|
1
|
American Cancer Society: Cancer Facts and
Figures. American Cancer Society, Atlanta, pp1-56, 2017.
|
|
2
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Neoptolemos JP, Urrutia R, Abbruzzese JL
and Büchler MW: Pancreatic cancer. New York, NY, Springer,
2010.
|
|
4
|
Ministry of Health. Cancer programme.
2015. Retrieved March 19, 2015, from http://www.health.govt.nz/our-work/diseases-and-conditions/cancer-programme.
|
|
5
|
Bosetti C, Bertuccio P, Negri E, La
Vecchia C, Zeegers MP and Boffetta P: Pancreatic cancer: Overview
of descriptive epidemiology. Mol Carcinog. 51:3–13. 2012.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Goodman KA and Hajj C: Role of radiation
therapy in the management of pancreatic cancer. J Surg Oncol.
107:86–96. 2013.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Morton JP, Timpson P, Karim SA, Ridgway
RA, Athineos D, Doyle B, Jamieson NB, Oien KA, Lowy AM, Brunton VG,
et al: Mutant p53 drives metastasis and overcomes growth
arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA.
107:246–251. 2010.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Mulcahy MF, Wahl AO and Small W Jr: The
current status of combined radiotherapy and chemotherapy for
locally advanced or resected pancreas cancer. J Natl Compr Canc
Netw. 3:637–642. 2005.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Peng J, Yuan JP, Wu CF and Wang JH:
Fucoxanthin, a marine carotenoid present in brown seaweeds and
diatoms: Metabolism and bioactivities relevant to human health. Mar
Drugs. 9:1806–1828. 2011.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Zhang H, Tang Y, Zhang Y, Zhang S, Qu J,
Wang X, Kong R, Han C and Liu Z: Fucoxanthin: A promising medicinal
and nutritional ingredient. Evid Based Complement Alternat Med.
2015(723515)2015.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Beppu F, Niwano Y, Sato E, Kohno M, Tsukui
T, Hosokawa M and Miyashita K: In vitro and in vivo evaluation of
mutagenicity of fucoxanthin (FX) and its metabolite fucoxanthinol
(FXOH). J Toxicol Sci. 34:693–698. 2009.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Zorofchian Moghadamtousi S, Karimian H,
Khanabdali R, Razavi M, Firoozinia M, Zandi K and Abdul Kadir H:
Anticancer and antitumor potential of fucoidan and fucoxanthin, two
main metabolites isolated from brown algae. ScientificWorldJournal.
2014(768323)2014.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Haefner B: Drugs from the deep: Marine
natural products as drug candidates. Drug Discov Today. 8:536–544.
2003.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Aravindan S, Delma CR, Thirugnanasambandan
SS, Herman TS and Aravindan N: Anti-pancreatic cancer deliverables
from sea: First-hand evidence on the efficacy, molecular targets
and mode of action for multifarious polyphenols from five different
brown-algae. PLoS One. 8(e61977)2013.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Gammone MA and D'Orazio N: Anti-obesity
activity of the marine carotenoid fucoxanthin. Mar Drugs.
13:2196–2214. 2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
López-Rios L, Vega T, Chirino R, Jung JC,
Davis B, Pérez-Machín R and Wiebe JC: Toxicological assessment of
Xanthigen® nutraceutical extract combination:
Mutagenicity, genotoxicity and oral toxicity. Toxicol Rep.
9:1021–1031. 2018.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Delma CR, Thirugnanasambandan S,
Srinivasan GP, Raviprakash N, Manna SK, Natarajan M and Aravindan
N: Fucoidan from marine brown algae attenuates pancreatic cancer
progression by regulating p53-NFκB crosstalk. Phytochemistry.
167(112078)2019.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Beppu F, Niwano Y, Tsukui T, Hosokawa M
and Miyashita K: Single and repeated oral dose toxicity study of
fucoxanthin (FX), a marine carotenoid, in mice. J Toxicol Sci.
34:501–510. 2009.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Hashimoto T, Ozaki Y, Mizuno M, Yoshida M,
Nishitani Y, Azuma T, Komoto A, Maoka T, Tanino Y and Kanazawa K:
Pharmacokinetics of fucoxanthinol in human plasma after the oral
administration of kombu extract. Br J Nutr. 107:1566–1569.
2012.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Dang TT, Bowyer MC, Van Altena IA and
Scarlett CJ: Comparison of chemical profile and antioxidant
properties of the brown algae. Int J Food Sci Technol. 53:174–181.
2008.
|
|
21
|
Guan B, Chen K, Tong Z, Chen L, Chen Q and
Su J: Advances in fucoxanthin research for the prevention and
treatment of inflammation-related diseases. Nutrients.
