|
1
|
Buanes TA: Role of surgery in pancreatic
cancer. World J Gastroenterol. 23:3765–3770. 2017.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Oberstein PE and Olive KP: Pancreatic
cancer: Why is it so hard to treat? Therap Adv Gastroenterol.
6:321–337. 2013.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Rawla P, Sunkara T and Gaduputi V:
Epidemiology of pancreatic cancer: global trends, etiology and risk
factors. World J Oncol. 10:10–27. 2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Jemal A, Siegel R, Ward E, Hao Y, Xu J and
Thun MJ: Cancer statistics, 2009. CA Cancer J Clin. 59:225–249.
2009.PubMed/NCBI View Article : Google Scholar
|
|
5
|
McGuigan A, Kelly P, Turkington RC, Jones
C, Coleman HG and McCain RS: Pancreatic cancer: A review of
clinical diagnosis, epidemiology, treatment and outcomes. World J
Gastroenterol. 24:4846–4861. 2018.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Carrato A, Falcone A, Ducreux M, Valle JW,
Parnaby A, Djazouli K, Alnwick-Allu K, Hutchings A, Palaska C and
Parthenaki I: A systematic review of the burden of pancreatic
cancer in Europe: Real-World Impact on survival, quality of life
and costs. J Gastrointest Cancer. 46:201–211. 2015.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Erkan M, Kurtoglu M and Kleeff J: The role
of hypoxia in pancreatic cancer: A potential therapeutic target?
Expert Rev Gastroenterol Hepatol. 10:301–316. 2016.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Vaupel P and Harrison L: Tumor hypoxia:
Causative factors, compensatory mechanisms, and cellular response.
Oncologist 9 Suppl. 5:S4–S9. 2004.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Semenza GL: Hypoxia-inducible factors in
physiology and medicine. Cell. 148:399–408. 2012.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Vaupel P and Mayer A: Hypoxia in cancer:
Significance and impact on clinical outcome. Cancer Metastasis Rev.
26:225–239. 2007.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Höckel M and Vaupel P: Tumor Hypoxia:
Definitions and current clinical, biologic, and molecular aspects.
J Natl Cancer Inst. 93:266–276. 2001.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Saxena K and Jolly MK: Acute vs. Chronic
vs. Cyclic Hypoxia: Their differential dynamics, molecular
mechanisms, and effects on tumor progression. Biomolecules.
9(339)2019.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Bayer C and Vaupel P: Acute versus chronic
hypoxia in tumors: Controversial data concerning time frames and
biological consequences. Strahlenther Onkol. 188:616–627.
2012.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Bayer C, Shi K, Astner ST, Maftei CA and
Vaupel P: Acute versus chronic hypoxia: Why a simplified
classification is simply not enough. Int J Radiat Oncol Biol Phys.
80:965–968. 2011.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Whipple C and Korc M: Targeting
angiogenesis in pancreatic cancer: Rationale and pitfalls.
Langenbecks Arch Surg. 393:901–910. 2008.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Littlewood TJ, Bajetta E, Nortier JW,
Vercammen E and Rapoport B: Epoetin Alfa Study Group. Effects of
epoetin alfa on hematologic parameters and quality of life in
cancer patients receiving nonplatinum chemotherapy: Results of a
randomized, double-blind, placebo-controlled trial. J Clin Oncol.
19:2865–2874. 2001.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Yokoi K and Fidler IJ: Hypoxia increases
resistance of human pancreatic cancer cells to apoptosis induced by
gemcitabine. Clin Cancer Res. 10:2299–2306. 2004.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Luoto KR, Kumareswaran R and Bristow RG:
Tumor hypoxia as a driving force in genetic instability. Genome
Integr. 4(5)2013.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Dewhirst MW, Kimura H, Rehmus SW, Braun
RD, Papahadjopoulos D, Hong K and Secomb TW: Microvascular studies
on the origins of perfusion-limited hypoxia. Br J Cancer. (Suppl
27):S247–S251. 1996.PubMed/NCBI
|
|
21
|
Jarrar Y, Zihlif M, Al Bawab AQ and Sharab
A: Effects of intermittent hypoxia on expression of glucose
metabolism genes in MCF7 breast cancer cell line. Curr Cancer Drug
Targets. 20:216–222. 2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Chenevier-Gobeaux C, Simonneau C,
Lemarechal H, Bonnefont-Rousselot D, Poiraudeau S, Rannou F,
Ekindjian OG, Anract P and Borderie D: Effect of
hypoxia/reoxygenation on the cytokine-induced production of nitric
oxide and superoxide anion in cultured osteoarthritic synoviocytes.
