|
1
|
Shay JW: Telomeres and aging. Curr Opin
Cell Biol. 52:1–7. 2018.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Gruber HJ, Semeraro MD, Renner W and
Herrmann M: Telomeres and Age-Related Diseases. Biomedicines.
9(1335)2021.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Griffith JD, Comeau L, Rosenfield S,
Stansel RM, Bianchi A, Moss H and de Lange T: Mammalian Telomeres
End in a Large Duplex Loop. Cell. 97:503–514. 1999.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Greider CW: Telomeres Do D-Loop-T-Loop.
Cell. 97:419–422. 1999.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Turner KJ, Vasu V and Griffin DK: Telomere
biology and human phenotype. Cells. 8(73)2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
de Lange T: Shelterin: The protein complex
that shapes and safeguards human telomeres. Genes Dev.
19:2100–2110. 2005.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Blasco MA: Telomere length, stem cells and
aging. Nat Chem Biol. 3:640–649. 2007.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Jaskelioff M, Muller FL, Paik JH, Thomas
E, Jiang S, Adams AC, Sahin E, Kost-Alimova M, Protopopov A,
Cadiñanos J, et al: Telomerase reactivation reverses tissue
degeneration in aged telomerase-deficient mice. Nature.
469:102–106. 2011.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Tsoukalas D, Fragkiadaki P, Docea AO,
Alegakis AK, Sarandi E, Vakonaki E, Salataj E, Kouvidi E, Nikitovic
D, Kovatsi L, et al: Association of nutraceutical supplements with
longer telomere length. Int J Mol Med. 44:218–226. 2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Tsoukalas D, Buga AM, Docea AO, Sarandi E,
Mitrut R, Renieri E, Spandidos DA, Rogoveanu I, Cercelaru L,
Niculescu M, et al: Reversal of brain aging by targeting
telomerase: A nutraceutical approach. Int J Mol Med.
48(199)2021.PubMed/NCBI View Article : Google Scholar
|
|
11
|
López-Otín C, Blasco MA, Partridge L,
Serrano M and Kroemer G: The Hallmarks of Aging. Cell.
153:1194–1217. 2013.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Lederman S: American Federation for Aging
Research. In: Encyclopedia of Gerontology and Population Aging. Gu
D and Dupre ME (eds). Springer, Cham, pp1–5, 2020.
|
|
13
|
Vaiserman A and Krasnienkov D: Telomere
length as a marker of biological age: State-of-the-Art, open
issues, and future perspectives. Front Genet.
11(630186)2021.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Rossiello F, Jurk D, Passos JF and d'Adda
di Fagagna F: Telomere dysfunction in ageing and age-related
diseases. Nat Cell Biol. 24:135–147. 2022.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Sanders JL and Newman AB: Telomere length
in epidemiology: A biomarker of aging, age-related disease, both,
or neither? Epidemiol Rev. 35:112–131. 2013.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Valdes AM, Richards JB, Gardner JP,
Swaminathan R, Kimura M, Xiaobin L, Aviv A and Spector TD: Telomere
length in leukocytes correlates with bone mineral density and is
shorter in women with osteoporosis. Osteoporos Int. 18:1203–1210.
2007.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Farr JN and Khosla S: Cellular senescence
in bone. Bone. 121:121–133. 2019.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Sozen T, Ozisik L and Basaran NC: An
overview and management of osteoporosis. Eur J Rheumatol. 4:46–56.
2017.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Chen X, Hu Y, Geng Z and Su J: The ‘Three
in One’ Bone repair strategy for osteoporotic fractures. Front
Endocrinol (Lausanne). 13(910602)2022.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Dimai HP, Redlich K, Peretz M, Borgström
F, Siebert U and Mahlich J: Economic burden of osteoporotic
fractures in Austria. Health Econ Rev. 2(12)2012.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Johnston CB and Dagar M: Osteoporosis in
older adults. Med Clin North Am. 104:873–884. 2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Pignolo RJ, Law SF and Chandra A: Bone
aging, cellular senescence, and osteoporosis. JBMR Plus.
5(e10488)2021.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Wright NC, Looker AC, Saag KG, Curtis JR,
Delzell ES, Randall S and Dawson-Hughes B: The recent prevalence of
osteoporosis and low bone mass in the united states based on bone
mineral density at the femoral neck or lumbar Spine. J Bone Miner
Res. 29:2520–2526. 2014.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Watts NB, Bilezikian JP, Camacho PM,
Greenspan SL, Harris ST, Hodgson SF, Kleerekoper M, Luckey MM,
McClung MR, Pollack RP, et al: American association of clinical
endocrinologists medical guidelines for clinical practice for the
diagnosis and treatment of postmenopausal osteoporosis. Endocr
Pract. 16 Suppl 3(Suppl 3):S1–S37. 2010.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Khosla S: Pathogenesis of Age-Related Bone
Loss in Humans. J Gerontol A Biol Sci Med Sci. 68:1226–1235.
