Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
February-2024 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2024 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Effect of animal venom toxins on the main links of the homeostasis of mammals (Review)

  • Authors:
    • Ruzhena Matkivska
    • Inha Samborska
    • Oleksandr Maievskyi
  • View Affiliations / Copyright

    Affiliations: Department of Descriptive and Clinical Anatomy, Bogomolets National Medical University, Kyiv 03680, Ukraine, Department of Biological and General Chemistry, National Pirogov Memorial Medical University, Vinnytsya 21018, Ukraine, Department of Clinical Medicine, Educational and Scientific Center ‘Institute of Biology and Medicine’ of Taras Shevchenko National University of Kyiv, Kyiv 03127, Ukraine
    Copyright: © Matkivska et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 16
    |
    Published online on: December 7, 2023
       https://doi.org/10.3892/br.2023.1704
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The human body is affected by environmental factors. The dynamic balance between the organism and its environment results from the influence of natural, anthropogenic and social aspects. The factors of exogenous origin determine development of adaptive changes. The present article summarises the mechanisms of animal venom toxins and homeostasis disruption in the body of mammals. The mechanisms underlying pathological changes are associated with shifts in biochemical reactions. Components of the immune, nervous and endocrine systems are key in the host defense and adaptation processes in response to venom by triggering signalling pathways (PI3kinase pathway, arachidonic acid cascade). Animal venom toxins initiate the development of inflammatory processes, the synthesis of pro‑inflammatory mediators (cytokines), ROS, proteolytic enzymes, activate the migration of leukocytes and macrophages. Keratinocytes and endothelial cells act as protective barriers under the action of animal venom toxins on the body of mammals. In addition, the formation of pores in cell membranes, structural changes in cell ion channels are characteristic of the action of animal venom toxins.
View Figures

Figure 1

View References

1 

Jakob MO, Murugan S and Klose CSN: Neuro-immune circuits regulate immune responses in tissues and organ homeostasis. Front Immunol. 11(308)2020.PubMed/NCBI View Article : Google Scholar

2 

Meizlish ML, Franklin RA, Zhou X and Medzhitov R: Tissue homeostasis and inflammation. Annu Rev Immunol. 39:557–581. 2021.PubMed/NCBI View Article : Google Scholar

3 

Mowel WK, Kotzin JJ, McCright SJ, Neal VD and Henao-Mejia J: Control of immune cell homeostasis and function by lncRNAs. Trends Immunol. 39:55–69. 2018.PubMed/NCBI View Article : Google Scholar

4 

Vincze J and Vincze-Tiszay G: The Human organism is a biophysical-biopsychological system. Technium. 2:29–35. 2018.

5 

Larréché S, Chippaux JP, Chevillard L, Mathé S, Résière D, Siguret V and Mégarbane B: Bleeding and thrombosis: Insights into pathophysiology of Bothrops venom-related hemostasis disorders. Int J Mol Sci. 22(9643)2021.PubMed/NCBI View Article : Google Scholar

6 

Walker AA, Robinson SD, Hamilton BF, Undheim EAB and King GF: Deadly proteomes: A practical guide to proteotranscriptomics of animal venoms. Proteomics. 20(e1900324)2020.PubMed/NCBI View Article : Google Scholar

7 

Warrell DA: Venomous bites, stings, and poisoning: An update. Infect Dis Clin North Am. 33:17–38. 2019.PubMed/NCBI View Article : Google Scholar

8 

Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, et al: Endoplasmic reticulum stress signalling-from basic mechanisms to clinical applications. FEBS J. 286:241–278. 2019.PubMed/NCBI View Article : Google Scholar

9 

Smith M and Wilkinson S: ER homeostasis and autophagy. Essays Biochem. 61:625–635. 2017.PubMed/NCBI View Article : Google Scholar

10 

Sanhajariya S, Duffull SB and Isbister GK: Pharmacokinetics of snake venom. Toxins (Basel). 10(73)2018.PubMed/NCBI View Article : Google Scholar

11 

Casella-Martins A, Ayres LR, Burin SM, Morais FR, Pereira JC, Faccioli LH, Sampaio SV, Arantes EC, Castro FA and Pereira-Crott LS: Immunomodulatory activity of Tityus serrulatus scorpion venom on human T lymphocytes. J Venom Anim Toxins Incl Trop Dis. 21(46)2015.PubMed/NCBI View Article : Google Scholar

12 

Pucca MB, Fry BG, Sartim MA, Peigneur S and Monteiro WM: Editorial: Venoms and toxins: At the crossroads of basic, applied and clinical immunology. Front Immunol. 12(716508)2021.PubMed/NCBI View Article : Google Scholar

