|
1
|
Jakob MO, Murugan S and Klose CSN:
Neuro-immune circuits regulate immune responses in tissues and
organ homeostasis. Front Immunol. 11(308)2020.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Meizlish ML, Franklin RA, Zhou X and
Medzhitov R: Tissue homeostasis and inflammation. Annu Rev Immunol.
39:557–581. 2021.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Mowel WK, Kotzin JJ, McCright SJ, Neal VD
and Henao-Mejia J: Control of immune cell homeostasis and function
by lncRNAs. Trends Immunol. 39:55–69. 2018.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Vincze J and Vincze-Tiszay G: The Human
organism is a biophysical-biopsychological system. Technium.
2:29–35. 2018.
|
|
5
|
Larréché S, Chippaux JP, Chevillard L,
Mathé S, Résière D, Siguret V and Mégarbane B: Bleeding and
thrombosis: Insights into pathophysiology of Bothrops venom-related
hemostasis disorders. Int J Mol Sci. 22(9643)2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Walker AA, Robinson SD, Hamilton BF,
Undheim EAB and King GF: Deadly proteomes: A practical guide to
proteotranscriptomics of animal venoms. Proteomics.
20(e1900324)2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Warrell DA: Venomous bites, stings, and
poisoning: An update. Infect Dis Clin North Am. 33:17–38.
2019.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Almanza A, Carlesso A, Chintha C,
Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N,
Montibeller L, More S, et al: Endoplasmic reticulum stress
signalling-from basic mechanisms to clinical applications. FEBS J.
286:241–278. 2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Smith M and Wilkinson S: ER homeostasis
and autophagy. Essays Biochem. 61:625–635. 2017.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Sanhajariya S, Duffull SB and Isbister GK:
Pharmacokinetics of snake venom. Toxins (Basel).
10(73)2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Casella-Martins A, Ayres LR, Burin SM,
Morais FR, Pereira JC, Faccioli LH, Sampaio SV, Arantes EC, Castro
FA and Pereira-Crott LS: Immunomodulatory activity of Tityus
serrulatus scorpion venom on human T lymphocytes. J Venom Anim
Toxins Incl Trop Dis. 21(46)2015.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Pucca MB, Fry BG, Sartim MA, Peigneur S
and Monteiro WM: Editorial: Venoms and toxins: At the crossroads of
basic, applied and clinical immunology. Front Immunol.
12(716508)2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Avalo Z, Barrera MC, Agudelo-Delgado M,
Tobón GJ and Cañas CA: Biological effects of animal venoms on the
human immune system. Toxins (Basel). 14(344)2022.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Minutti-Zanella C, Gil-Leyva EJ and
Vergara I: Immunomodulatory properties of molecules from animal
venoms. Toxicon. 191:54–68. 2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Santhosh KN, Pavana D and Thippeswamy NB:
Impact of scorpion venom as an acute stressor on the
neuroendocrine-immunological network. Toxicon. 122:113–118.
2016.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Strbo N, Yin N and Stojadinovic O: Innate
and adaptive immune responses in wound epithelialization. Adv Wound
Care (New Rochelle). 3:492–501. 2014.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Lien WC, Zhou XR, Liang YJ, Ching CT, Wang
CY, Lu FI, Chang HC, Lin FH and Wang HD: Therapeutic potential of
nanoceria pretreatment in preventing the development of urological
chronic pelvic pain syndrome: Immunomodulation via reactive oxygen
species scavenging and SerpinB2 downregulation. Bioeng Transl Med.
8(e10346)2022.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Zhou Z, Li K, Chu Y, Li C, Zhang T, Liu P,
Sun T and Jiang C: ROS-removing nano-medicine for navigating
inflammatory microenvironment to enhance Anti-Epileptic therapy.