Osteoarthritis Cartilage. 21:874–881. 2013.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Mellor HR, Snelling S, Hall MD, Modok S,
Jaffar M, Hambley TW and Callaghan R: The influence of tumour
microenvironmental factors on the efficacy of cisplatin and novel
platinum(IV) complexes. Biochem Pharmacol. 70:1137–1146.
2005.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Toffoli S and Michiels C: Intermittent
hypoxia is a key regulator of cancer cell and endothelial cell
interplay in tumours. FEBS J. 275:2991–3002. 2008.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Magagnin MG, Koritzinsky M and Wouters BG:
Patterns of tumor oxygenation and their influence on the cellular
hypoxic response and hypoxia-directed therapies. Drug Resist Updat.
9:185–197. 2006.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Hill SA and Chaplin DJ: Detection of
microregional fluctuations in erythrocyte flow using laser Doppler
microprobes. Adv Exp Med Biol. 388:367–371. 1996.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Dewhirst MW: Intermittent hypoxia furthers
the rational for HypoxiaInducible Factor-1 Targeting. Cancer Res.
67:854–855. 2007.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Bindra RS and Glazer PM: Genetic
instability and the tumor microenvironment: Towards the concept of
microenvironment-induced mutagenesis. Mutat Res. 569:75–85.
2005.PubMed/NCBI View Article : Google Scholar
|
|
31
|
AbuHammad S and Zihlif M: Gene expression
alterations in doxorubicin resistant MCF7 breast cancer cell line.
Genomics. 101:213–220. 2013.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Chou CW, Wang CC, Wu CP, Lin YJ, Lee YC,
Cheng YW and Hsieh CH: Tumor cycling hypoxia induces
chemoresistance in glioblastoma multiforme by upregulating the
expression and function of ABCB1. Neuro Oncol. 14:1227–1238.
2012.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Hodges LM, Markova SM, Chinn LW, Gow JM,
Kroetz DL, Klein TE and Altman RB: Very important pharmacogene
summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics.
21:152–161. 2011.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Frank NY, Margaryan A, Huang Y, Schatton
T, Waaga-Gasser AM, Gasser M, Sayegh MH, Sadee W and Frank MH:
ABCB5-mediated doxorubicin transport and chemoresistance in human
malignant melanoma. Cancer Res. 65:4320–4333. 2005.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Wojtkowiak JW, Verduzco D, Schramm KJ and
Gillies RJ: Drug resistance and cellular adaptation to tumor acidic
pH microenvironment. Mol Pharm. 8:2032–2038. 2011.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Leung T, Rajendran R, Singh S, Garva R,
Krstic-Demonacos M and Demonacos C: Cytochrome P450 2E1 (CYP2E1)
regulates the response to oxidative stress and migration of breast
cancer cells. Breast Cancer Res. 15(R107)2013.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Duan R, Hu N, Liu HY, Li J, Guo HF, Liu C,
Liu L and Liu XD: Biphasic regulation of P-glycoprotein function
and expression by NO donors in Caco-2 cells. Acta Pharmacol Sin.
33:767–774. 2012.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Wartenberg M, Ling FC, Muschen M, Klein F,
Acker H, Gassmann M, Petrat K, Putz V, Hescheler J and Sauer H:
Regulation of the multidrug resistance transporter P-glycoprotein
in multicellular tumor spheroids by hypoxia-inducible factor
(HIF-1) and reactive oxygen species. FASEB J. 17:503–505.
2003.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Kim B, Jung JW, Jung J, Han Y, Suh DH, Kim
HS, Dhanasekaran DN and Song YS: PGC1α induced by reactive oxygen
species contributes to chemoresistance of ovarian cancer cells.
