Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
June-2023 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2023 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Strategies for in situ tissue engineering of vascularized bone regeneration (Review)

  • Authors:
    • Yijun He
    • Lin Liang
    • Cheng Luo
    • Zhi-Yong Zhang
    • Jiongfeng Huang
  • View Affiliations / Copyright

    Affiliations: Department of Osteoarthropathy and Sports Medicine, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China, Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
    Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 42
    |
    Published online on: May 22, 2023
       https://doi.org/10.3892/br.2023.1625
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Numerous physiological processes occur following bone fracture, including inflammatory cell recruitment, vascularization, and callus formation and remodeling. In particular circumstances, such as critical bone defects or osteonecrosis, the regenerative microenvironment is compromised, rendering endogenous stem/progenitor cells incapable of fully manifesting their reparative potential. Consequently, external interventions, such as grafting or augmentation, are frequently necessary. In situ bone tissue engineering (iBTE) employs cell‑free scaffolds that possess microenvironmental cues, which, upon implantation, redirect the behavior of endogenous stem/progenitor cells towards a pro‑regenerative inflammatory response and reestablish angiogenesis‑osteogenesis coupling. This process ultimately results in vascularized bone regeneration (VBR). In this context, a comprehensive review of the current techniques and modalities in VBR‑targeted iBTE technology is provided.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Hankenson KD, Dishowitz M, Gray C and Schenker M: Angiogenesis in bone regeneration. Injury. 42:556–561. 2011.PubMed/NCBI View Article : Google Scholar

2 

He Y, Wang W, Lin S, Yang Y, Song L, Jing Y, Chen L, He Z, Li W, Xiong A, et al: Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation. Bioact Mater. 9:491–507. 2021.PubMed/NCBI View Article : Google Scholar

3 

Gaharwar AK, Singh I and Khademhosseini A: Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater. 5:686–705. 2020.

4 

Zheng ZW, Chen YH, Wu DY, Wang JB, Lv MM, Wang XS, Sun J and Zhang ZY: Development of an accurate and proactive immunomodulatory strategy to improve bone substitute material-mediated osteogenesis and angiogenesis. Theranostics. 8:5482–5500. 2018.PubMed/NCBI View Article : Google Scholar

5 

Feng J and Ye L: Coupling between osteogenesis and angiogenesis. FASEB J. 22(233.2)2008.

6 

Kusumbe AP, Ramasamy SK and Adams RH: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 507:323–328. 2014.PubMed/NCBI View Article : Google Scholar

7 

Ramasamy SK, Kusumbe AP, Wang L and Adams RH: Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature. 507:376–380. 2014.PubMed/NCBI View Article : Google Scholar

8 

Rather HA, Jhala D and Vasita R: Dual functional approaches for osteogenesis coupled angiogenesis in bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 103(109761)2019.PubMed/NCBI View Article : Google Scholar

9 

Liu H, Du Y, Yang G, Hu X, Wang L, Liu B, Wang J and Zhang S: Delivering proangiogenic factors from 3D-printed polycaprolactone scaffolds for vascularized bone regeneration. Adv Healthc Mater. 9(2000727)2020.PubMed/NCBI View Article : Google Scholar

10 

Lanza R, Langer R, Vacanti J and Atala A (eds): Principles of tissue engineering. 5th edition. xli, 2020.

11 

De Pieri A, Rochev Y and Zeugolis DI: Scaffold-free cell-based tissue engineering therapies: Advances, shortfalls and forecast. NPJ Regen Med. 6(18)2021.PubMed/NCBI View Article : Google Scholar

12 

Li L, Lu H, Zhao Y, Luo J, Yang L, Liu W and He Q: Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives. Mater Sci Eng C Mater Biol Appl. 98:1241–1251. 2019.PubMed/NCBI View Article : Google Scholar

13 

Yang C, Ma H, Wang Z, Younis MR, Liu C, Wu C, Luo Y and Huang P: 3D printed wesselsite nanosheets functionalized scaffold facilitates NIR-II photothermal therapy and vascularized bone regeneration. Adv Sci (Weinh). 8(2100894)2021.PubMed/NCBI View Article : Google Scholar

14 

Yan Y, Chen H, Zhang H, Guo C, Yang K, Chen K, Cheng R, Qian N, Sandler N, Zhang YS, et al: Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials. 190-191:97–110. 2019.PubMed/NCBI View Article : Google Scholar

15 

Komeri R, Kasoju N and Kumar PRA: In vitro cytotoxicity and cytocompatibility assays for biomaterial testing under regulatory platform. Biomedical Product and Materials Evaluation, pp329-353, 2022.