Acta Pharm Sin B. 13:1246–1261. 2023.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Mansfield K and Naik S: Unraveling
Immune-Epithelial interactions in skin homeostasis and injury. Yale
J Biol Med. 93:133–143. 2020.PubMed/NCBI
|
|
20
|
Piipponen M, Li D and Landén NX: The
immune functions of keratinocytes in skin wound healing. Int J Mol
Sci. 21(8790)2020.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Pondeljak N and Lugović-Mihić L:
Stress-Induced interaction of skin immune cells, hormones, and
neurotransmitters. Clin Ther. 42:757–770. 2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Eyerich S, Eyerich K, Traidl-Hoffmann C
and Biedermann T: Cutaneous barriers and skin immunity:
Differentiating a connected network. Trends Immunol. 39:315–327.
2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Costal-Oliveira F, Stransky S,
Guerra-Duarte C, Naves de Souza DL, Vivas-Ruiz DE, Yarlequé A,
Sanchez EF, Chávez-Olórtegui C and Braga VMM: L-amino acid oxidase
from Bothrops atrox snake venom triggers autophagy, apoptosis and
necrosis in normal human keratinocytes. Sci Rep.
9(781)2019.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Al-Asmari AK, Riyasdeen A and Islam M:
Scorpion venom causes apoptosis by increasing reactive oxygen
species and cell cycle arrest in MDA-MB-231 and HCT-8 cancer cell
lines. J Evid Based Integr Med. 23(2156587217751796)2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Gutiérrez JM, Escalante T, Rucavado A,
Herrera C and Fox JW: A comprehensive view of the structural and
functional alterations of extracellular matrix by snake venom
metalloproteinases (SVMPs): Novel perspectives on the
pathophysiology of envenoming. Toxins (Basel).
8(304)2016.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Ben Yekhlef R, Felicori L, Santos LH, F B
Oliveira C, Fadhloun R, Torabi E, Shahbazzadeh D, Pooshang Bagheri
K, Salgado Ferreira R and Borchani L: Antigenic and substrate
preference differences between scorpion and spider dermonecrotic
toxins, a comparative investigation. Toxins (Basel).
12(631)2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Dunbar JP, Sulpice R and Dugon MM: The
kiss of (cell) death: Can venom-induced immune response contribute
to dermal necrosis following arthropod envenomations? Clin Toxicol
(Phila). 57:677–685. 2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Morales-Moreno HJ, Carranza-Rodriguez C
and Borrego L: Cutaneous loxoscelism due to Loxosceles rufescens. J
Eur Acad Dermatol Venereol. 30:1431–1432. 2016.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Nentwig W, Pantini P and Vetter RS:
Distribution and medical aspects of Loxosceles rufescens, one of
the most invasive spiders of the world (Araneae: Sicariidae).
Toxicon. 132:19–28. 2017.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Pober JS, Merola J, Liu R and Manes TD:
Antigen presentation by vascular cells. Front Immunol.
8(1907)2017.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Dalal PJ, Muller WA and Sullivan DP:
Endothelial cell calcium signaling during barrier function and
inflammation. Am J Pathol. 190:535–542. 2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
De Andrade CM, Rey FM, Cintra ACO, Sampaio
SV and Torqueti MR: Effects of crotoxin, a neurotoxin from Crotalus
durissus terrificus snake venom, on human endothelial cells. Int J
Biol Macromol. 134:613–621. 2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Franken L, Schiwon M and Kurts C:
Macrophages: Sentinels and regulators of the immune system. Cell
Microbiol. 18:475–487. 2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Freitas AP, Favoretto BC, Clissa PB,
Sampaio SC and Faquim-Mauro EL: Crotoxin isolated from Crotalus
durissus terrificus venom modulates the functional activity of
dendritic cells via formyl peptide receptors. J Immunol Res.
2018(7873257)2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Leiguez E, Giannotti KC, Moreira V,
Matsubara MH, Gutiérrez JM, Lomonte B, Rodríguez JP, Balsinde J and
Teixeira C: Critical role of TLR2 and MyD88 for
functional response of macrophages to a group IIA-secreted
phospholipase A2 from snake venom. PLoS One.
