|
1
|
Tinahones FJ: The importance of the
microbiota in obesity. Rev Esp Endocrinol Pediatr. 8 (Suppl
1):16–20. 2017.
|
|
2
|
Bibbò S, Dore MP, Pes GM, Delitala G and
Delitala AP: Is there a role for gut microbiota in type 1 diabetes
pathogenesis? Ann Med. 49:11–22. 2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Kim S and Jazwinski SM: The gut microbiota
and healthy aging: A mini-review. Gerontology. 64:513–520.
2018.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Ordoñez-Rodriguez A, Roman P, Rueda-Ruzafa
L, Campos-Rios A and Cardona D: Changes in gut microbiota and
multiple sclerosis: A systematic review. Int J Environ Res Public
Health. 20(4624)2023.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Cornejo-Pareja I, Muñoz-Garach A,
Clemente-Postigo M and Tinahones FJ: Importance of gut microbiota
in obesity. Eur J Clin Nutr. 72 (Suppl 1):S26–S37. 2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Passos MDCF and Moraes-Filho JP:
Intestinal microbiota in digestive diseases. Arq Gastroenterol.
54:255–262. 2017.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Mörkl S, Butler MI, Holl A, Cryan JF and
Dinan TG: Probiotics and the microbiota-gut-brain axis: Focus on
psychiatry. Curr Nutr Rep. 9:171–182. 2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Freedman SN, Shahi SK and Mangalam AK: The
‘Gut Feeling’: Breaking down the role of gut microbiome in multiple
sclerosis. Neurotherapeutics. 15:109–125. 2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Altieri C, Speranza B, Corbo MR,
Sinigaglia M and Bevilacqua A: Gut-Microbiota, and multiple
sclerosis: Background, evidence, and perspectives. Nutrients.
15(942)2023.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Wang HX and Wang YP: Gut microbiota-brain
axis. Chin Med J (Engl). 129:2373–2380. 2016.PubMed/NCBI View Article : Google Scholar
|
|
11
|
De Luca F and Shoenfeld Y: The microbiome
in autoimmune diseases. Clin Exp Immunol. 195:74–85.
2019.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Forssberg H: Microbiome programming of
brain development: Implications for neurodevelopmental disorders.
Dev Med Child Neurol. 61:744–749. 2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Sharon G, Sampson TR, Geschwind DH and
Mazmanian SK: The central nervous system and the gut microbiome.
Cell. 167:915–932. 2016.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kesika P, Suganthy N, Sivamaruthi BS and
Chaiyasut C: Role of gut-brain axis, gut microbial composition, and
probiotic intervention in Alzheimer's disease. Life Sci.
264(118627)2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Gotkine M, Kviatcovsky D and Elinav E:
Amyotrophic lateral sclerosis and intestinal microbiota-toward
establishing cause and effect. Gut Microbes. 11:1833–1841.
2020.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D,
Xiao C, Zhu D, Koya JB, Wei L, Li J and Chen ZS: Microbiota in
health and diseases. Signal Transduct Target Ther.
7(135)2022.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Vasudha M, Prashantkumar CS, Bellurkar M,
Kaveeshwar V and Gayathri D: Probiotic potential of
β-galactosidase-producing lactic acid bacteria from fermented milk
and their molecular characterization. Biomed Rep.
18(23)2023.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Markowiak P and Śliżewska K: Effects of
probiotics, prebiotics, and synbiotics on human health. Nutrients.
9(1021)2017.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Marietta E, Mangalam AK, Taneja V and
Murray JA: Intestinal dysbiosis in, and enteral bacterial therapies
for, systemic autoimmune diseases. Front Immunol.
11(573079)2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu
KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling
C, Golubeva AV, et al: The microbiota-gut-brain axis. Physiol Rev.
99:1877–2013. 2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Klineova S and Lublin FD: Clinical course
of multiple sclerosis. Cold Spring Harb Perspect Med.