2013.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Chandra A, Lagnado AB, Farr JN, Monroe DG,
Park S, Hachfeld C, Tchkonia T, Kirkland JL, Khosla S, Passos JF
and Pignolo RJ: Targeted reduction of senescent cell burden
alleviates focal radiotherapy-related bone loss. J Bone Miner Res.
35:1119–1131. 2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Chandra A and Rajawat J: Skeletal aging
and osteoporosis: Mechanisms and Therapeutics. Int J Mol Sci.
22(3553)2021.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Farr JN, Rowsey JL, Eckhardt BA, Thicke
BS, Fraser DG, Tchkonia T, Kirkland JL, Monroe DG and Khosla S:
Independent roles of estrogen deficiency and cellular senescence in
the pathogenesis of osteoporosis: Evidence in young adult mice and
older humans. J Bone Miner Res. 34:1407–1418. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Hachemi Y, Rapp AE, Picke AK, Weidinger G,
Ignatius A and Tuckermann J: Molecular mechanisms of
glucocorticoids on skeleton and bone regeneration after fracture. J
Mol Endocrinol. 61:R75–R90. 2018.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Siddiqui JA and Partridge NC:
Physiological bone remodeling: Systemic regulation and growth
factor involvement. Physiology (Bethesda). 31:233–245.
2016.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Kenkre JS and Bassett J: The bone
remodelling cycle. Ann Clin Biochem. 55:308–327. 2018.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Rauner M, Taipaleenmäki H, Tsourdi E and
Winter EM: Osteoporosis treatment with anti-sclerostin
antibodies-mechanisms of action and clinical application. J Clin
Med. 10(787)2021.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Fabre S, Funck-Brentano T and Cohen-Solal
M: Anti-Sclerostin antibodies in osteoporosis and other bone
diseases. J Clin Med. 9(3439)2020.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Shakeri A and Adanty C: Romosozumab
(sclerostin monoclonal antibody) for the treatment of osteoporosis
in postmenopausal women: A review. J Popul Ther Clin Pharmacol.
27:e25–e31. 2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Ensrud KE and Crandall CJ: Osteoporosis.
Ann Intern Med. 167:ITC17–ITC32. 2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Mather KA, Jorm AF, Parslow RA and
Christensen H: Is telomere length a biomarker of aging? A review. J
Gerontol A Biol Sci Med Sci. 66A:202–213. 2011.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Der G, Batty GD, Benzeval M, Deary IJ,
Green MJ, McGlynn L, McIntyre A, Robertson T and Shiels PG: Is
telomere length a biomarker for aging: Cross-Sectional evidence
from the west of scotland? PLoS One. 7(e45166)2012.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Simons MJ: Questioning causal involvement
of telomeres in aging. Ageing Res Rev. 24(Pt B):191–196.
2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Gorenjak V, Akbar S, Stathopoulou MG and
Visvikis-Siest S: The future of telomere length in personalized
medicine. Front Biosci (Landmark Ed). 23:1628–1654. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Fasching CL: Telomere length measurement
as a clinical biomarker of aging and disease. Crit Rev Clin Lab
Sci. 55:443–465. 2018.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Bekaert S, Van Pottelbergh I, De Meyer T,
Zmierczak H, Kaufman JM, Van Oostveldt P and Goemaere S: Telomere
length versus hormonal and bone mineral status in healthy elderly
men. Mech Ageing Dev. 126:1115–1122. 2005.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Cawthon RM, Smith KR, O'Brien E,
Sivatchenko A and Kerber RA: Association between telomere length in
blood and mortality in people aged 60 years or older. Lancet.
361:393–395. 2003.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Kassem M and Marie PJ:
Senescence-associated intrinsic mechanisms of osteoblast
dysfunctions: Age-related mechanisms of osteoblast dysfunctions.
Aging Cell. 10:191–197. 2011.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Wang D and Wang H: Cellular Senescence in
Bone. In: Physiology. Heshmati H (ed). IntechOpen, vol. 15 M,
2022.
|
|
45
|
Tamayo M, Mosquera A, Rego JI,
Fernández-Sueiro JL, Blanco FJ and Fernández JL: Differing patterns
of peripheral blood leukocyte telomere length in rheumatologic
diseases. Mutat Res. 683:68–73. 2010.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Nielsen BR, Linneberg A, Bendix L, Harboe
M, Christensen K and Schwarz P: Association between leukocyte
telomere length and bone mineral density in women 25-93 years of
age. Exp Gerontol. 66:25–31. 2015.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Smith RL, de Boer R, Brul S, Budovskaya Y
and van Spek H: Premature and accelerated aging: HIV or HAART?