9(e93741)2014.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Sieber M, Bosch B, Hanke W and Fernandes
de Lima VM: Membrane-modifying properties of crotamine, a small
peptide-toxin from Crotalus durissus terifficus venom. Biochim
Biophys Acta. 1840:945–950. 2014.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Echeverría S, Leiguez E, Guijas C, do
Nascimento NG, Acosta O, Teixeira C, Leiva LC and Rodríguez JP:
Evaluation of pro-inflammatory events induced by Bothrops
alternatus snake venom. Chem Biol Interact. 281:24–31.
2018.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Setubal SS, Pontes AS, Furtado JL, Kayano
AM, Stábeli RG and Zuliani JP: Effect of Bothrops alternatus snake
venom on macrophage phagocytosis and superoxide production:
Participation of protein kinase C. J Venom Anim Toxins Incl Trop
Dis. 17:430–441. 2011.
|
|
39
|
Darkaoui B, Lafnoune A, Chgoury F, Daoudi
K, Chakir S, Mounaji K, Karkouri M, Cadi R and Naoual O: Induced
pathophysiological alterations by the venoms of the most dangerous
Moroccan scorpions Androctonus mauretanicus and Buthus occitanus: A
comparative pathophysiological and toxic-symptoms study. Hum Exp
Toxicol. 41(9603271211072872)2022.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Saadi S, Assarehzadegan MA, Pipelzadeh MH
and Hadaddezfuli R: Induction of IL-12 from human monocytes after
stimulation with Androctonus crassicauda scorpion venom. Toxicon.
106:117–121. 2015.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Saidi H, Bérubé J, Laraba-Djebari F and
Hammoudi-Triki D: Involvement of alveolar macrophages and
neutrophils in acute lung injury after scorpion envenomation: New
pharmacological targets. Inflammation. 41:773–783. 2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Ait-Lounis A and Laraba-Djebari F:
TNF-alpha modulates adipose macrophage polarization to
M1 phenotype in response to scorpion venom. Inflamm Res.
64:929–936. 2015.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Corzo G and Espino-Solis GP: Selected
scorpion toxin exposures induce cytokine release in human
peripheral blood mononuclear cells. Toxicon. 127:56–62.
2017.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Pucca MB, Peigneur S, Cologna CT, Cerni
FA, Zoccal KF, Bordon Kde C, Faccioli LH, Tytgat J and Arantes EC:
Electrophysiological characterization of the first Tityus
serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory
toxin on macrophages. Biochimie. 115:8–16. 2015.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Pires WL, Kayano AM, de Castro OB,
Paloschi MV, Lopes JA, Boeno CN, Pereira SDS, Antunes MM, Rodrigues
MMS, Stábeli RG, et al: Lectin isolated from Bothrops jararacussu
venom induces IL-10 release by TCD4+cells and TNF-α
release by monocytes and natural killer cells. J Leukoc Biol.
106:595–605. 2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Júnior FAN, Jorge ARC, Marinho AD,
Silveira JAM, Alves NTQ, Costa PHS, E Silva PLB, Chaves-Filho AJM,
Lima DB, Sampaio TL, et al: Bothrops alternatus snake venom induces
cytokine expression and oxidative stress on renal function. Curr
Top Med Chem. 19:2058–2068. 2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Rojas JM, Arán-Sekul T, Cortés E, Jaldín
R, Ordenes K, Orrego PR, González J, Araya JE and Catalán A:
Phospholipase D from Loxosceles laeta spider venom induces IL-6,
IL-8, CXCL1/GRO-α, and CCL2/MCP-1 production in human skin
fibroblasts and stimulates monocytes migration. Toxins (Basel).
9(125)2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Bahloul M, Regaieg K, Chabchoub I, Kammoun
M, Chtara K and Bouaziz M: Severe scorpion envenomation:
Pathophysiology and the role of inflammation in multiple organ
failure. Med Sante Trop. 27:214–221. 2017.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Khemili D, Valenzuela C, Laraba-Djebari F
and Hammoudi-Triki D: Differential effect of Androctonus australis
hector venom components on macrophage KV channels:
Electrophysiological characterization. Eur Biophys J. 48:1–13.