8(a028928)2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Walton C, King R, Rechtman L, Kaye W,
Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van der
Mei I, et al: Rising prevalence of multiple sclerosis worldwide:
Insights from the Atlas of MS, third edition. Mult Scler.
26:1816–1821. 2020.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Iacobaeus E, Arrambide G, Amato MP,
Derfuss T, Vukusic S, Hemmer B, Tintore M and Brundin L: 2018
ECTRIMS Focused Workshop Group. Aggressive multiple sclerosis (1):
Towards a definition of the phenotype. Mult Scler.
26(1352458520925369)2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Olsson T, Barcellos LF and Alfredsson L:
Interactions between genetic, lifestyle and environmental risk
factors for multiple sclerosis. Nat Rev Neurol. 13:25–36.
2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Cotsapas C and Mitrovic M: Genome-wide
association studies of multiple sclerosis. Clin Transl Immunology.
7(e1018)2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
López-Gómez J, Sacristán-Enciso B,
Caro-Miró MA and Querol Pascual MR: Clinically isolated syndrome:
Diagnosis and risk of developing clinically definite multiple
sclerosis. Neurologia (Engl Ed).
S0213-4853(21)(00028-1)2021.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
|
27
|
Thompson AJ, Baranzini SE, Geurts J,
Hemmer B and Ciccarelli O: Multiple sclerosis. Lancet.
391:1622–1636. 2018.PubMed/NCBI View Article : Google Scholar
|
|
28
|
van der Vuurst de Vries RM, Wong YYM,
Mescheriakova JY, van Pelt ED, Runia TF, Jafari N, Siepman TA,
Melief MJ, Wierenga-Wolf AF, van Luijn MM, et al: High
neurofilament levels are associated with clinically definite
multiple sclerosis in children and adults with clinically isolated
syndrome. Mult Scler. 25:958–967. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Sorensen PS, Sellebjerg F, Hartung HP,
Montalban X, Comi G and Tintoré M: The apparently milder course of
multiple sclerosis: Changes in the diagnostic criteria, therapy and
natural history. Brain. 143:2637–2652. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Yuan S, Xiong Y and Larsson SC: An atlas
on risk factors for multiple sclerosis: A Mendelian randomization
study. J Neurol. 268:114–124. 2021.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Ilchmann-Diounou H and Menard S:
Psychological stress, intestinal barrier dysfunctions, and
autoimmune disorders: An overview. Front Immunol.
11(1823)2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Riccio P and Rossano R: Diet, Gut
microbiota, and vitamins D + A in multiple sclerosis.
Neurotherapeutics. 15:75–91. 2018.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Scheperjans F: Can microbiota research
change our understanding of neurodegenerative diseases?
Neurodegener Dis Manag. 6:81–85. 2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Parodi B and Kerlero de Rosbo N: The
gut-brain axis in multiple sclerosis. is its dysfunction a
pathological trigger or a consequence of the disease? Front
Immunol. 12(718220)2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S,
Kishi Y, Regev A and Kuchroo VK: Induction of Pathogenic TH17 Cells
by Inducible Salt-Sensing Kinase SGK1. Nature. 496:513–517.
2013.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Wilck N, Matus MG, Kearney SM, Olesen SW,
Forslund K, Bartolomaeus H, Haase S, Mähler A, Balogh A, Markó L,
et al: Salt-Responsive Gut Commensal modulates TH17 axis
and disease. Nature. 551:585–589. 2017.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Farez MF, Fiol MP, Gaitán MI, Quintana FJ
and Correale J: Sodium intake is associated with increased disease
activity in multiple sclerosis. J Neurol Neurosurg Psychiatry.
86:26–31. 2015.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Chen J, Chia N, Kalari KR, Yao JZ, Novotna
M, Paz Soldan MM, Luckey DH, Marietta EV, Jeraldo PR, Chen X, et
al: Multiple sclerosis patients have a distinct gut microbiota
compared to healthy controls. Sci Rep. 6(28484)2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Moser T, Akgün K, Proschmann U, Sellner J
and Ziemssen T: The role of TH17 cells in multiple sclerosis:
Therapeutic implications. Autoimmun Rev. 19(102647)2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Rutsch A, Kantsjö JB and Ronchi F: The
gut-brain axis: How microbiota and host inflammasome influence
brain physiology and pathology. Front Immunol.