13 

Avalo Z, Barrera MC, Agudelo-Delgado M, Tobón GJ and Cañas CA: Biological effects of animal venoms on the human immune system. Toxins (Basel). 14(344)2022.PubMed/NCBI View Article : Google Scholar

14 

Minutti-Zanella C, Gil-Leyva EJ and Vergara I: Immunomodulatory properties of molecules from animal venoms. Toxicon. 191:54–68. 2021.PubMed/NCBI View Article : Google Scholar

15 

Santhosh KN, Pavana D and Thippeswamy NB: Impact of scorpion venom as an acute stressor on the neuroendocrine-immunological network. Toxicon. 122:113–118. 2016.PubMed/NCBI View Article : Google Scholar

16 

Strbo N, Yin N and Stojadinovic O: Innate and adaptive immune responses in wound epithelialization. Adv Wound Care (New Rochelle). 3:492–501. 2014.PubMed/NCBI View Article : Google Scholar

17 

Lien WC, Zhou XR, Liang YJ, Ching CT, Wang CY, Lu FI, Chang HC, Lin FH and Wang HD: Therapeutic potential of nanoceria pretreatment in preventing the development of urological chronic pelvic pain syndrome: Immunomodulation via reactive oxygen species scavenging and SerpinB2 downregulation. Bioeng Transl Med. 8(e10346)2022.PubMed/NCBI View Article : Google Scholar

18 

Zhou Z, Li K, Chu Y, Li C, Zhang T, Liu P, Sun T and Jiang C: ROS-removing nano-medicine for navigating inflammatory microenvironment to enhance Anti-Epileptic therapy. Acta Pharm Sin B. 13:1246–1261. 2023.PubMed/NCBI View Article : Google Scholar

19 

Mansfield K and Naik S: Unraveling Immune-Epithelial interactions in skin homeostasis and injury. Yale J Biol Med. 93:133–143. 2020.PubMed/NCBI

20 

Piipponen M, Li D and Landén NX: The immune functions of keratinocytes in skin wound healing. Int J Mol Sci. 21(8790)2020.PubMed/NCBI View Article : Google Scholar

21 

Pondeljak N and Lugović-Mihić L: Stress-Induced interaction of skin immune cells, hormones, and neurotransmitters. Clin Ther. 42:757–770. 2020.PubMed/NCBI View Article : Google Scholar

22 

Eyerich S, Eyerich K, Traidl-Hoffmann C and Biedermann T: Cutaneous barriers and skin immunity: Differentiating a connected network. Trends Immunol. 39:315–327. 2018.PubMed/NCBI View Article : Google Scholar

23 

Costal-Oliveira F, Stransky S, Guerra-Duarte C, Naves de Souza DL, Vivas-Ruiz DE, Yarlequé A, Sanchez EF, Chávez-Olórtegui C and Braga VMM: L-amino acid oxidase from Bothrops atrox snake venom triggers autophagy, apoptosis and necrosis in normal human keratinocytes. Sci Rep. 9(781)2019.PubMed/NCBI View Article : Google Scholar

24 

Al-Asmari AK, Riyasdeen A and Islam M: Scorpion venom causes apoptosis by increasing reactive oxygen species and cell cycle arrest in MDA-MB-231 and HCT-8 cancer cell lines. J Evid Based Integr Med. 23(2156587217751796)2018.PubMed/NCBI View Article : Google Scholar

25 

Gutiérrez JM, Escalante T, Rucavado A, Herrera C and Fox JW: A comprehensive view of the structural and functional alterations of extracellular matrix by snake venom metalloproteinases (SVMPs): Novel perspectives on the pathophysiology of envenoming. Toxins (Basel). 8(304)2016.PubMed/NCBI View Article : Google Scholar

26 

Ben Yekhlef R, Felicori L, Santos LH, F B Oliveira C, Fadhloun R, Torabi E, Shahbazzadeh D, Pooshang Bagheri K, Salgado Ferreira R and Borchani L: Antigenic and substrate preference differences between scorpion and spider dermonecrotic toxins, a comparative investigation. Toxins (Basel). 12(631)2020.PubMed/NCBI View Article : Google Scholar

27 

Dunbar JP, Sulpice R and Dugon MM: The kiss of (cell) death: Can venom-induced immune response contribute to dermal necrosis following arthropod envenomations? Clin Toxicol (Phila). 57:677–685. 2019.PubMed/NCBI View Article : Google Scholar

