Koga H and Torimura T: Promotion of liver regeneration and anti-fibrotic effects of the TGF-β receptor kinase inhibitor galunisertib in CCl4-treated mice. Int J Mol Med. 46:427–438. 2020.PubMed/NCBI View Article : Google Scholar

37 

Li J, Yue S, Fang J, Zeng J, Chen S, Tian J, Nie S, Liu X and Ding H: MicroRNA-10a/b inhibit TGF-β/Smad-induced renal fibrosis by targeting TGF-β receptor 1 in diabetic kidney disease. Mol Ther Nucleic Acids. 28:488–499. 2022.PubMed/NCBI View Article : Google Scholar

38 

Mittal S, Inamdar S, Acharya J, Pekhale K, Kalamkar S, Boppana R and Ghaskadbi S: miR-3666 inhibits development of hepatic steatosis by negatively regulating PPARγ. Biochim Biophys Acta Mol Cell Biol Lipids. 1865(158777)2020.PubMed/NCBI View Article : Google Scholar

39 

Naito Y, Ushiroda C, Mizushima K, Inoue R, Yasukawa Z, Abe A and Takagi T: Epigallocatechin-3-gallate (EGCG) attenuates non-alcoholic fatty liver disease via modulating the interaction between gut microbiota and bile acids. J Clin Biochem Nutr. 67:2–9. 2020.PubMed/NCBI View Article : Google Scholar

40 

Salehi M and Sharifi M: Exosomal miRNAs as novel cancer biomarkers: Challenges and opportunities. J Cell Physiol. 233:6370–6380. 2018.PubMed/NCBI View Article : Google Scholar

41 

Byun EB, Kim WS, Sung NY and Byun EH: Epigallocatechin-3-gallate regulates anti-inflammatory action through 67-kDa laminin receptor-mediated tollip signaling induction in lipopolysaccharide-stimulated human intestinal epithelial cells. Cell Physiol Biochem. 46:2072–2081. 2018.PubMed/NCBI View Article : Google Scholar

42 

Tachibana H, Koga K, Fujimura Y and Yamada K: A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol. 11:380–381. 2004.PubMed/NCBI View Article : Google Scholar

43 

Yamada S, Tsukamoto S, Huang Y, Makio A, Kumazoe M, Yamashita S and Tachibana H: Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b expression by activating 67-kDa laminin receptor signaling in melanoma cells. Sci Rep. 6(19225)2016.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Murata M, Marugame Y, Morozumi M, Murata K, Kumazoe M, Fujimura Y and Tachibana H: (−)‑Epigallocatechin‑3‑<em>O</em>‑gallate upregulates the expression levels of miR‑6757‑3p, a suppressor of fibrosis‑related gene expression, in extracellular vesicles derived from human umbilical vein endothelial cells. Biomed Rep 18: 19, 2023.
APA
Murata, M., Marugame, Y., Morozumi, M., Murata, K., Kumazoe, M., Fujimura, Y., & Tachibana, H. (2023). (−)‑Epigallocatechin‑3‑<em>O</em>‑gallate upregulates the expression levels of miR‑6757‑3p, a suppressor of fibrosis‑related gene expression, in extracellular vesicles derived from human umbilical vein endothelial cells. Biomedical Reports, 18, 19. https://doi.org/10.3892/br.2023.1601
MLA
Murata, M., Marugame, Y., Morozumi, M., Murata, K., Kumazoe, M., Fujimura, Y., Tachibana, H."(−)‑Epigallocatechin‑3‑<em>O</em>‑gallate upregulates the expression levels of miR‑6757‑3p, a suppressor of fibrosis‑related gene expression, in extracellular vesicles derived from human umbilical vein endothelial cells". Biomedical Reports 18.3 (2023): 19.
Chicago
Murata, M., Marugame, Y., Morozumi, M., Murata, K., Kumazoe, M., Fujimura, Y., Tachibana, H."(−)‑Epigallocatechin‑3‑<em>O</em>‑gallate upregulates the expression levels of miR‑6757‑3p, a suppressor of fibrosis‑related gene expression, in extracellular vesicles derived from human umbilical vein endothelial cells". Biomedical Reports 18, no. 3 (2023): 19. https://doi.org/10.3892/br.2023.1601
Copy and paste a formatted citation
x
Spandidos Publications style
Murata M, Marugame Y, Morozumi M, Murata K, Kumazoe M, Fujimura Y and Tachibana H: (−)‑Epigallocatechin‑3‑<em>O</em>‑gallate upregulates the expression levels of miR‑6757‑3p, a suppressor of fibrosis‑related gene expression, in extracellular vesicles derived from human umbilical vein endothelial cells. Biomed Rep 18: 19, 2023.
APA
Murata, M., Marugame, Y., Morozumi, M., Murata, K., Kumazoe, M., Fujimura, Y., & Tachibana, H. (2023). (−)‑Epigallocatechin‑3‑<em>O</em>‑gallate upregulates the expression levels of miR‑6757‑3p, a suppressor of fibrosis‑related gene expression, in extracellular vesicles derived from human umbilical vein endothelial cells. Biomedical Reports, 18, 19. https://doi.org/10.3892/br.2023.1601
MLA
Murata, M., Marugame, Y., Morozumi, M., Murata, K., Kumazoe, M., Fujimura, Y., Tachibana, H."(−)‑Epigallocatechin‑3‑<em>O</em>‑gallate upregulates the expression levels of miR‑6757‑3p, a suppressor of fibrosis‑related gene expression, in extracellular vesicles derived from human umbilical vein endothelial cells". Biomedical Reports 18.3 (2023): 19.
Chicago
Murata, M., Marugame, Y., Morozumi, M., Murata, K., Kumazoe, M., Fujimura, Y., Tachibana, H."(−)‑Epigallocatechin‑3‑<em>O</em>‑gallate upregulates the expression levels of miR‑6757‑3p, a suppressor of fibrosis‑related gene expression, in extracellular vesicles derived from human umbilical vein endothelial cells". Biomedical Reports 18, no. 3 (2023): 19. https://doi.org/10.3892/br.2023.1601
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team