Oncotarget. 8:60299–60311. 2017.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Al-Dhfyan A, Alhoshani A and Korashy HM:
Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates
breast cancer stem cells expansion through PTEN inhibition and
β-Catenin and Akt activation. Mol Cancer. 16(14)2017.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Zhao B, Degroot DE, Hayashi A, He G and
Denison MS: CH223191 is a ligand-selective antagonist of the Ah
(Dioxin) receptor. Toxicol Sci. 117:393–403. 2010.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Xie C, Pogribna M, Word B, Lyn-Cook L Jr,
Lyn-Cook BD and Hammons GJ: In vitro analysis of factors
influencing CYP1A2 expression as potential determinants of
interindividual variation. Pharmacol Res Perspect.
5(e00299)2017.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Noll EM, Eisen C, Stenzinger A, Espinet E,
Muckenhuber A, Klein C, Vogel V, Klaus B, Nadler W, Rosli C, et al:
CYP3A5 mediates basal and acquired therapy resistance in different
subtypes of pancreatic ductal adenocarcinoma. Nat Med. 22:278–287.
2016.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Olszewski U, Liedauer R, Ausch C,
Thalhammer T and Hamilton G: Overexpression of CYP3A4 in a COLO 205
colon cancer stem cell model in vitro. Cancers (Basel).
3:1467–1479. 2011.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Cummins CL, Jacobsen W and Benet LZ:
Unmasking the dynamic interplay between intestinal P-glycoprotein
and CYP3A4. J Pharmacol Exp Ther. 300:1036–1045. 2002.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Eagling VA, Profit L and Back DJ:
Inhibition of the CYP3A4-mediated metabolism and
P-glycoprotein-mediated transport of the HIV-1 protease inhibitor
saquinavir by grapefruit juice components. Br J Clin Pharmacol.
48:543–552. 1999.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Kivisto KT, Niemi M, Schaeffeler E,
Pitkala K, Tilvis R, Fromm MF, Schwab M, Eichelbaum M and
Strandberg T: Lipid-lowering response to statins is affected by
CYP3A5 polymorphism. Pharmacogenetics. 14:523–525. 2004.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Pan ST, Li ZL, He ZX, Qiu JX and Zhou SF:
Molecular mechanisms for tumour resistance to chemotherapy. Clin
Exp Pharmacol Physiol. 43:723–737. 2016.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Bachanova V, Shanley R, Malik F, Chauhan
L, Lamba V, Weisdorf DJ, Burns LJ and Lamba JK: Cytochrome P450
2B6*5 increases relapse after cyclophosphamide-containing
conditioning and autologous transplantation for lymphoma. Biol
Blood Marrow Transplant. 21:944–948. 2015.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Zembutsu H, Nakamura S, Akashi-Tanaka S,
Kuwayama T, Watanabe C, Takamaru T, Takei H, Ishikawa T, Miyahara
K, Matsumoto H, et al: Significant Effect of Polymorphisms in
CYP2D6 on response to tamoxifen therapy for breast cancer: A
prospective multicenter study. Clin Cancer Res. 23:2019–2026.
2017.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Kattel K, Evande R, Tan C, Mondal G, Grem
JL and Mahato RI: Impact of CYP2C19 polymorphism on the
pharmacokinetics of nelfinavir in patients with pancreatic cancer.
Br J Clin Pharmacol. 80:267–275. 2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Li X, Wang X, Li Y, Yuan M, Zhu J, Su X,
Yao X, Fan X and Duan Y: Effect of exposure to acute and chronic
high-altitude hypoxia on the activity and expression of CYP1A2,
CYP2D6, CYP2C9, CYP2C19 and NAT2 in rats. Pharmacology. 93:76–83.
2014.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Greenway B, Iqbal MJ, Johnson PJ and
Williams R: Oestrogen receptor proteins in malignant and fetal
pancreas. Br Med J (Clin Res Ed). 283:751–753. 1981.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Konduri S, Schwarz MA, Cafasso D and
Schwarz RE: Androgen receptor blockade in experimental combination
therapy of pancreatic cancer. J Surg Res. 142:378–386.