28 

Morales-Moreno HJ, Carranza-Rodriguez C and Borrego L: Cutaneous loxoscelism due to Loxosceles rufescens. J Eur Acad Dermatol Venereol. 30:1431–1432. 2016.PubMed/NCBI View Article : Google Scholar

29 

Nentwig W, Pantini P and Vetter RS: Distribution and medical aspects of Loxosceles rufescens, one of the most invasive spiders of the world (Araneae: Sicariidae). Toxicon. 132:19–28. 2017.PubMed/NCBI View Article : Google Scholar

30 

Pober JS, Merola J, Liu R and Manes TD: Antigen presentation by vascular cells. Front Immunol. 8(1907)2017.PubMed/NCBI View Article : Google Scholar

31 

Dalal PJ, Muller WA and Sullivan DP: Endothelial cell calcium signaling during barrier function and inflammation. Am J Pathol. 190:535–542. 2020.PubMed/NCBI View Article : Google Scholar

32 

De Andrade CM, Rey FM, Cintra ACO, Sampaio SV and Torqueti MR: Effects of crotoxin, a neurotoxin from Crotalus durissus terrificus snake venom, on human endothelial cells. Int J Biol Macromol. 134:613–621. 2019.PubMed/NCBI View Article : Google Scholar

33 

Franken L, Schiwon M and Kurts C: Macrophages: Sentinels and regulators of the immune system. Cell Microbiol. 18:475–487. 2016.PubMed/NCBI View Article : Google Scholar

34 

Freitas AP, Favoretto BC, Clissa PB, Sampaio SC and Faquim-Mauro EL: Crotoxin isolated from Crotalus durissus terrificus venom modulates the functional activity of dendritic cells via formyl peptide receptors. J Immunol Res. 2018(7873257)2018.PubMed/NCBI View Article : Google Scholar

35 

Leiguez E, Giannotti KC, Moreira V, Matsubara MH, Gutiérrez JM, Lomonte B, Rodríguez JP, Balsinde J and Teixeira C: Critical role of TLR2 and MyD88 for functional response of macrophages to a group IIA-secreted phospholipase A2 from snake venom. PLoS One. 9(e93741)2014.PubMed/NCBI View Article : Google Scholar

36 

Sieber M, Bosch B, Hanke W and Fernandes de Lima VM: Membrane-modifying properties of crotamine, a small peptide-toxin from Crotalus durissus terifficus venom. Biochim Biophys Acta. 1840:945–950. 2014.PubMed/NCBI View Article : Google Scholar

37 

Echeverría S, Leiguez E, Guijas C, do Nascimento NG, Acosta O, Teixeira C, Leiva LC and Rodríguez JP: Evaluation of pro-inflammatory events induced by Bothrops alternatus snake venom. Chem Biol Interact. 281:24–31. 2018.PubMed/NCBI View Article : Google Scholar

38 

Setubal SS, Pontes AS, Furtado JL, Kayano AM, Stábeli RG and Zuliani JP: Effect of Bothrops alternatus snake venom on macrophage phagocytosis and superoxide production: Participation of protein kinase C. J Venom Anim Toxins Incl Trop Dis. 17:430–441. 2011.

39 

Darkaoui B, Lafnoune A, Chgoury F, Daoudi K, Chakir S, Mounaji K, Karkouri M, Cadi R and Naoual O: Induced pathophysiological alterations by the venoms of the most dangerous Moroccan scorpions Androctonus mauretanicus and Buthus occitanus: A comparative pathophysiological and toxic-symptoms study. Hum Exp Toxicol. 41(9603271211072872)2022.PubMed/NCBI View Article : Google Scholar

40 

Saadi S, Assarehzadegan MA, Pipelzadeh MH and Hadaddezfuli R: Induction of IL-12 from human monocytes after stimulation with Androctonus crassicauda scorpion venom. Toxicon. 106:117–121. 2015.PubMed/NCBI View Article : Google Scholar

41 

Saidi H, Bérubé J, Laraba-Djebari F and Hammoudi-Triki D: Involvement of alveolar macrophages and neutrophils in acute lung injury after scorpion envenomation: New pharmacological targets. Inflammation. 41:773–783. 2018.PubMed/NCBI View Article : Google Scholar

42 

Ait-Lounis A and Laraba-Djebari F: TNF-alpha modulates adipose macrophage polarization to M1 phenotype in response to scorpion venom. Inflamm Res. 64:929–936. 2015.PubMed/NCBI View Article : Google Scholar