2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Ryan RYM, Seymour J, Loukas A, Lopez JA,
Ikonomopoulou MP and Miles JJ: Immunological responses to
envenomation. Front Immunol. 12(661082)2021.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Rørvig S, Østergaard O, Heegaard NH and
Borregaard N: Proteome profiling of human neutrophil granule
subsets, secretory vesicles, and cell membrane: Correlation with
transcriptome profiling of neutrophil precursors. J Leukoc Biol.
94:711–721. 2013.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Kruger P, Saffarzadeh M, Weber AN, Rieber
N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J and Hartl
D: Neutrophils: Between host defence, immune modulation, and tissue
injury. PLoS Pathog. 11(e1004651)2015.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Nourshargh S and Alon R: Leukocyte
migration into inflamed tissues. Immunity. 41:694–707.
2014.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Setubal Sda S, Pontes AS, Nery NM, Bastos
JS, Castro OB, Pires WL, Zaqueo KD, Calderon Lde A, Stábeli RG,
Soares AM and Zuliani JP: Effect of Bothrops bilineata snake venom
on neutrophil function. Toxicon. 76:143–149. 2013.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Tecchio C, Micheletti A and Cassatella MA:
Neutrophil-derived cytokines: Facts beyond expression. Front
Immunol. 5(508)2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Zuliani JP, Soares AM and Gutiérrez JM:
Polymorphonuclear neutrophil leukocytes in snakebite envenoming.
Toxicon. 187:188–197. 2020.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Khemili D, Laraba-Djebari F and
Hammoudi-Triki D: Involvement of toll-like receptor 4 in
neutrophil-mediated inflammation, oxidative stress and tissue
damage induced by scorpion venom. Inflammation. 43:155–167.
2020.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Zoccal KF, Bitencourt Cda S, Paula-Silva
FW, Sorgi CA, de Castro Figueiredo Bordon K, Arantes EC and
Faccioli LH: TLR2, TLR4 and CD14 recognize
venom-associated molecular patterns from Tityus serrulatus to
induce Macrophage-Derived inflammatory mediators. PLoS One.
9(e88174)2014.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Moreira V, Teixeira C, Borges da Silva H,
D'Império Lima MR and Dos-Santos MC: The role of TLR2 in
the acute inflammatory response induced by Bothrops atrox snake
venom. Toxicon. 118:121–128. 2016.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Zoccal KF, Ferreira GZ, Prado MKB,
Gardinassi LG, Sampaio SV and Faccioli LH: LTB4 and
PGE2 modulate the release of MIP-1α and IL-1β by cells
stimulated with Bothrops snake venoms. Toxicon. 150:289–296.
2018.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Palm NW and Medzhitov R: Role of the
inflammasome in defense against venoms. Proc Natl Acad Sci USA.
110:1809–1814. 2013.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Zoccal KF, Sorgi CA, Hori JI, Paula-Silva
FW, Arantes EC, Serezani CH, Zamboni DS and Faccioli LH: Opposing
roles of LTB4 and PGE2 in regulating the inflammasome-dependent
scorpion venom-induced mortality. Nat Commun.
7(10760)2016.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Thangam EB, Jemima EA, Singh H, Baig MS,
Khan M, Mathias CB, Church MK and Saluja R: The Role of histamine
and histamine receptors in mast cell-mediated allergy and
inflammation: The hunt for new therapeutic targets. Front Immunol.
9(1873)2018.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Galli SJ, Starkl P, Marichal T and Tsai M:
Mast cells and IgE in defense against venoms: Possible ‘good side’
of allergy? Allergol Int. 65:3–15. 2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Kovacova-Hanuskova E, Buday T, Gavliakova
S and Plevkova J: Histamine, histamine intoxication and
intolerance. Allergol Immunopathol (Madr). 43:498–506.
2015.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Krystel-Whittemore M, Dileepan KN and Wood
JG: Mast cell: A multi-functional master cell. Front Immunol.
6(620)2016.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Menaldo DL, Bernardes CP, Pereira JC,
Silveira DS, Mamede CC, Stanziola L, Oliveira FD, Pereira-Crott LS,
Faccioli LH and Sampaio SV: Effects of two serine proteases from
Bothrops pirajai snake venom on the complement system and the
inflammatory response. Int Immunopharmacol. 15:764–771.