11(604179)2020.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Gentile F, Doneddu PE, Riva N,
Nobile-Orazio E and Quattrini A: Diet, microbiota and brain health:
Unraveling the network intersecting metabolism and
neurodegeneration. Int J Mol Sci. 21(7471)2020.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Chidambaram SB, Essa MM, Rathipriya AG,
Bishir M, Ray B, Mahalakshmi AM, Tousif AH, Sakharkar MK, Kashyap
RS, Friedland RP and Monaghan TM: Gut dysbiosis, defective
autophagy and altered immune responses in neurodegenerative
diseases: Tales of a vicious cycle. Pharmacol Ther.
231(107988)2022.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Cosorich I, Dalla-Costa G, Sorini C,
Ferrarese R, Messina MJ, Dolpady J, Radice E, Mariani A, Testoni
PA, Canducci F, et al: High frequency of intestinal TH17 cells
correlates with microbiota alterations and disease activity in
multiple sclerosis. Sci Adv. 3(e1700492)2017.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Vijayakumar TM, Kumar RM, Agrawal A, Dubey
GP and Ilango K: Comparative inhibitory potential of selected
dietary bioactive polyphenols, phytosterols on CYP3A4 and CYP2D6
with fluorometric high-throughput screening. J Food Sci Technol.
52:4537–4543. 2015.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Tankou SK, Regev K, Healy BC, Cox LM, Tjon
E, Kivisakk P, Vanande IP, Cook S, Ghandi R, Glanz B, et al:
Investigation of probiotics in multiple sclerosis. Mult Scler.
24:58–63. 2018.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Kouchaki E, Tamtaji OR, Salami M, Bahmani
F, Daneshvar Kakhaki R, Akbari E, Tajabadi-Ebrahimi M, Jafari P and
Asemi Z: Clinical and metabolic response to probiotic
supplementation in patients with multiple sclerosis: A randomized,
double-blind, placebo-controlled trial. Clin Nutr. 36:1245–1249.
2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Borody T, Leis S, Campbell J, Torres M and
Nowak A: Fecal Microbiota Transplantation (FMT) in Multiple
Sclerosis (Ms). Am J Gast. 106 (Suppl 2)(S352)2011.
|
|
48
|
Engen PA, Zaferiou A, Rasmussen H, Naqib
A, Green SJ, Fogg LF, Forsyth CB, Raeisi S, Hamaker B and
Keshavarzian A: Single-Arm, non-randomized, time series,
single-subject study of fecal microbiota transplantation in
multiple sclerosis. Front Neurol. 11(978)2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Rashmi BS and Gayathri D: Molecular
characterization of gluten hydrolysing Bacillus sp. and their
efficacy and biotherapeutic potential as probiotics using Caco-2
cell line. J Appl Microbiol. 123:759–772. 2017.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Kumara SS, Gayathri D, Hariprasad P,
Venkateswaran G and Swamy CT: In vivo AFB1 detoxification by
Lactobacillus fermentum LC5/a with chlorophyll and
immunopotentiating activity in albino mice. Toxicon. 187:214–222.
2020.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Tamtaji OR, Kouchaki E, Salami M,
Aghadavod E, Akbari E, Tajabadi-Ebrahimi M and Asemi Z: The effects
of probiotic supplementation on gene expression related to
inflammation, insulin, and lipids in patients with multiple
sclerosis: A randomized, double-blind, placebo-controlled trial. J
Am Coll Nutr. 36:660–665. 2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Duscha A, Gisevius B, Hirschberg S,
Yissachar N, Stangl GI, Eilers E, Dawin E, Bader V, Haase S,
Kaisler J, et al: Proprionic acid shapes the multiple sclerosis
disease course by an immunomodulatory mechanism. Cell.