43 

Corzo G and Espino-Solis GP: Selected scorpion toxin exposures induce cytokine release in human peripheral blood mononuclear cells. Toxicon. 127:56–62. 2017.PubMed/NCBI View Article : Google Scholar

44 

Pucca MB, Peigneur S, Cologna CT, Cerni FA, Zoccal KF, Bordon Kde C, Faccioli LH, Tytgat J and Arantes EC: Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages. Biochimie. 115:8–16. 2015.PubMed/NCBI View Article : Google Scholar

45 

Pires WL, Kayano AM, de Castro OB, Paloschi MV, Lopes JA, Boeno CN, Pereira SDS, Antunes MM, Rodrigues MMS, Stábeli RG, et al: Lectin isolated from Bothrops jararacussu venom induces IL-10 release by TCD4+cells and TNF-α release by monocytes and natural killer cells. J Leukoc Biol. 106:595–605. 2019.PubMed/NCBI View Article : Google Scholar

46 

Júnior FAN, Jorge ARC, Marinho AD, Silveira JAM, Alves NTQ, Costa PHS, E Silva PLB, Chaves-Filho AJM, Lima DB, Sampaio TL, et al: Bothrops alternatus snake venom induces cytokine expression and oxidative stress on renal function. Curr Top Med Chem. 19:2058–2068. 2019.PubMed/NCBI View Article : Google Scholar

47 

Rojas JM, Arán-Sekul T, Cortés E, Jaldín R, Ordenes K, Orrego PR, González J, Araya JE and Catalán A: Phospholipase D from Loxosceles laeta spider venom induces IL-6, IL-8, CXCL1/GRO-α, and CCL2/MCP-1 production in human skin fibroblasts and stimulates monocytes migration. Toxins (Basel). 9(125)2017.PubMed/NCBI View Article : Google Scholar

48 

Bahloul M, Regaieg K, Chabchoub I, Kammoun M, Chtara K and Bouaziz M: Severe scorpion envenomation: Pathophysiology and the role of inflammation in multiple organ failure. Med Sante Trop. 27:214–221. 2017.PubMed/NCBI View Article : Google Scholar

49 

Khemili D, Valenzuela C, Laraba-Djebari F and Hammoudi-Triki D: Differential effect of Androctonus australis hector venom components on macrophage KV channels: Electrophysiological characterization. Eur Biophys J. 48:1–13. 2019.PubMed/NCBI View Article : Google Scholar

50 

Ryan RYM, Seymour J, Loukas A, Lopez JA, Ikonomopoulou MP and Miles JJ: Immunological responses to envenomation. Front Immunol. 12(661082)2021.PubMed/NCBI View Article : Google Scholar

51 

Rørvig S, Østergaard O, Heegaard NH and Borregaard N: Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: Correlation with transcriptome profiling of neutrophil precursors. J Leukoc Biol. 94:711–721. 2013.PubMed/NCBI View Article : Google Scholar

52 

Kruger P, Saffarzadeh M, Weber AN, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J and Hartl D: Neutrophils: Between host defence, immune modulation, and tissue injury. PLoS Pathog. 11(e1004651)2015.PubMed/NCBI View Article : Google Scholar

53 

Nourshargh S and Alon R: Leukocyte migration into inflamed tissues. Immunity. 41:694–707. 2014.PubMed/NCBI View Article : Google Scholar

54 

Setubal Sda S, Pontes AS, Nery NM, Bastos JS, Castro OB, Pires WL, Zaqueo KD, Calderon Lde A, Stábeli RG, Soares AM and Zuliani JP: Effect of Bothrops bilineata snake venom on neutrophil function. Toxicon. 76:143–149. 2013.PubMed/NCBI View Article : Google Scholar

55 

Tecchio C, Micheletti A and Cassatella MA: Neutrophil-derived cytokines: Facts beyond expression. Front Immunol. 5(508)2014.PubMed/NCBI View Article : Google Scholar

56 

Zuliani JP, Soares AM and Gutiérrez JM: Polymorphonuclear neutrophil leukocytes in snakebite envenoming. Toxicon. 187:188–197. 2020.PubMed/NCBI View Article : Google Scholar

57 

Khemili D, Laraba-Djebari F and Hammoudi-Triki D: Involvement of toll-like receptor 4 in neutrophil-mediated inflammation, oxidative stress and tissue damage induced by scorpion venom. Inflammation. 43:155–167. 2020.PubMed/NCBI View Article : Google Scholar