14(4768)2022.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Mumu M, Das A, Emran TB, Mitra S, Islam F,
Roy A, Karim MM, Das R, Park MN, Chandran D, et al: Fucoxanthin: A
promising phytochemical on diverse pharmacological targets. Front
Pharmacol. 13(929442)2022.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Ishikawa C, Tafuku S, Kadekaru T, Sawada
S, Tomita M, Okudaira T, Nakazato T, Toda T, Uchihara JN, Taira N,
et al: Anti-adult T-cell leukemia effects of brown algae
fucoxanthin and its deacetylated product, fucoxanthinol. Int J
Cancer. 123:2702–2712. 2008.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Liu CL, Liang AL and Hu ML: Protective
effects of fucoxanthin against ferric nitrilotriacetate-induced
oxidative stress in murine hepatic BNL CL.2 cells. Toxicol In
Vitro. 25:1314–1319. 2011.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Liu CL, Lim YP and Hu ML: Fucoxanthin
enhances cisplatin-induced cytotoxicity via NFκB-mediated pathway
and downregulates DNA repair gene expression in human hepatoma
HepG2 cells. Mar Drugs. 11:50–66. 2013.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Wang SK, Li Y, White WL and Lu J: Extracts
from New Zealand Undaria pinnatifida containing fucoxanthin
as potential functional biomaterials against cancer in vitro. J
Funct Biomater. 5:29–42. 2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Martin LJ: Fucoxanthin and its metabolite
fucoxanthinol in cancer prevention and treatment. Mar Drugs.
13:4784–4798. 2015.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Takahashi K, Hosokawa M, Kasajima H,
Hatanaka K, Kudo K, Shimoyama N and Miyashita K: Anticancer effects
of fucoxanthin and fucoxanthinol on colorectal cancer cell lines
and colorectal cancer tissues. Oncol Lett. 10:1463–1467.
2015.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Terasaki M, Kubota A, Kojima H, Maeda H,
Miyashita K, Kawagoe C, Mutoh M and Tanaka T: Fucoxanthin and
colorectal cancer prevention. Cancers (Basel).
13(2379)2021.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Ming JX, Wang ZC, Huang Y, Ohishi H, Wu
RJ, Shao Y, Wang H, Qin MY, Wu ZL, Li YY, et al: Fucoxanthin
extracted from Laminaria japonica inhibits metastasis and
enhances the sensitivity of lung cancer to Gefitinib. J
Ethnopharmacol. 265(113302)2021.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Malhão F, Macedo AC, Costa C, Rocha E and
Ramos AA: Fucoxanthin holds potential to become a drug adjuvant in
breast cancer treatment: Evidence from 2D and 3D cell cultures.
Molecules. 26(4288)2021.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Ye GL, Du DL, Jin LJ and Wang LL:
Sensitization of TRAIL-resistant cervical cancer cells through
combination of TRAIL and fucoxanthin treatments. Eur Rev Med
Pharmacol Sci. 21:5594–5601. 2017.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Hidalgo M, Cascinu S, Kleeff J, Labianca
R, Löhr JM, Neoptolemos J, Real FX, Van Laethem JL and Heinemann V:
Addressing the challenges of pancreatic cancer: Future directions
for improving outcomes. Pancreatology. 15:8–18. 2015.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Jiang PH, Motoo Y, Sawabu N and Minamoto
T: Effect of gemcitabine on the expression of apoptosis-related
genes in human pancreatic cancer cells. World J Gastroenterol.
12:1597–1602. 2006.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Gradiz R, Silva HC, Carvalho L, Botelho MF
and Mota-Pinto A: MIA PaCa-2 and PANC-1-pancreas ductal
adenocarcinoma cell lines with neuroendocrine differentiation and
somatostatin receptors. Sci Rep. 6(21648)2016.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Ghasemi M, Turnbull T, Sebastian S and
Kempson I: The MTT assay: Utility, limitations, pitfalls, and
interpretation in bulk and single-cell analysis. Int J Mol Sci.
22(12827)2021.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Cho YS and Cho-Chung YS: Antisense protein
kinase A RIalpha acts synergistically with hydroxycamptothecin to
inhibit growth and induce apoptosis in human cancer cells:
Molecular basis for combinatorial therapy. Clin Cancer Res.
9:1171–1178. 2003.PubMed/NCBI
|
|
38
|
Bocci G, Fioravanti A, Orlandi P,
Bernardini N, Collecchi P, Del Tacca M and Danesi R: Fluvastatin
synergistically enhances the antiproliferative effect of
gemcitabine in human pancreatic cancer MIAPaCa-2 cells. Br J
Cancer. 93:319–330. 2005.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Yeo D, Huynh N, Beutler JA, Christophi C,
Shulkes A, Baldwin GS, Nikfarjam M and He H: Glaucarubinone and
gemcitabine synergistically reduce pancreatic cancer growth via
down-regulation of P21-activated kinases. Cancer Lett. 346:264–272.