16 

Liu WC, Chen S, Zheng L and Qin L: Angiogenesis assays for the evaluation of angiogenic properties of orthopaedic biomaterials-a general review. Adv Healthc Mater. 6(1600434)2017.PubMed/NCBI View Article : Google Scholar

17 

Ji C, Qiu M, Ruan H, Li C, Cheng L, Wang J, Li C, Qi J, Cui W and Deng L: Transcriptome analysis revealed the symbiosis niche of 3D scaffolds to accelerate bone defect healing. Adv Sci (Weinh). 9(e2105194)2022.PubMed/NCBI View Article : Google Scholar

18 

Song W, Fhu CW, Ang KH, Liu CH, Johari NA, Lio D, Abraham S, Hong W, Moss SE, Greenwood J and Wang X: The fetal mouse metatarsal bone explant as a model of angiogenesis. Nat Protoc. 10:1459–1473. 2015.PubMed/NCBI View Article : Google Scholar

19 

Bellacen K and Lewis EC: Aortic ring assay. J Vis Exp. 24(1564)2009.PubMed/NCBI View Article : Google Scholar

20 

Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E and Trubiani O: Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci. 21(3242)2020.PubMed/NCBI View Article : Google Scholar

21 

Schott NG, Friend NE and Stegemann JP: Coupling osteogenesis and vasculogenesis in engineered orthopedic tissues. Tissue Eng Part B Rev. 27:199–214. 2021.PubMed/NCBI View Article : Google Scholar

22 

Wang T, Zhai Y, Nuzzo M, Yang X, Yang Y and Zhang X: Layer-by-layer nanofiber-enabled engineering of biomimetic periosteum for bone repair and reconstruction. Biomaterials. 182:279–288. 2018.PubMed/NCBI View Article : Google Scholar

23 

Tang Y, Luo K, Tan J, Zhou R, Chen Y, Chen C, Rong Z, Deng M, Yu X, Zhang C, et al: Laminin alpha 4 promotes bone regeneration by facilitating cell adhesion and vascularization. Acta Biomater. 126:183–198. 2021.PubMed/NCBI View Article : Google Scholar

24 

Peng Y, Wu S, Li Y and Crane JL: Type H blood vessels in bone modeling and remodeling. Theranostics. 10:426–436. 2020.PubMed/NCBI View Article : Google Scholar

25 

Mangir N, Dikici S, Claeyssens F and MacNeil S: Using ex ovo chick chorioallantoic membrane (CAM) assay to evaluate the biocompatibility and angiogenic response to biomaterials. Acs Biomater Sci Eng. 5:3190–3200. 2019.PubMed/NCBI View Article : Google Scholar

26 

Duan R, Zhang Y, van Dijk L, Barbieri D, van den Beucken J, Yuan H and de Bruijn J: Coupling between macrophage phenotype, angiogenesis and bone formation by calcium phosphates. Mater Sci Eng C Mater Biol Appl. 122(111948)2021.PubMed/NCBI View Article : Google Scholar

27 

Wang YH, Zhao CZ, Wang RY, Du QX, Liu JY and Pan J: The crosstalk between macrophages and bone marrow mesenchymal stem cells in bone healing. Stem Cell Res Ther. 13(511)2022.PubMed/NCBI View Article : Google Scholar

28 

Fernandez-Yague MA, Abbah SA, McNamara L, Zeugolis DI, Pandit A and Biggs MJ: Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Deliver Rev. 84:1–29. 2015.PubMed/NCBI View Article : Google Scholar

29 

Niu Y, Wang Z, Shi Y, Dong L and Wang C: Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches. Bioact Mater. 6:244–261. 2020.PubMed/NCBI View Article : Google Scholar

30 

Li J, Liu Y, Zhang Y, Yao B, Enhejirigala Li Z, Song W, Wang Y, Duan X, Yuan X, et al: Biophysical and biochemical cues of biomaterials guide mesenchymal stem cell behaviors. Front Cell Dev Biol. 9(640388)2021.PubMed/NCBI View Article : Google Scholar

31 

Bobbert FSL and Zadpoor AA: Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone. J Mater Chem B. 5:6175–6192. 2017.PubMed/NCBI View Article : Google Scholar

32 

Amini AR, Adams DJ, Laurencin CT and Nukavarapu SP: Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration. Tissue Eng Part A. 18:1376–1388. 2012.PubMed/NCBI View Article : Google Scholar

33 

Reinwald Y, Johal RK, Ghaemmaghami AM, Rose FRAJ, Howdle SM and Shakesheff KM: Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution. Polymer. 55:435–444. 2014.

34 

Murphy CM, Haugh MG and O'Brien FJ: The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 31:461–466. 2010.PubMed/NCBI View Article : Google Scholar

35 

Hayashi K, Munar ML and Ishikawa K: Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration. Mater Sci Eng C Mater Biol Appl. 111(110848)2020.PubMed/NCBI View Article : Google Scholar

36 

Wang J, Wu D, Zhang Z, Li J, Shen Y, Wang Z, Li Y, Zhang ZY and Sun J: Biomimetically ornamented rapid prototyping fabrication of an apatite-collagen-polycaprolactone composite construct with nano-micro-macro hierarchical structure for large bone defect treatment. ACS Appl Mater Interfaces. 7:26244–26256. 2015.PubMed/NCBI View Article : Google Scholar

37 

Liu Y, Yang S, Cao L, Zhang X, Wang J and Liu C: Facilitated vascularization and enhanced bone regeneration by manipulation hierarchical pore structure of scaffolds. Mater Sci Eng C Mater Biol Appl. 110(110622)2020.PubMed/NCBI View Article : Google Scholar

38 

Shen J, Wang W, Zhai X, Chen B, Qiao W, Li W, Li P, Zhao Y, Meng Y, Qian S, et al: 3D-printed nanocomposite scaffolds with tunable magnesium ionic microenvironment induce in situ bone tissue regeneration. Appl Mater Today. 16:493–507. 2019.