180:1067–1080. e16. 2020.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Wekerle H: The gut-brain connection:
Triggering of brain autoimmune disease by commensal gut bacteria.
Rheumatology (Oxford). 55 (suppl 2):ii68–ii75. 2016.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Miyauchi E, Kim SW, Suda W, Kawasumi M,
Onawa S, Taguchi-Atarashi N, Morita H, Taylor TD, Hattori M and
Ohno H: Gut microorganisms act together to exacerbate inflammation
in spinal cords. Nature. 585:102–106. 2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Bernardo-Castro S, Sousa JA, Brás A,
Cecília C, Rodrigues B, Almendra L, Machado C, Santo G, Silva F,
Ferreira L, et al: Pathophysiology of blood-brain barrier
permeability throughout the different stages of ischemic stroke and
its implication on hemorrhagic transformation and recovery. Front
Neurol. 11(594672)2020.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Buscarinu MC, Romano S, Mechelli R,
Pizzolato Umeton R, Ferraldeschi M, Fornasiero A, Reniè R, Cerasoli
B, Morena E, Romano C, et al: Intestinal permeability in
relapsing-remitting multiple sclerosis. Neurotherapeutics.
15:68–74. 2018.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Braniste V, Al-Asmakh M, Kowal C, Anuar F,
Abbaspour A, Tóth M, Korecka A, Bakocevic N, Ng LG, Kundu P, et al:
The gut microbiota influences blood-brain barrier permeability in
mice. Sci Transl Med. 6(263ra158)2014.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Bermúdez-Morales VH, Fierros G, Lopez RL,
Martínez-Nava G, Flores-Aldana M, Flores-Rivera J and
Hernández-Girón C: Vitamin D receptor gene polymorphisms are
associated with multiple sclerosis in Mexican adults. J
Neuroimmunol. 306:20–24. 2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Püntener U, Booth SG, Perry VH and Teeling
JL: Long-term impact of systemic bacterial infection on the
cerebral vasculature and microglia. J Neuroinflammation.
9(146)2012.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Yang L, Jama B, Wang H, Labarta-Bajo L,
Zúñiga EI and Morris GP: TCRα reporter mice reveal contribution of
dual TCRα expression to T cell repertoire and function. Proc Natl
Acad Sci USA. 117:32574–32583. 2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Li H, Limenitakis JP, Greiff V, Yilmaz B,
Schären O, Urbaniak C, Zünd M, Lawson MAE, Young ID, Rupp S, et al:
Mucosal or systemic microbiota exposures shape the B cell
repertoire. Nature. 584:274–278. 2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Round JL and Mazmanian SK: Inducible
Foxp3+ regulatory T-cell development by a commensal bacterium of
the intestinal microbiota. Proc Natl Acad Sci USA. 107:12204–12209.
2010.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Haghikia A, Jörg S, Duscha A, Berg J,
Manzel A, Waschbisch A, Hammer A, Lee DH, May C, Wilck N, et al:
Dietary fatty acids directly impact central nervous system
autoimmunity via the small intestine. Immunity. 43:817–829.
2015.PubMed/NCBI View Article : Google Scholar
|
|
64
|
López-Taboada I, González-Pardo H and
Conejo NM: Western Diet: Implications for brain function and
behavior. Front Psychol. 11(564413)2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Li JM, Yu R, Zhang LP, Wen SY, Wang SJ,
Zhang XY, Xu Q and Kong LD: Dietary fructose-induced gut dysbiosis
promotes mouse hippocampal neuroinflammation: A benefit of
short-chain fatty acids. Microbiome. 7(98)2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Erny D, Hrabě de Angelis AL, Jaitin D,
Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T,
Jakobshagen K, Buch T, et al: Host microbiota constantly control
maturation and function of microglia in the CNS. Nat Neurosci.
18:965–977. 2015.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Ghimire L, Paudel S, Jin L and Jeyaseelan
S: The NLRP6 inflammasome in health and disease. Mucosal Immunol.