Front Genet. 3(328)2013.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Deeks SG: HIV infection, inflammation,
immunosenescence, and aging. Annu Rev Med. 62:141–155.
2011.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Kalyan S, Pick N, Mai A, Murray MCM,
Kidson K, Chu J, Albert AYK, Côté HCF, Maan EJ, Goshtasebi A, et
al: Premature spinal bone loss in women living with HIV is
associated with shorter leukocyte telomere length. Int J Environ
Res Public Health. 15(1018)2018.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Brown TT and Qaqish RB: Antiretroviral
therapy and the prevalence of osteopenia and osteoporosis: A
meta-analytic review. AIDS. 20:2165–2174. 2006.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Tao L, Huang Q, Yang R, Dai Y, Zeng Y, Li
C, Li X, Zeng J and Wang Q: The age modification to leukocyte
telomere length effect on bone mineral density and osteoporosis
among Chinese elderly women. J Bone Miner Metab. 37:1004–1012.
2019.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Fragkiadaki P, Nikitovic D, Kalliantasi K,
Sarandi E, Thanasoula M, Stivaktakis PD, Nepka C, Spandidos DA,
Tosounidis T and Tsatsakis A: Telomere length and telomerase
activity in osteoporosis and osteoarthritis. Exp Ther Med.
19:1626–1632. 2020.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Curtis EM, Codd V, Nelson C, D'Angelo S,
Wang Q, Allara E, Kaptoge S, Matthews PM, Tobias JH, Danesh J, et
al: Telomere length and risk of incident fracture and arthroplasty:
Findings from UK Biobank. J Bone Miner Res. 37:1997–2004.
2022.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Farr JN, Fraser DG, Wang H, Jaehn K,
Ogrodnik MB, Weivoda MM, Drake MT, Tchkonia T, LeBrasseur NK,
Kirkland JL, et al: Identification of senescent cells in the bone
microenvironment. J Bone Miner Res. 31:1920–1929. 2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Haapanen MJ, Perälä MM, Salonen MK,
Guzzardi MA, Iozzo P, Kajantie E, Rantanen T, Simonen M,
Pohjolainen P, Eriksson JG and von Bonsdorff MB: Telomere length
and frailty: The Helsinki birth cohort study. J Am Med Dir Assoc.
19:658–662. 2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Hong Z, Lin X, Zhou Y, Zheng G, Liao X,
Wei Q, Zhang Z and Liang J: Lean body mass but not body fat mass is
related with leukocyte telomere length in children. Int J Obes
(Lond). 47:67–74. 2023.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Pignolo RJ, Suda RK, McMillan EA, Shen J,
Lee SH, Choi Y, Wright AC and Johnson FB: Defects in telomere
maintenance molecules impair osteoblast differentiation and promote
osteoporosis. Aging Cell. 7:23–31. 2008.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Brennan TA, Egan KP, Lindborg CM, Chen Q,
Sweetwyne MT, Hankenson KD, Xie SX, Johnson FB and Pignolo RJ:
Mouse models of telomere dysfunction phenocopy skeletal changes
found in human age-related osteoporosis. Dis Model Mech. 7:583–592.
2014.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Singh L, Brennan TA, Kim JH, Egan KP,
McMillan EA, Chen Q, Hankenson KD, Zhang Y, Emerson SG, Johnson FB
and Pignolo RJ: Long-Term functional engraftment of mesenchymal
progenitor cells in a mouse model of accelerated aging. Stem Cells.
31:607–611. 2013.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Kveiborg M, Kassem M, Langdahl B, Eriksen
EF, Clark BF and Rattan SI: Telomere shortening during aging of
human osteoblasts in vitro and leukocytes in vivo: Lack of
excessive telomere loss in osteoporotic patients. Mech Ageing Dev.
106:261–271. 1999.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Tang NL, Woo J, Suen EW, Liao CD, Leung JC
and Leung PC: The effect of telomere length, a marker of biological
aging, on bone mineral density in elderly population. Osteoporos
Int. 21:89–97. 2010.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Kirk B, Kuo CL, Xiang M and Duque G:
Associations between leukocyte telomere length and osteosarcopenia
in 20,400 adults aged 60 years and over: Data from the UK Biobank.