2007.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Mutoh K, Tsukahara S, Mitsuhashi J,
Katayama K and Sugimoto Y: Estrogen-mediated post transcriptional
down-regulation of P-glycoprotein in MDR1-transduced human breast
cancer cells. Cancer Sci. 97:1198–1204. 2006.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Wang L, Jiang Z, Sui M, Shen J, Xu C and
Fan W: The potential biomarkers in predicting pathologic response
of breast cancer to three different chemotherapy regimens: A case
control study. BMC Cancer. 9(226)2009.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Jeong JH, Jung SY, Park IH, Lee KS, Kang
HS, Kim SW, Kwon Y, Kim EA, Ko KL, Nam BH, et al: Predictive
factors of pathologic complete response and clinical tumor
progression after preoperative chemotherapy in patients with stage
II and III breast cancer. Invest New Drugs. 30:408–416.
2012.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Levine B, Sinha S and Kroemer G: Bcl-2
family members: Dual regulators of apoptosis and autophagy.
Autophagy. 4:600–606. 2008.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Falany CN: Enzymology of human cytosolic
sulfotransferases. FASEB J. 11:206–216. 1997.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Xu Y, Liu X, Guo F, Ning Y, Zhi X, Wang X,
Chen S, Yin L and Li X: Effect of estrogen sulfation by SULT1E1 and
PAPSS on the development of estrogen-dependent cancers. Cancer Sci.
103:1000–1009. 2012.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Karle JM, Cowan KH, Chisena CA and Cysyk
RL: Uracil nucleotide synthesis in a human breast cancer cell line
(MCF-7) and in two drug-resistant sublines that contain increased
levels of enzymes of the de novo pyrimidine pathway. Mol Pharmacol.
30:136–141. 1986.PubMed/NCBI
|
|
62
|
Mungenast F, Aust S, Vergote I,
Vanderstichele A, Sehouli J, Braicu E, Mahner S, Castillo-Tong DC,
Zeillinger R and Thalhammer T: Clinical significance of the
estrogen-modifying enzymes steroid sulfatase and estrogen
sulfotransferase in epithelial ovarian cancer. Oncol Lett.
13:4047–4054. 2017.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Tavera-Mendoza LE, Wang TT and White JH:
p19INK4D and cell death. Cell Cycle. 5:596–598. 2006.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Polvani S, Tarocchi M, Tempesti S and
Galli A: Nuclear receptors and pathogenesis of pancreatic cancer.
World J Gastroenterol. 20:12062–12081. 2014.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Brun PJ, Wongsiriroj N and Blaner WS:
Retinoids in the pancreas. Hepatobiliary Surg Nutr. 5:1–14.
2016.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Gartel AL and Tyner AL: The role of the
cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer
Ther. 1:639–649. 2002.PubMed/NCBI
|
|
67
|
Bunz F, Hwang PM, Torrance C, Waldman T,
Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW and
Vogelstein B: Disruption of p53 in human cancer cells alters the
responses to therapeutic agents. J Clin Invest. 104:263–269.
1999.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Koster R, di Pietro A, Timmer-Bosscha H,
Gibcus JH, van den Berg A, Suurmeijer AJ, Bischoff R, Gietema JA
and de Jong S: Cytoplasmic p21 expression levels determine
cisplatin resistance in human testicular cancer. J Clin Invest.
120:3594–3605. 2010.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Tachibana K, Yamasaki D, Ishimoto K and
Doi T: The role of PPARs in cancer. PPAR Res.
2008(102737)2008.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Hua AM: PPAR-alpha: A Novel Target in
Pancreatic Cancer. ProQuest LLC, Ann Arbor, MI, 2012.
|
|
71
|
Gao J, Liu Q, Xu Y, Gong X, Zhang R, Zhou
C, Su Z, Jin J, Shi H, Shi J and Hou Y: PPARα induces cell
apoptosis by destructing Bcl2. Oncotarget. 6:44635–44642.
2015.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Abdollahi A, Schwager C, Kleeff J,
Esposito I, Domhan S, Peschke P, Hauser K, Hahnfeldt P, Hlatky L,
Debus J, et al: Transcriptional network governing the angiogenic
switch in human pancreatic cancer. Proc Natl Acad Sci USA.
104:12890–12895. 2007.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Gou Q, Gong X, Jin J, Shi J and Hou Y:
Peroxisome proliferator-activated receptors (PPARs) are potential
drug targets for cancer therapy. Oncotarget. 8:60704–60709.