2013.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Moon TC, Befus AD and Kulka M: Mast cell
mediators: Their differential release and the secretory pathways
involved. Front Immunol. 5(569)2014.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Stitt J and Katial R: Venom allergy. J
Allergy Clin Immunol Pract. 4:184–185. 2016.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Stone SF, Isbister GK, Shahmy S, Mohamed
F, Abeysinghe C, Karunathilake H, Ariaratnam A, Jacoby-Alner TE,
Cotterell CL and Brown SG: Immune response to snake envenoming and
treatment with antivenom; complement activation, cytokine
production and mast cell degranulation. PLoS Negl Trop Dis.
7(e2326)2013.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Tambourgi DV and van den Berg CW: Animal
venoms/toxins and the complement system. Mol Immunol. 61:153–162.
2014.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Kumar N and Sastry GN: Study of lipid
heterogeneity on bilayer membranes using molecular dynamics
simulations. J Mol Graph Model. 108(108000)2021.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Sandvig K, Bergan J, Kavaliauskiene S and
Skotland T: Lipid requirements for entry of protein toxins into
cells. Prog Lipid Res. 54:1–13. 2014.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Herzig V, Cristofori-Armstrong B, Israel
MR, Nixon SA, Vetter I and King GF: Animal toxins-Nature's
evolutionary-refined toolkit for basic research and drug discovery.
Biochem Pharmacol. 181(114096)2020.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Van Baelen AC, Robin P, Kessler P, Maïga
A, Gilles N and Servent D: Structural and functional diversity of
animal toxins interacting with GPCRs. Front Mol Biosci.
9(811365)2022.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Bekbossynova A, Zharylgap A and Filchakova
O: Venom-derived neurotoxins targeting nicotinic acetylcholine
receptors. Molecules. 26(3373)2021.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Hung A, Kuyucak S, Schroeder CI and Kaas
Q: Modelling the interactions between animal venom peptides and
membrane proteins. Neuropharmacology. 127:20–31. 2017.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Kasheverov IE, Oparin PB, Zhmak MN,
Egorova NS, Ivanov IA, Gigolaev AM, Nekrasova OV, Serebryakova MV,
Kudryavtsev DS, Prokopev NA, et al: Scorpion toxins interact with
nicotinic acetylcholine receptors. FEBS Lett. 593:2779–2789.
2019.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Luiken JJ, Glatz JF and Neumann D: Cardiac
contraction-induced GLUT4 translocation requires dual signaling
input. Trends Endocrinol Metab. 26:404–410. 2015.PubMed/NCBI View Article : Google Scholar
|
|
80
|
O Collaço RC, Hyslop S, Dorce VAC, Antunes
E and Rowan EG: Scorpion venom increases acetylcholine release by
prolonging the duration of somatic nerve action potentials.
Neuropharmacology. 153:41–52. 2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Shrestha A, Kahraman O and Haselwandter
CA: Regulation of membrane proteins through local heterogeneity in
lipid bilayer thickness. Phys Rev E. 102(060401)2020.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Ernst R, Ballweg S and Levental I:
Cellular mechanisms of physicochemical membrane homeostasis. Curr
Opin Cell Biol. 53:44–51. 2018.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Gilbert RJ, Dalla Serra M, Froelich CJ,
Wallace MI and Anderluh G: Membrane pore formation at protein-lipid
interfaces. Trends Biochem Sci. 39:510–516. 2014.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Rádis-Baptista G: Cell-penetrating
peptides derived from animal venoms and toxins. Toxins (Basel).