39 

Zhang ZZ, Zhang HZ and Zhang ZY: 3D printed poly(ε-caprolactone) scaffolds function with simvastatin-loaded poly(lactic-co-glycolic acid) microspheres to repair load-bearing segmental bone defects. Exp Ther Med. 17:79–90. 2019.PubMed/NCBI View Article : Google Scholar

40 

Zhang W, Shi W, Wu S, Kuss M, Jiang X, Untrauer JB, Reid SP and Duan B: 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication. 12(035020)2020.PubMed/NCBI View Article : Google Scholar

41 

Lian M, Sun B, Han Y, Yu B, Xin W, Xu R, Ni B, Jiang W, Hao Y, Zhang X, et al: A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration. Biomaterials. 274(120841)2021.PubMed/NCBI View Article : Google Scholar

42 

Musumeci G: The effect of mechanical loading on articular cartilage. J Funct Morphol Kinesiol. 1:154–161. 2016.

43 

Lee J, Abdeen AA, Tang X, Saif TA and Kilian KA: Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow. Acta Biomater. 42:46–55. 2016.PubMed/NCBI View Article : Google Scholar

44 

Guo M, Pegoraro AF, Mao A, Zhou EH, Arany PR, Han Y, Burnette DT, Jensen MH, Kasza KE, Moore JR, et al: Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc Natl Acad Sci USA. 114:E8618–E8627. 2017.PubMed/NCBI View Article : Google Scholar

45 

Meng Z, Qiu Y, Lin KC, Kumar A, Placone JK, Fang C, Wang KC, Lu S, Pan M, Hong AW, et al: RAP2 mediates mechanoresponses of the Hippo pathway. Nature. 560:655–660. 2018.PubMed/NCBI View Article : Google Scholar

46 

Bastounis EE, Yeh YT and Theriot JA: Subendothelial stiffness alters endothelial cell traction force generation while exerting a minimal effect on the transcriptome. Sci Rep. 9(18209)2019.PubMed/NCBI View Article : Google Scholar

47 

Yeh YT, Hur SS, Chang J, Wang KC, Chiu JJ, Li YS and Chien S: Matrix stiffness regulates endothelial cell proliferation through septin 9. PLoS One. 7(e46889)2012.PubMed/NCBI View Article : Google Scholar

48 

Santos L, Fuhrmann G, Juenet M, Amdursky N, Horejs CM, Campagnolo P and Stevens MM: Extracellular stiffness modulates the expression of functional proteins and growth factors in endothelial cells. Adv Healthc Mater. 4:2056–2063. 2015.PubMed/NCBI View Article : Google Scholar

49 

Zhang Y, Wang X, Zhang Y, Liu Y, Wang D, Yu X, Wang H, Bai Z, Jiang YC, Li X, et al: Endothelial cell migration regulated by surface topography of poly(ε-caprolactone) nanofibers. ACS Biomater Sci Eng. 7:4959–4970. 2021.PubMed/NCBI View Article : Google Scholar

50 

Abagnale G, Steger M, Nguyen VH, Hersch N, Sechi A, Joussen S, Denecke B, Merkel R, Hoffmann B, Dreser A, et al: Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials. 61:316–326. 2015.PubMed/NCBI View Article : Google Scholar

51 

Yang C, Zhao C, Wang X, Shi M, Zhu Y, Jing L, Wu C and Chang J: Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation. Nanoscale. 11:17699–17708. 2019.PubMed/NCBI View Article : Google Scholar

52 

Sapir Y, Cohen S, Friedman G and Polyak B: The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials. 33:4100–4109. 2012.PubMed/NCBI View Article : Google Scholar

53 

Yun HM, Ahn SJ, Park KR, Kim MJ, Kim JJ, Jin GZ, Kim HW and Kim EC: Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials. 85:88–98. 2016.PubMed/NCBI View Article : Google Scholar

54 

Hao S, Meng J, Zhang Y, Liu J, Nie X, Wu F, Yang Y, Wang C, Gu N and Xu H: Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials. 140:16–25. 2017.PubMed/NCBI View Article : Google Scholar

55 

Zonari A, Novikoff S, Electo NRP, Breyner NM, Gomes DA, Martins A, Neves NM, Reis RL and Goes AM: Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh. PLoS One. 7(e35422)2012.PubMed/NCBI View Article : Google Scholar

56 

Zhang C, Wang W, Hao X, Peng Y, Zheng Y, Liu J, Kang Y, Zhao F, Luo Z, Guo J, et al: A novel approach to enhance bone regeneration by controlling the polarity of GaN/AlGaN heterostructures. Adv Funct Mater. 31(2007487)2021.

57 

Safina I and Embree MC: Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta Biomater. 143:26–38. 2022.PubMed/NCBI View Article : Google Scholar

58 

Vermeulen S, Tahmasebi Birgani Z and Habibovic P: Biomaterial-induced pathway modulation for bone regeneration. Biomaterials. 283(121431)2022.PubMed/NCBI View Article : Google Scholar

59 

Pan Y, Chen J, Yu Y, Dai K, Wang J and Liu C: Enhancement of BMP-2-mediated angiogenesis and osteogenesis by 2-N,6-O-sulfated chitosan in bone regeneration. Biomater Sci. 6:431–439. 2018.PubMed/NCBI View Article : Google Scholar

60 

Einhorn TA and Gerstenfeld LC: Fracture healing: Mechanisms and interventions. Nat Rev Rheumatol. 11:45–54. 2015.PubMed/NCBI View Article : Google Scholar

61 

Wang W and Yeung KWK: Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2:224–247. 2017.PubMed/NCBI View Article : Google Scholar