2017.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Wang X, Wang G, Shi Y, Sun L, Gorczynski
R, Li YJ, Xu Z and Spaner DE: PPAR-delta promotes survival of
breast cancer cells in harsh metabolic conditions. Oncogenesis.
5(e232)2016.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Melis JP, Luijten M, Mullenders LH and van
Steeg H: The role of XPC: Implications in cancer and oxidative DNA
damage. Mutat Res. 728:107–117. 2011.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Rezvani HR, Mahfouf W, Ali N, Chemin C,
Ged C, Kim AL, de Verneuil H, Taïeb A, Bickers DR and Mazurier F:
Hypoxia-inducible factor-1α regulates the expression of nucleotide
excision repair proteins in keratinocytes. Nucleic Acids Res.
38:797–809. 2010.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Colton SL, Xu XS, Wang YA and Wang G: The
involvement of ataxia-telangiectasia mutated protein activation in
nucleotide excision repair-facilitated cell survival with cisplatin
treatment. J Biol Chem. 281:27117–27125. 2006.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Tan M and Yu D: Molecular mechanisms of
erbB2-mediated breast cancer chemoresistance. Adv Exp Med Biol.
608:119–129. 2007.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Stoecklein NH, Luebke AM, Erbersdobler A,
Knoefel WT, Schraut W, Verde PE, Stern F, Scheunemann P, Peiper M,
Eisenberger CF, et al: Copy number of chromosome 17 but not HER2
amplification predicts clinical outcome of patients with pancreatic
ductal adenocarcinoma. J Clin Oncol. 22:4737–4745. 2004.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Gusterson BA, Gelber RD, Goldhirsch A,
Price KN, Save-Soderborgh J, Anbazhagan R, Styles J, Rudenstam CM,
Golouh R, Reed R, et al: Prognostic importance of c-erbB-2
expression in breast cancer. International (Ludwig) breast cancer
study group. J Clin Oncol. 10:1049–1056. 1992.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Tulchinsky E: Fos family members:
Regulation, structure and role in oncogenic transformation. Histol
Histopathol. 15:921–928. 2000.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Moorehead RA and Singh G: Influence of the
proto-oncogene c-fos on cisplatin sensitivity. Biochem Pharmacol.
59:337–345. 2000.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Shuang T, Wang M, Zhou Y, Shi C and Wang
D: NF-κB1, c-Rel, and ELK1 inhibit miR-134 expression leading to
TAB1 upregulation in paclitaxel-resistant human ovarian cancer.
Oncotarget. 8:24853–24868. 2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Zheng HC: The molecular mechanisms of
chemoresistance in cancers. Oncotarget. 8:59950–59964.
2017.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Janknecht R, Ernst WH, Pingoud V and
Nordheim A: Activation of ternary complex factor Elk-1 by MAP
kinases. EMBO J. 12:5097–5104. 1993.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Doktorova H, Hrabeta J, Khalil MA and
Eckschlager T: Hypoxia-induced chemoresistance in cancer cells: The
role of not only HIF-1. Biomed Pap Med Fac Univ Palacky Olomouc
Czech Repub. 159:166–177. 2015.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Chan YY, Kalpana S, Chang WC, Chang WC and
Chen BK: Expression of aryl hydrocarbon receptor nuclear
translocator enhances cisplatin resistance by upregulating MDR1
expression in cancer cells. Mol Pharmacol. 84:591–602.
2013.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Williams J, Lucas PC, Griffith KA, Choi M,
Fogoros S, Hu YY and Liu JR: Expression of Bcl-xL in ovarian
carcinoma is associated with chemoresistance and recurrent disease.
Gynecol Oncol. 96:287–295. 2005.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Adrian TE, Hennig R, Friess H and Ding X:
The role of PPARgamma receptors and leukotriene B(4) receptors in
mediating the effects of LY293111 in pancreatic cancer. PPAR Res.
2008(827096)2008.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Polvani S, Tarocchi M, Tempesti S, Bencini
L and Galli A: Peroxisome proliferator activated receptors at the
crossroad of obesity, diabetes, and pancreatic cancer. World J
Gastroenterol. 22:2441–2459. 2016.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Farrow B and Evers BM: Activation of
PPARgamma increases PTEN expression in pancreatic cancer cells.