58 

Zoccal KF, Bitencourt Cda S, Paula-Silva FW, Sorgi CA, de Castro Figueiredo Bordon K, Arantes EC and Faccioli LH: TLR2, TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce Macrophage-Derived inflammatory mediators. PLoS One. 9(e88174)2014.PubMed/NCBI View Article : Google Scholar

59 

Moreira V, Teixeira C, Borges da Silva H, D'Império Lima MR and Dos-Santos MC: The role of TLR2 in the acute inflammatory response induced by Bothrops atrox snake venom. Toxicon. 118:121–128. 2016.PubMed/NCBI View Article : Google Scholar

60 

Zoccal KF, Ferreira GZ, Prado MKB, Gardinassi LG, Sampaio SV and Faccioli LH: LTB4 and PGE2 modulate the release of MIP-1α and IL-1β by cells stimulated with Bothrops snake venoms. Toxicon. 150:289–296. 2018.PubMed/NCBI View Article : Google Scholar

61 

Palm NW and Medzhitov R: Role of the inflammasome in defense against venoms. Proc Natl Acad Sci USA. 110:1809–1814. 2013.PubMed/NCBI View Article : Google Scholar

62 

Zoccal KF, Sorgi CA, Hori JI, Paula-Silva FW, Arantes EC, Serezani CH, Zamboni DS and Faccioli LH: Opposing roles of LTB4 and PGE2 in regulating the inflammasome-dependent scorpion venom-induced mortality. Nat Commun. 7(10760)2016.PubMed/NCBI View Article : Google Scholar

63 

Thangam EB, Jemima EA, Singh H, Baig MS, Khan M, Mathias CB, Church MK and Saluja R: The Role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: The hunt for new therapeutic targets. Front Immunol. 9(1873)2018.PubMed/NCBI View Article : Google Scholar

64 

Galli SJ, Starkl P, Marichal T and Tsai M: Mast cells and IgE in defense against venoms: Possible ‘good side’ of allergy? Allergol Int. 65:3–15. 2016.PubMed/NCBI View Article : Google Scholar

65 

Kovacova-Hanuskova E, Buday T, Gavliakova S and Plevkova J: Histamine, histamine intoxication and intolerance. Allergol Immunopathol (Madr). 43:498–506. 2015.PubMed/NCBI View Article : Google Scholar

66 

Krystel-Whittemore M, Dileepan KN and Wood JG: Mast cell: A multi-functional master cell. Front Immunol. 6(620)2016.PubMed/NCBI View Article : Google Scholar

67 

Menaldo DL, Bernardes CP, Pereira JC, Silveira DS, Mamede CC, Stanziola L, Oliveira FD, Pereira-Crott LS, Faccioli LH and Sampaio SV: Effects of two serine proteases from Bothrops pirajai snake venom on the complement system and the inflammatory response. Int Immunopharmacol. 15:764–771. 2013.PubMed/NCBI View Article : Google Scholar

68 

Moon TC, Befus AD and Kulka M: Mast cell mediators: Their differential release and the secretory pathways involved. Front Immunol. 5(569)2014.PubMed/NCBI View Article : Google Scholar

69 

Stitt J and Katial R: Venom allergy. J Allergy Clin Immunol Pract. 4:184–185. 2016.PubMed/NCBI View Article : Google Scholar

70 

Stone SF, Isbister GK, Shahmy S, Mohamed F, Abeysinghe C, Karunathilake H, Ariaratnam A, Jacoby-Alner TE, Cotterell CL and Brown SG: Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation. PLoS Negl Trop Dis. 7(e2326)2013.PubMed/NCBI View Article : Google Scholar

71 

Tambourgi DV and van den Berg CW: Animal venoms/toxins and the complement system. Mol Immunol. 61:153–162. 2014.PubMed/NCBI View Article : Google Scholar

72 

Kumar N and Sastry GN: Study of lipid heterogeneity on bilayer membranes using molecular dynamics simulations. J Mol Graph Model. 108(108000)2021.PubMed/NCBI View Article : Google Scholar

73 

Sandvig K, Bergan J, Kavaliauskiene S and Skotland T: Lipid requirements for entry of protein toxins into cells. Prog Lipid Res. 54:1–13. 2014.PubMed/NCBI View Article : Google Scholar

74 

Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I and King GF: Animal toxins-Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol. 181(114096)2020.PubMed/NCBI View Article : Google Scholar

75 

Van Baelen AC, Robin P, Kessler P, Maïga A, Gilles N and Servent D: Structural and functional diversity of animal toxins interacting with GPCRs. Front Mol Biosci. 9(811365)2022.PubMed/NCBI View Article : Google Scholar