62 

Kanakaris NK, Calori GM, Verdonk R, Burssens P, De Biase P, Capanna R, Vangosa LB, Cherubino P, Baldo F, Ristiniemi J, et al: Application of BMP-7 to tibial non-unions: A 3-year multicenter experience. Injury. 39 (Suppl 2):S83–S90. 2008.PubMed/NCBI View Article : Google Scholar

63 

Jones AL, Bucholz RW, Bosse MJ, Mirza SK, Lyon TR, Webb LX, Pollak AN, Golden JD and Valentin-Opran A: BMP-2 Evaluation in Surgery for Tibial Trauma-Allgraft (BESTT-ALL) Study Group. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am. 88:1431–1441. 2006.PubMed/NCBI View Article : Google Scholar

64 

Gillman CE and Jayasuriya AC: FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C Mater Biol Appl. 130(112466)2021.PubMed/NCBI View Article : Google Scholar

65 

Pearson HB, Mason DE, Kegelman CD, Zhao L, Dawahare JH, Kacena MA and Boerckel JD: Effects of bone morphogenetic protein-2 on neovascularization during large bone defect regeneration. Tissue Eng Part A. 25:1623–1634. 2019.PubMed/NCBI View Article : Google Scholar

66 

Akiyama I, Yoshino O, Osuga Y, Shi J, Harada M, Koga K, Hirota Y, Hirata T, Fujii T, Saito S and Kozuma S: Bone morphogenetic protein 7 increased vascular endothelial growth factor (VEGF)-a expression in human granulosa cells and VEGF receptor expression in endothelial cells. Reprod Sci. 21:477–482. 2014.PubMed/NCBI View Article : Google Scholar

67 

Boraiah S, Paul O, Hawkes D, Wickham M and Lorich DG: Complications of recombinant human BMP-2 for treating complex tibial plateau fractures: A preliminary report. Clin Orthop Relat Res. 467:3257–3262. 2009.PubMed/NCBI View Article : Google Scholar

68 

Chen J, Zhou X, Sun W, Zhang Z, Teng W, Wang F, Sun H, Zhang W, Wang J, Yu X, et al: Vascular derived ECM improves therapeutic index of BMP-2 and drives vascularized bone regeneration. Small. 18(e2107991)2022.PubMed/NCBI View Article : Google Scholar

69 

Keramaris NC, Calori GM, Nikolaou VS, Schemitsch EH and Giannoudis PV: Fracture vascularity and bone healing: A systematic review of the role of VEGF. Injury. 39 (Suppl 2):S45–S57. 2008.PubMed/NCBI View Article : Google Scholar

70 

Eckardt H, Bundgaard KG, Christensen KS, Lind M, Hansen ES and Hvid I: Effects of locally applied vascular endothelial growth factor (VEGF) and VEGF-inhibitor to the rabbit tibia during distraction osteogenesis. J Orthop Res. 21:335–340. 2003.PubMed/NCBI View Article : Google Scholar

71 

Leach JK, Kaigler D, Wang Z, Krebsbach PH and Mooney DJ: Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials. 27:3249–3255. 2006.PubMed/NCBI View Article : Google Scholar

72 

Kaigler D, Wang Z, Horger K, Mooney DJ and Krebsbach PH: VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res. 21:735–744. 2006.PubMed/NCBI View Article : Google Scholar

73 

Gu J, Zhang Q, Geng M, Wang W, Yang J, Khan AUR, Du H, Sha Z, Zhou X and He C: Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue. Bioact Mater. 6:3254–3268. 2021.PubMed/NCBI View Article : Google Scholar

74 

Lee SS, Kim JH, Jeong J, Kim SHL, Koh RH, Kim I, Bae S, Lee H and Hwang NS: Sequential growth factor releasing double cryogel system for enhanced bone regeneration. Biomaterials. 257(120223)2020.PubMed/NCBI View Article : Google Scholar

75 

Subbiah R, Hwang MP, Van SY, Do SH, Park H, Lee K, Kim SH, Yun K and Park K: Osteogenic/angiogenic dual growth factor delivery microcapsules for regeneration of vascularized bone tissue. Adv Healthc Mater. 4:1982–1992. 2015.PubMed/NCBI View Article : Google Scholar

76 

Zhou X, Chen J, Sun H, Wang F, Wang Y, Zhang Z, Teng W, Ye Y, Huang D, Zhang W, et al: Spatiotemporal regulation of angiogenesis/osteogenesis emulating natural bone healing cascade for vascularized bone formation. J Nanobiotechnology. 19(420)2021.PubMed/NCBI View Article : Google Scholar

77 

Wang C, Lai J, Li K, Zhu S, Lu B, Liu J, Tang Y and Wei Y: Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. Bioact Mater. 6:137–145. 2020.PubMed/NCBI View Article : Google Scholar

78 

Zhang M, Yu W, Niibe K, Zhang W, Egusa H, Tang T and Jiang X: The effects of platelet-derived growth factor-BB on bone marrow stromal cell-mediated vascularized bone regeneration. Stem Cells Int. 2018(3272098)2018.PubMed/NCBI View Article : Google Scholar

79 

Han Y, You X, Xing W, Zhang Z and Zou W: Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 6(16)2018.PubMed/NCBI View Article : Google Scholar

80 

Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, et al: PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 20:1270–1278. 2014.PubMed/NCBI View Article : Google Scholar