13:388–398. 2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Dombrowski Y, O'Hagan T, Dittmer M,
Penalva R, Mayoral SR, Bankhead P, Fleville S, Eleftheriadis G,
Zhao C, Naughton M, et al: Regulatory T cells promote myelin
regeneration in the central nervous system. Nat Neurosci.
20:674–680. 2017.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Kurashina R, Denda-Nagai K, Saba K, Hisai
T, Hara H and Irimura T: Intestinal lamina propria macrophages
upregulate interleukin-10 mRNA in response to signals from
commensal bacteria recognized by MGL1/CD301a. Glycobiology.
31:827–837. 2021.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Chen H, Lin W, Zhang Y, Lin L, Chen J,
Zeng Y, Zheng M, Zhuang Z, Du H, Chen R and Liu N: IL-10 promotes
neurite outgrowth and synapse formation in cultured cortical
neurons after the oxygen-glucose deprivation via JAK1/STAT3
pathway. Sci Rep. 6(30459)2016.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Sun S, Luo L, Liang W, Yin Q, Guo J, Rush
AM, Lv Z, Liang Q, Fischbach MA, Sonnenburg JL, et al:
Bifidobacterium alters the gut microbiota and modulates the
functional metabolism of T regulatory cells in the context of
immune checkpoint blockade. Proc Natl Acad Sci USA.
117:27509–27515. 2020.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Kang Z, Wang C, Zepp J, Wu L, Sun K, Zhao
J, Chandrasekharan U, DiCorleto PE, Trapp BD, Ransohoff RM and Li
X: Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+
glial cells. Nat Neurosci. 16:1401–1408. 2013.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Averina OV, Zorkina YA, Yunes RA, Kovtun
AS, Ushakova VM, Morozova AY, Kostyuk GP, Danilenko VN and
Chekhonin VP: Bacterial metabolites of human gut microbiota
correlating with depression. Int J Mol Sci. 21(9234)2020.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Cui Y, Miao K, Niyaphorn S and Qu X:
Production of gamma-aminobutyric acid from lactic acid bacteria: A
systematic review. Int J Mol Sci. 21(995)2020.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Anderson G, Rodriguez M and Reiter RJ:
Multiple sclerosis: Melatonin, orexin, and ceramide interact with
platelet activation coagulation factors and gut-microbiome-derived
butyrate in the circadian dysregulation of mitochondria in glia and
immune cells. Int J Mol Sci. 20(5500)2019.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Malinova TS, Dijkstra CD and de Vries HE:
Serotonin: A mediator of the gut-brain axis in multiple sclerosis.
Mult Scler. 24:1144–1150. 2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Strandwitz P: Neurotransmitter modulation
by the gut microbiota. Brain Res. 1693(Pt B):128–133.
2018.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Bonaz B, Bazin T and Pellissier S: The
vagus nerve at the interface of the microbiota-gut-brain axis.
Front Neurosci. 12(49)2018.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Wu T, Rayner CK, Young RL and Horowitz M:
Gut motility and enteroendocrine secretion. Curr Opin Pharmacol.
13:928–934. 2013.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Hirschberg S, Gisevius B, Duscha A and
Haghikia A: Implications of diet and the gut microbiome in
neuroinflammatory and neurodegenerative diseases. Int J Mol Sci.
20(3109)2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Jhangi S, Gandhi R, Glanz B, Cook S, Nejad
P, Ward D, Li N, Gerber G, Bry L and Weiner H: Increased Archaea
species and changes with therapy in gut microbiome of multiple
sclerosis subjects (S24.001). Neurology. 82 (Suppl
10)(S24.001)2014.
|
|
82
|
Dopkins N, Nagarkatti PS and Nagarkatti M:
The role of gut microbiome and associated metabolome in the
regulation of neuroinflammation in multiple sclerosis and its
implications in attenuating chronic inflammation in other
inflammatory and autoimmune disorders. Immunology. 154:178–185.
2018.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Ribeiro MF, Santos AA, Afonso MB,
Rodrigues PM, Sa Santos S, Castro RE, Rodrigues CMP and Solá S:
Diet-dependent gut microbiota impacts on adult neurogenesis through
mitochondrial stress modulation. Brain Commun.