76 

Bekbossynova A, Zharylgap A and Filchakova O: Venom-derived neurotoxins targeting nicotinic acetylcholine receptors. Molecules. 26(3373)2021.PubMed/NCBI View Article : Google Scholar

77 

Hung A, Kuyucak S, Schroeder CI and Kaas Q: Modelling the interactions between animal venom peptides and membrane proteins. Neuropharmacology. 127:20–31. 2017.PubMed/NCBI View Article : Google Scholar

78 

Kasheverov IE, Oparin PB, Zhmak MN, Egorova NS, Ivanov IA, Gigolaev AM, Nekrasova OV, Serebryakova MV, Kudryavtsev DS, Prokopev NA, et al: Scorpion toxins interact with nicotinic acetylcholine receptors. FEBS Lett. 593:2779–2789. 2019.PubMed/NCBI View Article : Google Scholar

79 

Luiken JJ, Glatz JF and Neumann D: Cardiac contraction-induced GLUT4 translocation requires dual signaling input. Trends Endocrinol Metab. 26:404–410. 2015.PubMed/NCBI View Article : Google Scholar

80 

O Collaço RC, Hyslop S, Dorce VAC, Antunes E and Rowan EG: Scorpion venom increases acetylcholine release by prolonging the duration of somatic nerve action potentials. Neuropharmacology. 153:41–52. 2019.PubMed/NCBI View Article : Google Scholar

81 

Shrestha A, Kahraman O and Haselwandter CA: Regulation of membrane proteins through local heterogeneity in lipid bilayer thickness. Phys Rev E. 102(060401)2020.PubMed/NCBI View Article : Google Scholar

82 

Ernst R, Ballweg S and Levental I: Cellular mechanisms of physicochemical membrane homeostasis. Curr Opin Cell Biol. 53:44–51. 2018.PubMed/NCBI View Article : Google Scholar

83 

Gilbert RJ, Dalla Serra M, Froelich CJ, Wallace MI and Anderluh G: Membrane pore formation at protein-lipid interfaces. Trends Biochem Sci. 39:510–516. 2014.PubMed/NCBI View Article : Google Scholar

84 

Rádis-Baptista G: Cell-penetrating peptides derived from animal venoms and toxins. Toxins (Basel). 13(147)2021.PubMed/NCBI View Article : Google Scholar

85 

Copolovici DM, Langel K, Eriste E and Langel Ü: Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano. 8:1972–1994. 2014.PubMed/NCBI View Article : Google Scholar

86 

Dal Peraro M and van der Goot FG: Pore-forming toxins: Ancient, but never really out of fashion. Nat Rev Microbiol. 14:77–92. 2016.PubMed/NCBI View Article : Google Scholar

87 

Kalafatovic D and Giralt E: Cell-penetrating peptides: Design strategies beyond primary structure and amphipathicity. Molecules. 22(1929)2017.PubMed/NCBI View Article : Google Scholar

88 

Kerkis I, Hayashi MA, Prieto da Silva AR, Pereira A, De Sá Júnior PL, Zaharenko AJ, Rádis-Baptista G, Kerkis A and Yamane T: State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. Biomed Res Int. 2014(675985)2014.PubMed/NCBI View Article : Google Scholar

89 

Lin King JV, Emrick JJ, Kelly MJS, Herzig V, King GF, Medzihradszky KF and Julius D: A cell-penetrating scorpion toxin enables mode-specific modulation of TRPA1 and pain. Cell. 178:1362–1374. 2019.PubMed/NCBI View Article : Google Scholar

90 

Burin SM, Menaldo DL, Sampaio SV, Frantz FG and Castro FA: An overview of the immune modulating effects of enzymatic toxins from snake venoms. Int J Biol Macromol. 109:664–671. 2018.PubMed/NCBI View Article : Google Scholar

91 

Chan YS, Cheung RCF, Xia L, Wong JH, Ng TB and Chan WY: Snake venom toxins: Toxicity and medicinal applications. Appl Microbiol Biotechnol. 100:6165–6181. 2016.PubMed/NCBI View Article : Google Scholar

92 

Xiong S and Huang C: Synergistic strategies of predominant toxins in snake venoms. Toxicol Lett. 287:142–154. 2018.PubMed/NCBI View Article : Google Scholar

93 

Ferraz CR, Arrahman A, Xie C, Casewell NR, Lewis RJ, Kool J and Cardoso FC: Multifunctional toxins in snake venoms and therapeutic implications: From pain to hemorrhage and necrosis. Front Ecol Evol. 7(218)2019.