81 

Xu R, Yallowitz A, Qin A, Wu Z, Shin DY, Kim JM, Debnath S, Ji G, Bostrom MP, Yang X, et al: Targeting skeletal endothelium to ameliorate bone loss. Nat Med. 24:823–833. 2018.PubMed/NCBI View Article : Google Scholar

82 

Lin Z, Shen D, Zhou W, Zheng Y, Kong T, Liu X, Wu S, Chu PK, Zhao Y, Wu J, et al: Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration. Bioact Mater. 6:2315–2330. 2021.PubMed/NCBI View Article : Google Scholar

83 

Habibovic P and Barralet JE: Bioinorganics and biomaterials: Bone repair. Acta Biomater. 7:3013–3026. 2011.PubMed/NCBI View Article : Google Scholar

84 

Zhai W, Lu H, Wu C, Chen L, Lin X, Naoki K, Chen G and Chang J: Stimulatory effects of the ionic products from Ca-Mg-Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater. 9:8004–8014. 2013.PubMed/NCBI View Article : Google Scholar

85 

Du Z, Leng H, Guo L, Huang Y, Zheng T, Zhao Z, Liu X, Zhang X, Cai Q and Yang X: Calcium silicate scaffolds promoting bone regeneration via the doping of Mg2+ or Mn2+ ion. Compos Part B Eng. 190(107937)2020.

86 

Dashnyam K, Buitrago JO, Bold T, Mandakhbayar N, Perez RA, Knowles JC, Lee JH and Kim HW: Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds. Biomater Sci. 7:5221–5231. 2019.PubMed/NCBI View Article : Google Scholar

87 

Lin Z, Wu J, Qiao W, Zhao Y, Wong KHM, Chu PK, Bian L, Wu S, Zheng Y, Cheung KMC, et al: Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials. 174:1–16. 2018.PubMed/NCBI View Article : Google Scholar

88 

Valerio P, Pereira MM, Goes AM and Leite MF: The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials. 25:2941–2948. 2004.PubMed/NCBI View Article : Google Scholar

89 

Feng W, Ye F, Xue W, Zhou Z and Kang YJ: Copper regulation of hypoxia-inducible factor-1 activity. Mol Pharmacol. 75:174–182. 2009.PubMed/NCBI View Article : Google Scholar

90 

Lin Z, Cao Y, Zou J, Zhu F, Gao Y, Zheng X, Wang H, Zhang T and Wu T: Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement. Mater Sci Eng C Mater Biol Appl. 114(111032)2020.PubMed/NCBI View Article : Google Scholar

91 

Bose S, Fielding G, Tarafder S and Bandyopadhyay A: Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 31:594–605. 2013.PubMed/NCBI View Article : Google Scholar

92 

Zhai Z, Qu X, Li H, Yang K, Wan P, Tan L, Ouyang Z, Liu X, Tian B, Xiao F, et al: The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling. Biomaterials. 35:6299–6310. 2014.PubMed/NCBI View Article : Google Scholar

93 

Wallach S: Effects of magnesium on skeletal metabolism. Magnes Trace Elem. 9:1–14. 1990.PubMed/NCBI

94 

Sojka JE and Weaver CM: Magnesium supplementation and osteoporosis. Nutr Rev. 53:71–74. 1995.PubMed/NCBI View Article : Google Scholar

95 

Pichler K, Kraus T, Martinelli E, Sadoghi P, Musumeci G, Uggowitzer PJ and Weinberg AM: Cellular reactions to biodegradable magnesium alloys on human growth plate chondrocytes and osteoblasts. Int Orthop. 38:881–889. 2014.PubMed/NCBI View Article : Google Scholar

96 

Lin S, Yang G, Jiang F, Zhou M, Yin S, Tang Y, Tang T, Zhang Z, Zhang W and Jiang X: A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. Adv Sci (Weinh). 6(1900209)2019.PubMed/NCBI View Article : Google Scholar

97 

Zhang X, Huang P, Jiang G, Zhang M, Yu F, Dong X, Wang L, Chen Y, Zhang W, Qi Y, et al: A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis. Mater Sci Eng C Mater Biol Appl. 121(111868)2021.PubMed/NCBI View Article : Google Scholar

98 

Hu T, Xu H, Wang C, Qin H and An Z: Magnesium enhances the chondrogenic differentiation of mesenchymal stem cells by inhibiting activated macrophage-induced inflammation. Sci Rep. 8(3406)2018.PubMed/NCBI View Article : Google Scholar

99 

Wang M, Yu Y, Dai K, Ma Z, Liu Y, Wang J and Liu C: Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement via macrophage immunomodulation. Biomater Sci. 4:1574–1583. 2016.PubMed/NCBI View Article : Google Scholar

100 

Minchenko A and Caro J: Regulation of endothelin-1 gene expression in human microvascular endothelial cells by hypoxia and cobalt: Role of hypoxia responsive element. Mol Cell Biochem. 208:53–62. 2000.PubMed/NCBI View Article : Google Scholar

101 

Tanaka T, Kojima I, Ohse T, Ingelfinger JR, Adler S, Fujita T and Nangaku M: Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab Invest. 85:1292–1307. 2005.PubMed/NCBI View Article : Google Scholar

102 

Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS and Kaelin WG Jr: HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science. 292:464–468. 2001.PubMed/NCBI View Article : Google Scholar