Bone. 161(116425)2022.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Sepúlveda-Loyola W, Phu S, Bani Hassan E,
Brennan-Olsen SL, Zanker J, Vogrin S, Conzade R, Kirk B, Al Saedi
A, Probst V and Duque G: The joint occurrence of osteoporosis and
sarcopenia (Osteosarcopenia): Definitions and Characteristics. J Am
Med Dir Assoc. 21:220–225. 2020.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Aviv A, Valdes AM and Spector TD: Human
telomere biology: Pitfalls of moving from the laboratory to
epidemiology. Int J Epidemiol. 35:1424–1429. 2006.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Sanders JL, Cauley JA, Boudreau RM, Zmuda
JM, Strotmeyer ES, Opresko PL, Hsueh WC, Cawthon RM, Li R, Harris
TB, et al: Leukocyte Telomere length is not associated with BMD,
osteoporosis, or fracture in older adults: Results from the health,
aging and body composition study. J Bone Miner Res. 24:1531–1536.
2009.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Saeed H, Abdallah BM, Ditzel N,
Catala-Lehnen P, Qiu W, Amling M and Kassem M: Telomerase-deficient
mice exhibit bone loss owing to defects in osteoblasts and
increased osteoclastogenesis by inflammatory microenvironment. J
Bone Miner Res. 26:1494–1505. 2011.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Baird D: New developments in telomere
length analysis. Exp Gerontol. 40:363–368. 2005.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Lai TP, Zhang N, Noh J, Mender I, Tedone
E, Huang E, Wright WE, Danuser G and Shay JW: A method for
measuring the distribution of the shortest telomeres in cells and
tissues. Nat Commun. 8(1356)2017.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Lu AT, Seeboth A, Tsai PC, Sun D, Quach A,
Reiner AP, Kooperberg C, Ferrucci L, Hou L, Baccarelli AA, et al:
DNA methylation-based estimator of telomere length. Aging (Albany
NY). 11:5895–5923. 2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Dagnall CL, Hicks B, Teshome K, Hutchinson
AA, Gadalla SM, Khincha PP, Yeager M and Savage SA: Effect of
pre-analytic variables on the reproducibility of qPCR relative
telomere length measurement. PLoS One. 12(e0184098)2017.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Lin J, Smith DL, Esteves K and Drury S:
Telomere length measurement by qPCR-Summary of critical factors and
recommendations for assay design. Psychoneuroendocrinology.
99:271–278. 2019.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Bodelon C, Savage SA and Gadalla SM:
Telomeres in Molecular Epidemiology Studies. Prog Mol Biol Transl
Sci. 125:113–131. 2014.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Semeraro MD, Smith C, Kaiser M, Levinger
I, Duque G, Gruber HJ and Herrmann M: Physical activity, a
modulator of aging through effects on telomere biology. Aging
(Albany NY). 12:13803–13823. 2020.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Kirwan M and Dokal I: Dyskeratosis
congenita, stem cells and telomeres. Biochim Biophys Acta.
1792:371–379. 2009.PubMed/NCBI View Article : Google Scholar
|
|
75
|
McGrath JA: Dyskeratosis congenita: New
clinical and molecular insights into ribosome function. Lancet.
353:1204–1205. 1999.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Tsuge K and Shimamoto A: Research on
werner syndrome: Trends from past to present and future prospects.
Genes (Basel). 13(1802)2022.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Du X, Shen J, Kugan N, Furth EE, Lombard
DB, Cheung C, Pak S, Luo G, Pignolo RJ, DePinho RA, et al: Telomere
shortening exposes functions for the mouse werner and bloom
syndrome genes. Mol Cell Biol. 24:8437–8446. 2004.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Hofer AC, Tran RT, Aziz OZ, Wright W,
Novelli G, Shay J and Lewis M: Shared phenotypes among segmental
progeroid syndromes suggest underlying pathways of aging. J
Gerontol A Biol Sci Med Sci. 60:10–20. 2005.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Mason PJ, Wilson DB and Bessler M:
Dyskeratosis Congenita-A disease of dysfunctional telomere
maintenance. Curr Mol Med. 5:159–170. 2005.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Salminen A, Suuronen T, Huuskonen J and
Kaarniranta K: NEMO shuttle: A link between DNA damage and
NF-kappaB activation in progeroid syndromes? Biochem Biophys Res
Commun. 367:715–718. 2008.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Crabbe L, Verdun RE, Haggblom CI and
Karlseder J: Defective telomere lagging strand synthesis in cells
lacking WRN Helicase activity. Science. 306:1951–1953.
2004.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Majors AK, Boehm CA, Nitto H, Midura RJ
and Muschler GF: Characterization of human bone marrow stromal
cells with respect to osteoblastic differentiation. J Orthop Res.
15:546–557. 1997.PubMed/NCBI View Article : Google Scholar
|