2014.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Rathos MJ, Joshi K, Khanwalkar H, Manohar
SM and Joshi KS: Molecular evidence for increased antitumor
activity of gemcitabine in combination with a cyclin-dependent
kinase inhibitor, P276-00 in pancreatic cancers. J Transl Med.
10(161)2012.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Wu S, Guo J, Wei W, Zhang J, Fang J and
Beebe SJ: Enhanced breast cancer therapy with nsPEFs and low
concentrations of gemcitabine. Cancer Cell Int.
14(98)2014.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Kornmann M, Butzer U, Blatter J, Beger HG
and Link KH: Pre-clinical evaluation of the activity of gemcitabine
as a basis for regional chemotherapy of pancreatic and colorectal
cancer. Eur J Surg Oncol. 26:583–587. 2000.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Hernández P, Olivera P, Dueñas-Gonzalez A,
Pérez-Pastenes MA, Zárate A, Maldonado V and Meléndez-Zajgla J:
Gemcitabine activity in cervical cancer cell lines. Cancer
Chemother Pharmacol. 48:488–492. 2001.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Yong-Xian G, Xiao-Huan L, Fan Z and
Guo-Fang T: Gemcitabine inhibits proliferation and induces
apoptosis in human pancreatic cancer PANC-1 cells. J Cancer Res
Ther. 12 (Suppl):S1–S4. 2016.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Iwase R, Haruki K, Fujiwara Y, Furukawa K,
Shiba H, Uwagawa T, Misawa T, Ohashi T and Yanaga K: Combination
chemotherapy of nafamostat mesylate with gemcitabine for
gallbladder cancer targeting nuclear factor-κB activation. J Surg
Res. 184:605–612. 2013.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Rousseau EJ, Davison AJ and Dunn B:
Protection by beta-carotene and related compounds against
oxygen-mediated cytotoxicity and genotoxicity: Implications for
carcinogenesis and anticarcinogenesis. Free Radic Biol Med.
13:407–433. 1992.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Bertram JS and Vine AL: Cancer prevention
by retinoids and carotenoids: Independent action on a common
target. Biochim Biophys Acta. 1740:170–178. 2005.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Pádua D, Rocha E, Gargiulo D and Ramos A:
Bioactive compounds from brown seaweeds: Phloroglucinol,
fucoxanthin and fucoidan as promising therapeutic agents against
breast cancer. Phytochem Lett. 14:91–98. 2015.
|
|
49
|
Lee SJ, Bai SK, Lee KS, Namkoong S, Na HJ,
Ha KS, Han JA, Yim SV, Chang K, Kwon YG, et al: Astaxanthin
inhibits nitric oxide production and inflammatory gene expression
by suppressing I(kappa)B kinase-dependent NF-kappaB activation. Mol
Cells. 16:97–105. 2003.PubMed/NCBI
|
|
50
|
Campo GM, Avenoso A, Campo S, D'Ascola A,
Traina P, Samà D and Calatroni A: The antioxidant effect exerted by
TGF-1beta-stimulated hyaluronan production reduced NF-kB activation
and apoptosis in human fibroblasts exposed to FeSo4 plus ascorbate.
Mol Cell Biochem. 311:167–177. 2008.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Kumar SR, Hosokawa M and Miyashita K:
Fucoxanthin: A marine carotenoid exerting anti-cancer effects by
affecting multiple mechanisms. Mar Drugs. 11:5130–5147.
2013.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Fan M, Nath AK, Tang Y, Choi YJ, Debnath
T, Choi EJ and Kim EK: Investigation of the anti-prostate cancer
properties of marine-derived compounds. Mar Drugs.
16(160)2018.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Asai A, Sugawara T, Ono H and Nagao A:
Biotransformation of fucoxanthinol into amarouciaxanthin A in mice
and HepG2 cells: Formation and cytotoxicity of fucoxanthin
metabolites. Drug Metab Dispos. 32:205–211. 2004.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Maeda H, Hosokawa M, Sashima T, Takahashi
N, Kawada T and Miyashita K: Fucoxanthin and its metabolite,
fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells.
Int J Mol Med. 18:147–152. 2006.PubMed/NCBI
|
|
55
|
Eid SY, Althubiti MA, Abdallah ME, Wink M
and El-Readi MZ: The carotenoid fucoxanthin can sensitize multidrug
resistant cancer cells to doxorubicin via induction of apoptosis,
inhibition of multidrug resistance proteins and metabolic enzymes.