103 

Ryan EJ, Ryan AJ, González-Vázquez A, Philippart A, Ciraldo FE, Hobbs C, Nicolosi V, Boccaccini AR, Kearney CJ and O'Brien FJ: Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials. 197:405–416. 2019.PubMed/NCBI View Article : Google Scholar

104 

Hoppe A, Güldal NS and Boccaccini AR: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 32:2757–2774. 2011.PubMed/NCBI View Article : Google Scholar

105 

Saghiri MA, Asatourian A, Orangi J, Sorenson CM and Sheibani N: Functional role of inorganic trace elements in angiogenesis-Part II: Cr, Si, Zn, Cu, and S. Crit Rev Oncol Hematol. 96:143–155. 2015.PubMed/NCBI View Article : Google Scholar

106 

Dashnyam K, Jin GZ, Kim JH, Perez R, Jang JH and Kim HW: Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF. Biomaterials. 116:145–157. 2017.PubMed/NCBI View Article : Google Scholar

107 

A A, Menon D, T B S, Koyakutty M, Mohan CC, Nair SV and Nair MB: Bioinspired composite matrix containing hydroxyapatite-silica core-shell nanorods for bone tissue engineering. ACS Appl Mater Interfaces. 9:26707–26718. 2017.PubMed/NCBI View Article : Google Scholar

108 

Kim JJ, El-Fiqi A and Kim HW: Synergetic cues of bioactive nanoparticles and nanofibrous structure in bone scaffolds to stimulate osteogenesis and angiogenesis. ACS Appl Mater Interfaces. 9:2059–2073. 2017.PubMed/NCBI View Article : Google Scholar

109 

Šalandová M, van Hengel IAJ, Apachitei I, Zadpoor AA, van der Eerden BCJ and Fratila-Apachitei LE: Inorganic agents for enhanced angiogenesis of orthopedic biomaterials. Adv Healthc Mater. 10(e2002254)2021.PubMed/NCBI View Article : Google Scholar

110 

Qiao W, Wong KHM, Shen J, Wang W, Wu J, Li J, Lin Z, Chen Z, Matinlinna JP, Zheng Y, et al: TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nat Commun. 12(2885)2021.PubMed/NCBI View Article : Google Scholar

111 

Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, Ferrara N and Johnson RS: Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 6:485–495. 2004.PubMed/NCBI View Article : Google Scholar

112 

Han X, Sun M, Chen B, Saiding Q, Zhang J, Song H, Deng L, Wang P, Gong W and Cui W: Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact Mater. 6:1639–1652. 2020.PubMed/NCBI View Article : Google Scholar

113 

Li S, Song C, Yang S, Yu W, Zhang W, Zhang G, Xi Z and Lu E: Supercritical CO2 foamed composite scaffolds incorporating bioactive lipids promote vascularized bone regeneration via Hif-1α upregulation and enhanced type H vessel formation. Acta Biomater. 94:253–267. 2019.PubMed/NCBI View Article : Google Scholar

114 

Ha Y, Ma X, Li S, Li T, Li Z, Qian Y, Shafiq M, Wang J, Zhou X and He C: Bone microenvironment-mimetic scaffolds with hierarchical microstructure for enhanced vascularization and bone regeneration. Adv Funct Mater. 32(2200011)2022.

115 

Mapp PI, McWilliams DF, Turley MJ, Hargin E and Walsh DA: A role for the sensory neuropeptide calcitonin gene-related peptide in endothelial cell proliferation in vivo. Br J Pharmacol. 166:1261–1271. 2012.PubMed/NCBI View Article : Google Scholar

116 

Zheng S, Li W, Xu M, Bai X, Zhou Z, Han J, Shyy JY and Wang X: Calcitonin gene-related peptide promotes angiogenesis via AMP-activated protein kinase. Am J Physiol Cell Physiol. 299:C1485–C1492. 2010.PubMed/NCBI View Article : Google Scholar

117 

Wang L, Shi X, Zhao R, Halloran BP, Clark DJ, Jacobs CR and Kingery WS: Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone resorption. Bone. 46:1369–1379. 2010.PubMed/NCBI View Article : Google Scholar

118 

He H, Chai J, Zhang S, Ding L, Yan P, Du W and Yang Z: CGRP may regulate bone metabolism through stimulating osteoblast differentiation and inhibiting osteoclast formation. Mol Med Rep. 13:3977–3984. 2016.PubMed/NCBI View Article : Google Scholar

119 

Brain SD and Grant AD: Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev. 84:903–934. 2004.PubMed/NCBI View Article : Google Scholar

120 

Xu J, Wang J, Chen X, Li Y, Mi J and Qin L: The effects of calcitonin gene-related peptide on bone homeostasis and regeneration. Curr Osteoporos Rep. 18:621–632. 2020.PubMed/NCBI View Article : Google Scholar

121 

Zhang Y, Xu J, Ruan YC, Yu MK, O'Laughlin M, Wise H, Chen D, Tian L, Shi D, Wang J, et al: Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 22:1160–1169. 2016.PubMed/NCBI View Article : Google Scholar

122 

Mi J, Xu JK, Yao Z, Yao H, Li Y, He X, Dai BY, Zou L, Tong WX, Zhang XT, et al: Implantable electrical stimulation at dorsal root ganglions accelerates osteoporotic fracture healing via calcitonin gene-related peptide. Adv Sci (Weinh). 9(e2103005)2022.PubMed/NCBI View Article : Google Scholar

