|
1
|
Rund D and Rachmilewitz E:
Beta-thalassemia. N Engl J Med. 353:1135–1146. 2005.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Piel FB and Weatherall DJ: The
α-thalassemias. N Engl J Med. 371:1908–1916. 2014.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Borgna-Pignatti C, Rugolotto S, De Stefano
P, Zhao H, Cappellini MD, Del Vecchio GC, Romeo MA, Forni GL,
Gamberini MR, Ghilardi R, et al: Survival and complications in
patients with thalassemia major treated with transfusion and
deferoxamine. Haematologica. 89:1187–1193. 2004.PubMed/NCBI
|
|
4
|
Zurlo MG, De Stefano P, Borgna-Pignatti C,
Di Palma A, Piga A, Melevendi C, Di Gregorio F, Burattini MG and
Terzoli S: Survival and causes of death in thalassaemia major.
Lancet. 2:27–30. 1989.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Sleiman J, Tarhini A, Bou-Fakhredin R,
Saliba AN, Cappellini MD and Taher AT: Non-Transfusion-Dependent
Thalassemia: An update on complications and management. Int J Mol
Sci. 19(182)2018.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Cappellini MD, Robbiolo L, Bottasso BM,
Coppola R, Fiorelli G and Mannucci AP: Venous thromboembolism and
hypercoagulability in splenectomized patients with thalassaemia
intermedia. Br J Haematol. 111:467–473. 2000.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Eldor A and Rachmilewitz EA: The
hypercoagulable state in thalassemia. Blood. 99:36–43.
2002.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Atichartakarn V, Angchaisuksiri P,
Aryurachai K, Chuncharunee S and Thakkinstian A: In vivo platelet
activation and hyperaggregation in hemoglobin E/beta-thalassemia: A
consequence of splenectomy. Int J Hematol. 77:299–303.
2003.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Atichartakarn V, Chuncharunee S,
Chandanamattha P, Likittanasombat K and Aryurachai K: Correction of
hypercoagulability and amelioration of pulmonary arterial
hypertension by chronic blood transfusion in an asplenic hemoglobin
E/beta-thalassemia patient. Blood. 103:2844–2846. 2004.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Atichartakarn V, Angchaisuksiri P,
Aryurachai K, Onpun S, Chuncharunee S, Thakkinstian A and
Atamasirikul K: Relationship between hypercoagulable state and
erythrocyte phosphatidylserine exposure in splenectomized
haemoglobin E/beta-thalassaemic patients. Br J Haematol.
118:893–898. 2002.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Yáñez-Mó M, Siljander PR, Andreu Z, Zavec
AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J,
et al: Biological properties of extracellular vesicles and their
physiological functions. J Extracell Vesicles.
4(27066)2015.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Loyer X, Vion AC, Tedgui A and Boulanger
CM: Microvesicles as cell-cell messengers in cardiovascular
diseases. Circ Res. 114:345–353. 2014.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Westerman M, Pizzey A, Hirschman J, Cerino
M, Weil-Weiner Y, Ramotar P, Eze A, Lawrie A, Purdy G, Mackie I and
Porter J: Microvesicles in haemoglobinopathies offer insights into
mechanisms of hypercoagulability, haemolysis and the effects of
therapy. Br J Haematol. 142:126–135. 2008.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Aharon A, Rebibo-Sabbah A, Tzoran I and
Levin C: Extracellular vesicles in hematological disorders. Rambam
Maimonides Med J. 5(e0032)2014.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Klaihmon P, Vimonpatranon S, Noulsri E,
Lertthammakiat S, Anurathapan U, Sirachainan N, Hongeng S and
Pattanapanyasat K: Normalized levels of red blood cells expressing
phosphatidylserine, their microparticles, and activated platelets
in young patients with β-thalassemia following bone marrow
transplantation. Ann Hematol. 96:1741–1747. 2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Klaihmon P, Lertthammakiat S, Anurathapan
U, Pakakasama S, Sirachainan N, Hongeng S and Pattanapanyasat K:
Activated platelets and leukocyte activations in young patients
with β-thalassemia/HbE following bone marrow transplantation.
Thromb Res. 169:8–14. 2018.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Origa R: β-Thalassemia. Genet Med.
19:609–619. 2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Cazzola M: Ineffective erythropoiesis and
its treatment. Blood. 139:2460–2470. 2022.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Galanello R and Origa R: Beta-thalassemia.
Orphanet J Rare Dis. 5(11)2010.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Taher AT, Otrock ZK, Uthman I and
Cappellini MD: Thalassemia and hypercoagulability. Blood Rev.
22:283–292. 2008.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Vichinsky EP: Clinical manifestations of
alpha-thalassemia. Cold Spring Harb Perspect Med.
3(a011742)2013.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Sirachainan N, Chuansumrit A, Kadegasem P,
Sasanakul W, Wongwerawattanakoon P and Mahaklan L: Normal
hemostatic parameters in children and young adults with
α-thalassemia diseases. Thromb Res. 146:35–42. 2016.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Pattanapanyasat K, Gonwong S, Chaichompoo
P, Noulsri E, Lerdwana S, Sukapirom K, Siritanaratkul N and
Fucharoen S: Activated platelet-derived microparticles in
thalassaemia. Br J Haematol. 136:462–471. 2007.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Klaihmon P, Phongpao K, Kheansaard W,
Noulsri E, Khuhapinant A, Fucharoen S, Morales NP, Svasti S,
Pattanapanyasat K and Chaichompoo P: Microparticles from
splenectomized β-thalassemia/HbE patients play roles on
procoagulant activities with thrombotic potential. Ann Hematol.