Phytomedicine. 77(153280)2020.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Baker CH, Banzon J, Bollinger JM, Stubbe
J, Samano V, Robins MJ, Lippert B, Jarvi E and Resvick R:
2'-Deoxy-2'-methylenecytidine and 2'-deoxy-2',2'-difluorocytidine
5'-diphosphates: Potent mechanism-based inhibitors of
ribonucleotide reductase. J Med Chem. 34:1879–1884. 1991.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Jones RM, Kotsantis P, Stewart GS, Groth P
and Petermann E: BRCA2 and RAD51 promote double-strand break
formation and cell death in response to gemcitabine. Mol Cancer
Ther. 13:2412–2421. 2014.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Li Y, Wang LR, Chen J, Lou Y and Zhang GB:
First-line gemcitabine plus cisplatin in nonsmall cell lung cancer
patients. Dis Markers. 2014(960458)2014.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Ke Z, Fu T, Wang X, Xuan M, Yin H, Zhou J,
Liu Y and Liang A: CHK1 inhibition overcomes gemcitabine resistance
in non-small cell lung cancer cell A549. Res Sq, 2022.
|
|
60
|
Du L, Lyle CS, Obey TB, Gaarde WA, Muir
JA, Bennett BL and Chambers TC: Inhibition of cell proliferation
and cell cycle progression by specific inhibition of basal JNK
activity: Evidence that mitotic Bcl-2 phosphorylation is
JNK-independent. J Biol Chem. 279:11957–11966. 2004.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Bildstein L, Pili B, Marsaud V, Wack S,
Meneau F, Lepêtre-Mouelhi S, Desmaële D, Bourgaux C, Couvreur P and
Dubernet C: Interaction of an amphiphilic squalenoyl prodrug of
gemcitabine with cellular membranes. Eur J Pharm Biopharm.
79:612–620. 2011.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Mc Gee MM: Targeting the mitotic
catastrophe signaling pathway in cancer. Mediators Inflamm.
2015(146282)2015.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Montano R, Thompson R, Chung I, Hou H,
Khan N and Eastman A: Sensitization of human cancer cells to
gemcitabine by the Chk1 inhibitor MK-8776: Cell cycle perturbation
and impact of administration schedule in vitro and in vivo. BMC
Cancer. 13(604)2013.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Guo JR, Chen QQ, Lam CW, Wang CY, Wong VK,
Chang ZF and Zhang W: Profiling ribonucleotide and
deoxyribonucleotide pools perturbed by gemcitabine in human
non-small cell lung cancer cells. Sci Rep. 6(37250)2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Kajstura M, Halicka HD, Pryjma J and
Darzynkiewicz Z: Discontinuous fragmentation of nuclear DNA during
apoptosis revealed by discrete ‘sub-G1’ peaks on DNA content
histograms. Cytometry A. 71:125–131. 2007.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Haddad NF, Teodoro AJ, Leite de Oliveira
F, Soares N, de Mattos RM, Hecht F, Dezonne RS, Vairo L, Goldenberg
RC, Gomes FC, et al: Lycopene and beta-carotene induce growth
inhibition and proapoptotic effects on ACTH-secreting pituitary
adenoma cells. PLoS One. 8(e62773)2013.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Milani A, Basirnejad M, Shahbazi S and
Bolhassani A: Carotenoids: Biochemistry, pharmacology and
treatment. Br J Pharmacol. 174:1290–1324. 2017.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Das SK, Hashimoto T, Shimizu K, Yoshida T,
Sakai T, Sowa Y, Komoto A and Kanazawa K: Fucoxanthin induces cell
cycle arrest at G0/G1 phase in human colon carcinoma cells through
up-regulation of p21WAF1/Cip1. Biochim Biophys Acta. 1726:328–335.
2005.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Yu RX, Hu XM, Xu SQ, Jiang ZJ and Yang W:
Effects of fucoxanthin on proliferation and apoptosis in human
gastric adenocarcinoma MGC-803 cells via JAK/STAT signal pathway.
Eur J Pharmacol. 657:10–19. 2011.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Koklesova L, Liskova A, Samec M, Buhrmann
C, Samuel SM, Varghese E, Ashrafizadeh M, Najafi M, Shakibaei M,
Büsselberg D, et al: Carotenoids in cancer apoptosis-the road from
bench to bedside and back. Cancers (Basel). 12(2425)2020.PubMed/NCBI View Article : Google Scholar
|
|
71
|
García-Olmo DC, Riese HH, Escribano J,
Ontañón J, Fernandez JA, Atiénzar M and García-Olmo D: Effects of
long-term treatment of colon adenocarcinoma with crocin, a
carotenoid from saffron (Crocus sativus L.): An experimental
study in the rat. Nutr Cancer. 35:120–126. 1999.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Eid SY, El-Readi MZ and Wink M:
Carotenoids reverse multidrug resistance in cancer cells by
interfering with ABC-transporters. Phytomedicine. 19:977–987.
2012.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Kwon M, Jung H, Nam GH and Kim IS: The
right timing, right combination, right sequence, and right delivery
for cancer immunotherapy. J Control Release. 331:321–334.
2021.PubMed/NCBI View Article : Google Scholar
|