123 

Chen J, Liu W, Zhao J, Sun C, Chen J, Hu K, Zhang L and Ding Y: Gelatin microspheres containing calcitonin gene-related peptide or substance P repair bone defects in osteoporotic rabbits. Biotechnol Lett. 39:465–472. 2017.PubMed/NCBI View Article : Google Scholar

124 

Li Y, Yang L, Zheng Z, Li Z, Deng T, Ren W, Wu C and Guo L: Bio-Oss® modified by calcitonin gene-related peptide promotes osteogenesis in vitro. Exp Ther Med. 14:4001–4008. 2017.PubMed/NCBI View Article : Google Scholar

125 

Moreira DC, Sá CN, Andrade MG, Bório dos Santos Calmon de Bittencourt TC, de Almeida Reis SR, Pithon MM and Sadigursky M: Angiogenesis and osteogenesis at incorporation process of onlay bone graft. J Oral Maxillofac Surg. 71:2048–2057. 2013.PubMed/NCBI View Article : Google Scholar

126 

Jeon YR, Kim MJ, Kim YO, Roh TS, Lee WJ, Kang EH and Yun IS: Scaffold free bone regeneration using platelet-rich fibrin in calvarial defect model. J Craniofac Surg. 29:251–254. 2018.PubMed/NCBI View Article : Google Scholar

127 

Kim YH, Furuya H and Tabata Y: Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels. Biomaterials. 35:214–224. 2014.PubMed/NCBI View Article : Google Scholar

128 

Qiu P, Li M, Chen K, Fang B, Chen P, Tang Z, Lin X and Fan S: Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis. Biomaterials. 227(119552)2020.PubMed/NCBI View Article : Google Scholar

129 

Narayanan R, Huang CC and Ravindran S: Hijacking the cellular mail: exosome mediated differentiation of mesenchymal stem cells. Stem Cells Int. 2016(3808674)2016.PubMed/NCBI View Article : Google Scholar

130 

Qin Y, Sun R, Wu C, Wang L and Zhang C: Exosome: A novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis. Int J Mol Sci. 17(712)2016.PubMed/NCBI View Article : Google Scholar

131 

Zhang L, Jiao G, Ren S, Zhang X, Li C, Wu W, Wang H, Liu H, Zhou H and Chen Y: Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res Ther. 11(38)2020.PubMed/NCBI View Article : Google Scholar

132 

Fan L, Guan P, Xiao C, Wen H, Wang Q, Liu C, Luo Y, Ma L, Tan G, Yu P, et al: Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration. Bioact Mater. 6:2754–2766. 2021.PubMed/NCBI View Article : Google Scholar

133 

Lin S, Cui L, Chen G, Huang J, Yang Y, Zou K, Lai Y, Wang X, Zou L, Wu T, et al: PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model. Biomaterials. 196:109–121. 2019.PubMed/NCBI View Article : Google Scholar

134 

Wu Y, Xia L, Zhou Y, Ma W, Zhang N, Chang J, Lin K, Xu Y and Jiang X: Evaluation of osteogenesis and angiogenesis of icariin loaded on micro/nano hybrid structured hydroxyapatite granules as a local drug delivery system for femoral defect repair. J Mater Chem B. 3:4871–4883. 2015.PubMed/NCBI View Article : Google Scholar

135 

Pang WY, Wang XL, Mok SK, Lai WP, Chow HK, Leung PC, Yao XS and Wong MS: Naringin improves bone properties in ovariectomized mice and exerts oestrogen-like activities in rat osteoblast-like (UMR-106) cells. Br J Pharmacol. 159:1693–1703. 2010.PubMed/NCBI View Article : Google Scholar

136 

Shangguan WJ, Zhang YH, Li ZC, Tang LM, Shao J and Li H: Naringin inhibits vascular endothelial cell apoptosis via endoplasmic reticulum stress- and mitochondrial-mediated pathways and promotes intraosseous angiogenesis in ovariectomized rats. Int J Mol Med. 40:1741–1749. 2017.PubMed/NCBI View Article : Google Scholar

137 

Wang Z, Jiang R, Wang L, Chen X, Xiang Y, Chen L, Xiao M, Ling L and Wang Y: Ginsenoside Rg1 improves differentiation by inhibiting senescence of human bone marrow mesenchymal stem cell via GSK-3β and β-catenin. Stem Cells Int. 2020(2365814)2020.PubMed/NCBI View Article : Google Scholar

138 

Salarian M, Samimi R, Xu WZ, Wang Z, Sham TK, Lui EMK and Charpentier PA: Microfluidic synthesis and angiogenic activity of ginsenoside Rg1-loaded PPF microspheres. Acs Biomater Sci Eng. 2:1872–1882. 2016.PubMed/NCBI View Article : Google Scholar

139 

García JR and García AJ: Biomaterial-mediated strategies targeting vascularization for bone repair. Drug Deliv Transl Re. 6:77–95. 2016.PubMed/NCBI View Article : Google Scholar

140 

Kessler PD, Podsakoff GM, Chen X, McQuiston SA, Colosi PC, Matelis LA, Kurtzman GJ and Byrne BJ: Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci USA. 93:14082–14087. 1996.PubMed/NCBI View Article : Google Scholar