13(147)2021.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Copolovici DM, Langel K, Eriste E and
Langel Ü: Cell-penetrating peptides: Design, synthesis, and
applications. ACS Nano. 8:1972–1994. 2014.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Dal Peraro M and van der Goot FG:
Pore-forming toxins: Ancient, but never really out of fashion. Nat
Rev Microbiol. 14:77–92. 2016.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Kalafatovic D and Giralt E:
Cell-penetrating peptides: Design strategies beyond primary
structure and amphipathicity. Molecules. 22(1929)2017.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Kerkis I, Hayashi MA, Prieto da Silva AR,
Pereira A, De Sá Júnior PL, Zaharenko AJ, Rádis-Baptista G, Kerkis
A and Yamane T: State of the art in the studies on crotamine, a
cell penetrating peptide from South American rattlesnake. Biomed
Res Int. 2014(675985)2014.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Lin King JV, Emrick JJ, Kelly MJS, Herzig
V, King GF, Medzihradszky KF and Julius D: A cell-penetrating
scorpion toxin enables mode-specific modulation of TRPA1 and pain.
Cell. 178:1362–1374. 2019.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Burin SM, Menaldo DL, Sampaio SV, Frantz
FG and Castro FA: An overview of the immune modulating effects of
enzymatic toxins from snake venoms. Int J Biol Macromol.
109:664–671. 2018.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Chan YS, Cheung RCF, Xia L, Wong JH, Ng TB
and Chan WY: Snake venom toxins: Toxicity and medicinal
applications. Appl Microbiol Biotechnol. 100:6165–6181.
2016.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Xiong S and Huang C: Synergistic
strategies of predominant toxins in snake venoms. Toxicol Lett.
287:142–154. 2018.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Ferraz CR, Arrahman A, Xie C, Casewell NR,
Lewis RJ, Kool J and Cardoso FC: Multifunctional toxins in snake
venoms and therapeutic implications: From pain to hemorrhage and
necrosis. Front Ecol Evol. 7(218)2019.
|
|
94
|
Muller SP, Silva VAO, Silvestrini AVP, de
Macedo LH, Caetano GF, Reis RM and Mazzi MV: Crotoxin from Crotalus
durissus terrificus venom: In vitro cytotoxic activity of a
heterodimeric phospholipase A2 on human cancer-derived
cell lines. Toxicon. 156:13–22. 2018.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Hong J, Lu X, Deng Z, Xiao S, Yuan B and
Yang K: How melittin inserts into cell membrane: Conformational
changes, Inter-Peptide cooperation, and disturbance on the
membrane. Molecules. 24(1775)2019.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Kachel HS, Buckingham SD and Sattelle DB:
Insect toxins-selective pharmacological tools and drug/chemical
leads. Curr Opin Insect Sci. 30:93–98. 2018.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Khalil A, Elesawy BH, Ali TM and Ahmed OM:
Bee venom: From venom to drug. Molecules. 26(4941)2021.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Khan S: Advances in usage of venom
proteins as diagnostics and therapeutic mediators. Protein Pept
Lett. 25:610–611. 2018.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Kim W: Bee venom and its sub-components:
Characterization, pharmacology, and therapeutics. Toxins (Basel).
13(191)2021.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Rady I, Siddiqui IA, Rady M and Mukhtar H:
Melittin, a major peptide component of bee venom, and its
conjugates in cancer therapy. Cancer Lett. 402:16–31.
2017.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Wehbe R, Frangieh J, Rima M, El Obeid D,
Sabatier JM and Fajloun Z: Bee venom: Overview of main compounds
and bioactivities for therapeutic interests. Molecules.
24(2997)2019.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Ghosh A, Roy R, Nandi M and Mukhopadhyay
A: Scorpion venom-toxins that aid in drug development: A review.
Int J Pept Res Ther. 25:27–37. 2019.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Gilchrist J, Olivera BM and Bosmans F:
Animal toxins influence voltage-gated sodium channel function.
Handb Exp Pharmacol. 221:203–229. 2014.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Kuzmenkov AI and Vassilevski AA: Labelled
animal toxins as selective molecular markers of ion channels:
Applications in neurobiology and beyond. Neurosci Lett. 679:15–23.
2018.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Swartz KJ: Ion channels: The scorpion
toxin and the potassium channel. Elife. 2(e00873)2013.
|
|
106
|
Chen N, Xu S, Zhang Y and Wang F: Animal
protein toxins: Origins and therapeutic applications. Biophys Rep.