94 

Muller SP, Silva VAO, Silvestrini AVP, de Macedo LH, Caetano GF, Reis RM and Mazzi MV: Crotoxin from Crotalus durissus terrificus venom: In vitro cytotoxic activity of a heterodimeric phospholipase A2 on human cancer-derived cell lines. Toxicon. 156:13–22. 2018.PubMed/NCBI View Article : Google Scholar

95 

Hong J, Lu X, Deng Z, Xiao S, Yuan B and Yang K: How melittin inserts into cell membrane: Conformational changes, Inter-Peptide cooperation, and disturbance on the membrane. Molecules. 24(1775)2019.PubMed/NCBI View Article : Google Scholar

96 

Kachel HS, Buckingham SD and Sattelle DB: Insect toxins-selective pharmacological tools and drug/chemical leads. Curr Opin Insect Sci. 30:93–98. 2018.PubMed/NCBI View Article : Google Scholar

97 

Khalil A, Elesawy BH, Ali TM and Ahmed OM: Bee venom: From venom to drug. Molecules. 26(4941)2021.PubMed/NCBI View Article : Google Scholar

98 

Khan S: Advances in usage of venom proteins as diagnostics and therapeutic mediators. Protein Pept Lett. 25:610–611. 2018.PubMed/NCBI View Article : Google Scholar

99 

Kim W: Bee venom and its sub-components: Characterization, pharmacology, and therapeutics. Toxins (Basel). 13(191)2021.PubMed/NCBI View Article : Google Scholar

100 

Rady I, Siddiqui IA, Rady M and Mukhtar H: Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 402:16–31. 2017.PubMed/NCBI View Article : Google Scholar

101 

Wehbe R, Frangieh J, Rima M, El Obeid D, Sabatier JM and Fajloun Z: Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules. 24(2997)2019.PubMed/NCBI View Article : Google Scholar

102 

Ghosh A, Roy R, Nandi M and Mukhopadhyay A: Scorpion venom-toxins that aid in drug development: A review. Int J Pept Res Ther. 25:27–37. 2019.PubMed/NCBI View Article : Google Scholar

103 

Gilchrist J, Olivera BM and Bosmans F: Animal toxins influence voltage-gated sodium channel function. Handb Exp Pharmacol. 221:203–229. 2014.PubMed/NCBI View Article : Google Scholar

104 

Kuzmenkov AI and Vassilevski AA: Labelled animal toxins as selective molecular markers of ion channels: Applications in neurobiology and beyond. Neurosci Lett. 679:15–23. 2018.PubMed/NCBI View Article : Google Scholar

105 

Swartz KJ: Ion channels: The scorpion toxin and the potassium channel. Elife. 2(e00873)2013.

106 

Chen N, Xu S, Zhang Y and Wang F: Animal protein toxins: Origins and therapeutic applications. Biophys Rep. 4:233–242. 2018.PubMed/NCBI View Article : Google Scholar

107 

Kalia J, Milescu M, Salvatierra J, Wagner J, Klint JK, King GF, Olivera BM and Bosmans F: From foe to friend: Using animal toxins to investigate ion channel function. J Mol Biol. 427:158–175. 2015.PubMed/NCBI View Article : Google Scholar

108 

Lahiani A, Yavin E and Lazarovici P: The Molecular basis of toxins' interactions with intracellular signaling via discrete portals. Toxins (Basel). 9(107)2017.PubMed/NCBI View Article : Google Scholar

109 

Oliveira IS, Ferreira IG, Alexandre-Silva GM, Cerni FA, Cremonez CM, Arantes EC, Zottich U and Pucca MB: Scorpion toxins targeting Kv1.3 channels: Insights into immunosuppression. J Venom Anim Toxins Incl Trop Dis. 25(e148118)2019.PubMed/NCBI View Article : Google Scholar

110 

Ortiz E and Possani LD: Scorpion toxins to unravel the conundrum of ion channel structure and functioning. Toxicon. 150:17–27. 2018.PubMed/NCBI View Article : Google Scholar

111 

Quintero-Hernández V, Jiménez-Vargas JM, Gurrola GB, Valdivia HH and Possani LD: Scorpion venom components that affect ion-channels function. Toxicon. 76:328–42. 2013.PubMed/NCBI View Article : Google Scholar

112 

Xu Y, Sun J, Liu H, Sun J, Yu Y, Su Y, Cui Y, Zhao M and Zhang J: Scorpion toxins targeting Voltage-Gated sodium channels associated with pain. Curr Pharm Biotechnol. 19:848–855. 2018.PubMed/NCBI View Article : Google Scholar