141 

Atluri K, Seabold D, Hong L, Elangovan S and Salem AK: Nanoplex-mediated codelivery of fibroblast growth factor and bone morphogenetic protein genes promotes osteogenesis in human adipocyte-derived mesenchymal stem cells. Mol Pharm. 12:3032–3042. 2015.PubMed/NCBI View Article : Google Scholar

142 

Sun K, Lin H, Tang Y, Xiang S, Xue J, Yin W, Tan J, Peng H, Alexander PG, Tuan RS and Wang B: Injectable BMP-2 gene-activated scaffold for the repair of cranial bone defect in mice. Stem Cell Transl Med. 9:1631–1642. 2020.PubMed/NCBI View Article : Google Scholar

143 

Raftery RM, Mencía-Castaño I, Sperger S, Chen G, Cavanagh B, Feichtinger GA, Redl H, Hacobian A and O'Brien FJ: Delivery of the improved BMP-2-advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair. J Control Release. 283:20–31. 2018.PubMed/NCBI View Article : Google Scholar

144 

Geiger F, Bertram H, Berger I, Lorenz H, Wall O, Eckhardt C, Simank HG and Richter W: Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res. 20:2028–2035. 2005.PubMed/NCBI View Article : Google Scholar

145 

Curtin CM, Tierney EG, McSorley K, Cryan SA, Duffy GP and O'Brien FJ: Combinatorial gene therapy accelerates bone regeneration: Non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite Scaffold. Adv Healthc Mater. 4:223–227. 2015.PubMed/NCBI View Article : Google Scholar

146 

Zu H and Gao D: Non-viral vectors in gene therapy: Recent development, challenges, and prospects. AAPS J. 23(78)2021.PubMed/NCBI View Article : Google Scholar

147 

Kalidasan V, Ng WH, Ishola OA, Ravichantar N, Tan JJ and Das KT: A guide in lentiviral vector production for hard-to-transfect cells, using cardiac-derived c-kit expressing cells as a model system. Sci Rep. 11(19265)2021.PubMed/NCBI View Article : Google Scholar

148 

Bonadio J, Smiley E, Patil P and Goldstein S: Localized, direct plasmid gene delivery in vivo: Prolonged therapy results in reproducible tissue regeneration. Nat Med. 5:753–759. 1999.PubMed/NCBI View Article : Google Scholar

149 

Bonadio J: Review: Local gene delivery for tissue regeneration. E-Biomed J Regen Med. 1:25–29. 2000.

150 

Bozo IY, Drobyshev AY, Redko NA, Komlev VS, Isaev AA and Deev RV: Bringing a gene-activated bone substitute into clinical practice: From bench to bedside. Front Bioeng Biotechnol. 9(599300)2021.PubMed/NCBI View Article : Google Scholar

151 

Qin Y, Wang L, Gao Z, Chen G and Zhang C: Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep. 6(21961)2016.PubMed/NCBI View Article : Google Scholar

152 

Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell M and Rice GE: Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One. 8(e68451)2013.PubMed/NCBI View Article : Google Scholar

153 

Zha Y, Li Y, Lin T, Chen J, Zhang S and Wang J: Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics. 11:397–409. 2021.PubMed/NCBI View Article : Google Scholar

154 

Zha Y, Lin T, Li Y, Zhang X, Wang Z, Li Z, Ye Y, Wang B, Zhang S and Wang J: Exosome-mimetics as an engineered gene-activated matrix induces in-situ vascularized osteogenesis. Biomaterials. 247(119985)2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
He Y, Liang L, Luo C, Zhang Z and Huang J: Strategies for <em>in situ</em> tissue engineering of vascularized bone regeneration (Review). Biomed Rep 18: 42, 2023.
APA
He, Y., Liang, L., Luo, C., Zhang, Z., & Huang, J. (2023). Strategies for <em>in situ</em> tissue engineering of vascularized bone regeneration (Review). Biomedical Reports, 18, 42. https://doi.org/10.3892/br.2023.1625
MLA
He, Y., Liang, L., Luo, C., Zhang, Z., Huang, J."Strategies for <em>in situ</em> tissue engineering of vascularized bone regeneration (Review)". Biomedical Reports 18.6 (2023): 42.
Chicago
He, Y., Liang, L., Luo, C., Zhang, Z., Huang, J."Strategies for <em>in situ</em> tissue engineering of vascularized bone regeneration (Review)". Biomedical Reports 18, no. 6 (2023): 42. https://doi.org/10.3892/br.2023.1625
Copy and paste a formatted citation
x
Spandidos Publications style
He Y, Liang L, Luo C, Zhang Z and Huang J: Strategies for <em>in situ</em> tissue engineering of vascularized bone regeneration (Review). Biomed Rep 18: 42, 2023.
APA
He, Y., Liang, L., Luo, C., Zhang, Z., & Huang, J. (2023). Strategies for <em>in situ</em> tissue engineering of vascularized bone regeneration (Review). Biomedical Reports, 18, 42. https://doi.org/10.3892/br.2023.1625
MLA
He, Y., Liang, L., Luo, C., Zhang, Z., Huang, J."Strategies for <em>in situ</em> tissue engineering of vascularized bone regeneration (Review)". Biomedical Reports 18.6 (2023): 42.
Chicago
He, Y., Liang, L., Luo, C., Zhang, Z., Huang, J."Strategies for <em>in situ</em> tissue engineering of vascularized bone regeneration (Review)". Biomedical Reports 18, no. 6 (2023): 42. https://doi.org/10.3892/br.2023.1625
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team