4:233–242. 2018.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Kalia J, Milescu M, Salvatierra J, Wagner
J, Klint JK, King GF, Olivera BM and Bosmans F: From foe to friend:
Using animal toxins to investigate ion channel function. J Mol
Biol. 427:158–175. 2015.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Lahiani A, Yavin E and Lazarovici P: The
Molecular basis of toxins' interactions with intracellular
signaling via discrete portals. Toxins (Basel).
9(107)2017.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Oliveira IS, Ferreira IG, Alexandre-Silva
GM, Cerni FA, Cremonez CM, Arantes EC, Zottich U and Pucca MB:
Scorpion toxins targeting Kv1.3 channels: Insights into
immunosuppression. J Venom Anim Toxins Incl Trop Dis.
25(e148118)2019.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Ortiz E and Possani LD: Scorpion toxins to
unravel the conundrum of ion channel structure and functioning.
Toxicon. 150:17–27. 2018.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Quintero-Hernández V, Jiménez-Vargas JM,
Gurrola GB, Valdivia HH and Possani LD: Scorpion venom components
that affect ion-channels function. Toxicon. 76:328–42.
2013.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Xu Y, Sun J, Liu H, Sun J, Yu Y, Su Y, Cui
Y, Zhao M and Zhang J: Scorpion toxins targeting Voltage-Gated
sodium channels associated with pain. Curr Pharm Biotechnol.
19:848–855. 2018.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Zhang JZ, Yarov-Yarovoy V, Scheuer T,
Karbat I, Cohen L, Gordon D, Gurevitz M and Catterall WA: Mapping
the interaction site for a β-scorpion toxin in the pore module of
domain III of voltage-gated Na(+) channels. J Biol Chem.
287:30719–30728. 2012.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Adams DJ and Lewis RJ: Neuropharmacology
of venom peptides. Neuropharmacology. 127:1–3. 2017.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Gordon D, Chen R and Chung SH:
Computational methods of studying the binding of toxins from
venomous animals to biological ion channels: Theory and
applications. Physiol Rev. 93:767–802. 2013.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Norton RS and Chandy KG: Venom-Derived
peptide inhibitors of Voltage-Gated potassium channels.
Neuropharmacology. 127:124–138. 2017.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Cologna CT, Peigneur S, Rustiguel JK,
Nonato MC, Tytgat J and Arantes EC: Investigation of the
relationship between the structure and function of Ts2, a
neurotoxin from Tityus serrulatus venom. FEBS J. 279:1495–504.
2012.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Díaz-García A and Varela D: Voltage-gated
K+/Na+ channels and scorpion venom toxins in
cancer. Front Pharmacol. 11(913)2020.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Shen H, Li Z, Jiang Y, Pan X, Wu J,
Cristofori-Armstrong B, Smith JJ, Chin YKY, Lei J, Zhou Q, et al:
Structural basis for the modulation of voltage-gated sodium
channels by animal toxins. Science. 362(eaau2596)2018.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Wu Y, Ma H, Zhang F, Zhang C, Zou X and
Cao Z: Selective Voltage-Gated sodium channel peptide toxins from
animal venom: Pharmacological probes and analgesic drug
development. ACS Chem Neurosci. 9:187–197. 2018.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Cohen G, Burks SR and Frank JA:
Chlorotoxin-a multimodal imaging platform for targeting glioma
tumors. Toxins (Basel). 10(496)2018.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Dardevet L, Rani D, Aziz TA, Bazin I,
Sabatier JM, Fadl M, Brambilla E and De Waard M: Chlorotoxin: A
helpful natural scorpion peptide to diagnose glioma and fight tumor
invasion. Toxins (Basel). 7:1079–1101. 2015.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Wang D, Starr R, Chang WC, Aguilar B,
Alizadeh D, Wright SL, Yang X, Brito A, Sarkissian A, Ostberg JR,
et al: Chlorotoxin-directed CAR T cells for specific and effective
targeting of glioblastoma. Sci Transl Med.
12(eaaw2672)2020.PubMed/NCBI View Article : Google Scholar
|