113 

Zhang JZ, Yarov-Yarovoy V, Scheuer T, Karbat I, Cohen L, Gordon D, Gurevitz M and Catterall WA: Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels. J Biol Chem. 287:30719–30728. 2012.PubMed/NCBI View Article : Google Scholar

114 

Adams DJ and Lewis RJ: Neuropharmacology of venom peptides. Neuropharmacology. 127:1–3. 2017.PubMed/NCBI View Article : Google Scholar

115 

Gordon D, Chen R and Chung SH: Computational methods of studying the binding of toxins from venomous animals to biological ion channels: Theory and applications. Physiol Rev. 93:767–802. 2013.PubMed/NCBI View Article : Google Scholar

116 

Norton RS and Chandy KG: Venom-Derived peptide inhibitors of Voltage-Gated potassium channels. Neuropharmacology. 127:124–138. 2017.PubMed/NCBI View Article : Google Scholar

117 

Cologna CT, Peigneur S, Rustiguel JK, Nonato MC, Tytgat J and Arantes EC: Investigation of the relationship between the structure and function of Ts2, a neurotoxin from Tityus serrulatus venom. FEBS J. 279:1495–504. 2012.PubMed/NCBI View Article : Google Scholar

118 

Díaz-García A and Varela D: Voltage-gated K+/Na+ channels and scorpion venom toxins in cancer. Front Pharmacol. 11(913)2020.PubMed/NCBI View Article : Google Scholar

119 

Shen H, Li Z, Jiang Y, Pan X, Wu J, Cristofori-Armstrong B, Smith JJ, Chin YKY, Lei J, Zhou Q, et al: Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science. 362(eaau2596)2018.PubMed/NCBI View Article : Google Scholar

120 

Wu Y, Ma H, Zhang F, Zhang C, Zou X and Cao Z: Selective Voltage-Gated sodium channel peptide toxins from animal venom: Pharmacological probes and analgesic drug development. ACS Chem Neurosci. 9:187–197. 2018.PubMed/NCBI View Article : Google Scholar

121 

Cohen G, Burks SR and Frank JA: Chlorotoxin-a multimodal imaging platform for targeting glioma tumors. Toxins (Basel). 10(496)2018.PubMed/NCBI View Article : Google Scholar

122 

Dardevet L, Rani D, Aziz TA, Bazin I, Sabatier JM, Fadl M, Brambilla E and De Waard M: Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins (Basel). 7:1079–1101. 2015.PubMed/NCBI View Article : Google Scholar

123 

Wang D, Starr R, Chang WC, Aguilar B, Alizadeh D, Wright SL, Yang X, Brito A, Sarkissian A, Ostberg JR, et al: Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Sci Transl Med. 12(eaaw2672)2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Matkivska R, Samborska I and Maievskyi O: Effect of animal venom toxins on the main links of the homeostasis of mammals (Review). Biomed Rep 20: 16, 2024.
APA
Matkivska, R., Samborska, I., & Maievskyi, O. (2024). Effect of animal venom toxins on the main links of the homeostasis of mammals (Review). Biomedical Reports, 20, 16. https://doi.org/10.3892/br.2023.1704
MLA
Matkivska, R., Samborska, I., Maievskyi, O."Effect of animal venom toxins on the main links of the homeostasis of mammals (Review)". Biomedical Reports 20.2 (2024): 16.
Chicago
Matkivska, R., Samborska, I., Maievskyi, O."Effect of animal venom toxins on the main links of the homeostasis of mammals (Review)". Biomedical Reports 20, no. 2 (2024): 16. https://doi.org/10.3892/br.2023.1704
Copy and paste a formatted citation
x
Spandidos Publications style
Matkivska R, Samborska I and Maievskyi O: Effect of animal venom toxins on the main links of the homeostasis of mammals (Review). Biomed Rep 20: 16, 2024.
APA
Matkivska, R., Samborska, I., & Maievskyi, O. (2024). Effect of animal venom toxins on the main links of the homeostasis of mammals (Review). Biomedical Reports, 20, 16. https://doi.org/10.3892/br.2023.1704
MLA
Matkivska, R., Samborska, I., Maievskyi, O."Effect of animal venom toxins on the main links of the homeostasis of mammals (Review)". Biomedical Reports 20.2 (2024): 16.
Chicago
Matkivska, R., Samborska, I., Maievskyi, O."Effect of animal venom toxins on the main links of the homeostasis of mammals (Review)". Biomedical Reports 20, no. 2 (2024): 16. https://doi.org/10.3892/br.2023.1704
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team