2(fcaa165)2020.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Schepici G, Silvestro S, Bramanti P and
Mazzon E: The gut microbiota in multiple sclerosis: An overview of
clinical trials. Cell Transplant. 28:1507–1527. 2019.PubMed/NCBI View Article : Google Scholar
|
|
85
|
González-Sanmiguel J, Schuh CMAP,
Muñoz-Montesino C, Contreras-Kallens P, Aguayo LG and Aguayo S:
Complex interaction between resident microbiota and misfolded
proteins: Role in neuroinflammation and neurodegeneration. Cells.
9(2476)2020.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Castillo X, Castro-Obregón S,
Gutiérrez-Becker B, Gutiérrez-Ospina G, Karalis N, Khalil AA,
Lopez-Noguerola JS, Rodríguez LL, Martínez-Martínez E, Perez-Cruz
C, et al: Re-thinking the etiological framework of
neurodegeneration. Front Neurosci. 13(728)2019.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Fan Y and Zhang J: Dietary modulation of
intestinal microbiota: Future opportunities in experimental
autoimmune encephalomyelitis and multiple sclerosis. Front
Microbiol. 10(740)2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Camara-Lemarroy CR, Metz L, Meddings JB,
Sharkey KA and Wee Yong V: The intestinal barrier in multiple
sclerosis: Implications for pathophysiology and therapeutics.
Brain. 141:1900–1916. 2018.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Shahi SK, Freedman SN and Mangalam AK: Gut
microbiome in multiple sclerosis: The players involved and the
roles they play. Gut Microbes. 8:607–615. 2017.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Mirza A, Forbes JD, Zhu F, Bernstein CN,
Van Domselaar G, Graham M, Waubant E and Tremlett H: The multiple
sclerosis gut microbiota: A systematic review. Mult Scler Relat
Disord. 37(101427)2020.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Chu F, Shi M, Lang Y, Shen D, Jin T, Zhu J
and Cui L: Gut microbiota in multiple sclerosis and experimental
autoimmune encephalomyelitis: Current applications and future
perspectives. Mediators Inflamm. 2018(8168717)2018.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Miyake S, Kim S, Suda W, Oshima K,
Nakamura M, Matsuoka T, Chihara N, Tomita A, Sato W, Kim SW, et al:
Dysbiosis in the Gut microbiota of patients with multiple
sclerosis, with a striking depletion of species belonging to
clostridia XIVa and IV clusters. PLoS One.
10(e0137429)2015.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Madonini ER: Probiotics and allergies:
Myth or reality? Eur Ann Allergy Clin Immunol. 46:196–200.
2014.PubMed/NCBI
|
|
94
|
Mcfarland LV and Dublin S: Meta-analysis
of probiotics for the treatment of irritable bowel syndrome. World
J Gastroenterol. 14:2650–2661. 2008.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Saggioro A: Probiotics in the treatment of
irritable bowel syndrome. J Clin Gastroenterol. 38 (6
Suppl):S104–S106. 2004.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Kim HJ, Camilleri M, McKinzie S, Lempke
MB, Burton DD, Thomforde GM and Zinsmeister AR: A randomized
controlled trial of a probiotic, VSL#3, on gut transit and symptoms
in diarrhoea-predominant irritable bowel syndrome. Aliment
Pharmacol Ther. 17:895–904. 2003.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Abenavoli L, Scarpellini E, Colica C,
Boccuto L, Salehi B, Sharifi-Rad J, Aiello V, Romano B, De Lorenzo
A, Izzo AA and Capasso R: Gut microbiota and obesity: A role for
probiotics. Nutrient. 11(2690)2019.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Wang X, Liang Z, Wang S, Ma D, Zhu M and
Feng J: Role of gut microbiota in multiple sclerosis and potential
therapeutic implications. Curr Neuropharmacol. 20:1413–1426.
2022.PubMed/NCBI View Article : Google Scholar
|