Biochem Biophys Res Commun. 301:50–53. 2003.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Aires V, Brassart B, Carlier A,
Scagliarini A, Mandard S, Limagne E, Solary E, Martiny L, Tarpin M
and Delmas D: A role for peroxisome proliferator-activated receptor
gamma in resveratrol-induced colon cancer cell apoptosis. Mol Nutr
Food Res. 58:1785–1794. 2014.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Reddy RC, Srirangam A, Reddy K, Chen J,
Gangireddy S, Kalemkerian GP, Standiford TJ and Keshamouni VG:
Chemotherapeutic drugs induce PPAR-gamma expression and show
sequence-specific synergy with PPAR-gamma ligands in inhibition of
non-small cell lung cancer. Neoplasia. 10:597–603. 2008.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Chi T, Wang M, Wang X, Yang K, Xie F, Liao
Z and Wei P: PPAR-γ modulators as current and potential cancer
treatments. Front Oncol. 11(737776)2021.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Eibl G: The role of PPAR-gamma and its
interaction with COX-2 in pancreatic cancer. PPAR Res.
2008(326915)2008.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Adamska A and Falasca M: ATP-binding
cassette transporters in progression and clinical outcome of
pancreatic cancer: What is the way forward? World J Gastroenterol.
24:3222–3238. 2018.PubMed/NCBI View Article : Google Scholar
|
|
97
|
He X, Wang J, Wei W, Shi M, Xin B, Zhang T
and Shen X: Hypoxia regulates ABCG2 activity through the
activivation of ERK1/2/HIF-1α and contributes to chemoresistance in
pancreatic cancer cells. Cancer Biol Ther. 17:188–198.
2016.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Konig J, Hartel M, Nies AT, Martignoni ME,
Guo J, Buchler MW, Friess H and Keppler D: Expression and
localization of human multidrug resistance protein (ABCC) family
members in pancreatic carcinoma. Int J Cancer. 115:359–367.
2005.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Hientz K, Mohr A, Bhakta-Guha D and
Efferth T: The role of p53 in cancer drug resistance and targeted
chemotherapy. Oncotarget. 8:8921–8946. 2017.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Fiorini C, Cordani M, Padroni C, Blandino
G, Di Agostino S and Donadelli M: Mutant p53 stimulates
chemoresistance of pancreatic adenocarcinoma cells to gemcitabine.
Biochim Biophys Acta. 1853:89–100. 2015.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Chu IM, Hengst L and Slingerland JM: The
Cdk inhibitor p27 in human cancer: Prognostic potential and
relevance to anticancer therapy. Nat Rev Cancer. 8:253–267.
2008.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Alderton G: Priming resistance. Nat Rev
Cancer. 7(162)2007.
|
|
103
|
Brown I, Shalli K, McDonald SL, Moir SE,
Hutcheon AW, Heys SD and Schofield AC: Reduced expression of p27 is
a novel mechanism of docetaxel resistance in breast cancer cells.
Breast Cancer Res. 6:R601–R607. 2004.PubMed/NCBI View
Article : Google Scholar
|
|
104
|
Germain P, Staels B, Dacquet C, Spedding M
and Laudet V: Overview of nomenclature of nuclear receptors.
Pharmacol Rev. 58:685–704. 2006.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Soprano KJ and Soprano DR: Retinoic acid
receptors and cancer. J Nutr. 132:3809S–3813S. 2002.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Huang GL, Song W, Zhou P, Fu QR, Lin CL,
Chen QX and Shen DY: Oncogenic retinoic acid receptor γ knockdown
reverses multi-drug resistance of human colorectal cancer via
Wnt/β-catenin pathway. Cell Cycle. 16:685–692. 2017.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Williams CC, Allison JG, Vidal GA, Burow
ME, Beckman BS, Marrero L and Jones FE: The ERBB4/HER4 receptor
tyrosine kinase regulates gene expression by functioning as a
STAT5A nuclear chaperone. J Cell Biol. 167:469–478. 2004.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Thybusch-Bernhardt A, Beckmann S and Juhl
H: Comparative analysis of the EGF-receptor family in pancreatic
cancer: Expression of HER-4 correlates with a favourable tumor
stage. Int J Surg Investig. 2:393–400. 2001.PubMed/NCBI
|