96:189–198. 2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Tantawy AA, Adly AA, Ismail EA, Habeeb NM
and Farouk A: Circulating platelet and erythrocyte microparticles
in young children and adolescents with sickle cell disease:
Relation to cardiovascular complications. Platelets. 24:605–614.
2013.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Manodori AB, Barabino GA, Lubin BH and
Kuypers FA: Adherence of phosphatidylserine-exposing erythrocytes
to endothelial matrix thrombospondin. Blood. 95:1293–1300.
2000.PubMed/NCBI
|
|
27
|
Zahedpanah M, Azarkeivan A, Aghaieepour M,
Nikogoftar M, Ahmadinegad M, Hajibeigi B, Tabatabaiee MR and
Maghsudlu M: Erythrocytic phosphatidylserine exposure and
hemostatic alterations in beta-thalassemia intermediate patients.
Hematology. 19:472–476. 2014.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Mahdi ZN, Al-Mudallal SS and Hameed BM:
Role of red blood cells ‘annexin V’ and platelets ‘P-selectin’ in
patients with thalassemia. Hematol Oncol Stem Cell Ther. 12:15–18.
2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Chung SM, Bae ON, Lim KM, Noh JY, Lee MY,
Jung YS and Chung JH: Lysophosphatidic acid induces thrombogenic
activity through phosphatidylserine exposure and procoagulant
microvesicle generation in human erythrocytes. Arterioscler Thromb
Vasc Biol. 27:414–421. 2007.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Willekens FL, Were JM, Groenen-Döpp YA,
Roerdinkholder-Stoelwinder B, de Pauw B and Bosman GJ: Erythrocyte
vesiculation: A self-protective mechanism? Br J Haematol.
141:549–556. 2008.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Camus SM, Gausserès B, Bonnin P, Loufrani
L, Grimaud L, Charue D, De Moraes JA, Renard JM, Tedgui A,
Boulanger CM, et al: Erythrocyte microparticles can induce kidney
vaso-occlusions in a murine model of sickle cell disease. Blood.
120:5050–5058. 2012.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Pattanapanyasat K, Noulsri E, Fucharoen S,
Lerdwana S, Lamchiagdhase P, Siritanaratkul N and Webster HK: Flow
cytometric quantitation of red blood cell vesicles in thalassemia.
Cytometry B Clin Cytom. 57:23–31. 2004.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Lamchiagdhase P, Nitipongwanich R,
Rattanapong C, Noulsri E, Lerdwana S and Pattanapanyasat K: Red
blood cell vesicles in thalassemia. J Med Assoc Thai. 87:233–238.
2004.PubMed/NCBI
|
|
34
|
Agouti I, Cointe S, Robert S, Judicone C,
Loundou A, Driss F, Brisson A, Steschenko D, Rose C, Pondarré C, et
al: Platelet and not erythrocyte microparticles are procoagulant in
transfused thalassaemia major patients. Br J Haematol. 171:615–624.
2015.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Youssry I, Soliman N, Ghamrawy M, Samy RM,
Nasr A, Abdel Mohsen M, ElShahaat M, Bou Fakhredin R and Taher A:
Circulating microparticles and the risk of thromboembolic events in
Egyptian beta thalassemia patients. Ann Hematol. 96:597–603.
2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Habib A, Kunzelmann C, Shamseddeen W,
Zobairi F, Freyssinet JM and Taher A: Elevated levels of
circulating procoagulant microparticles in patients with
beta-thalassemia intermedia. Haematologica. 93:941–942.
2008.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Nielsen MH, Beck-Nielsen H, Andersen MN
and Handberg A: A flow cytometric method for characterization of
circulating cell-derived microparticles in plasma. J Extracell
Vesicles. 3:2014.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Kowal J, Arras G, Colombo M, Jouve M,
Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M and Théry
C: Proteomic comparison defines novel markers to characterize
heterogeneous populations of extracellular vesicle subtypes. Proc
Natl Acad Sci USA. 113:E968–E977. 2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Kowal EJK, Ter-Ovanesyan D, Regev A and
Church GM: Extracellular Vesicle Isolation and Analysis by Western
Blotting. Methods Mol Biol. 1660:143–152. 2017.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Tijssen MR, Cvejic A, Joshi A, Hannah RL,
Ferreira R, Forrai A, Bellissimo DC, Oram SH, Smethurst PA, Wilson
NK, et al: Genome-wide analysis of simultaneous GATA1/2, RUNX1,
FLI1, and SCL binding in megakaryocytes identifies hematopoietic
regulators. Dev Cell. 20:597–609. 2011.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Rikkert LG, Nieuwland R, Terstappen Lwmm
and Coumans FAW: Quality of extracellular vesicle images by
transmission electron microscopy is operator and protocol
dependent. J Extracell Vesicles. 8(1555419)2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
El Andaloussi S, Mäger I, Breakefield XO
and Wood MJA: Extracellular vesicles: Biology and emerging
therapeutic opportunities. Nat Rev Drug Discov. 12:347–357.
2013.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Lee H, He X, Le T, Carnino JM and Jin Y:
Single-step RT-qPCR for detection of extracellular vesicle
microRNAs in vivo: A time- and cost-effective method. Am J Physiol
Lung Cell Mol Physiol. 318:L742–l749. 2020.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Comfort N, Cai K, Bloomquist TR, Strait
MD, Ferrante AW Jr and Baccarelli AA: Nanoparticle tracking
analysis for the quantification and size determination of
extracellular vesicles. J Vis Exp: Mar 28, 2021 (Epub ahead of
print). doi: 10.3791/62447.
|
|
45
|
Chaichompoo P, Kumya P, Khowawisetsut L,
Chiangjong W, Chaiyarit S, Pongsakul N, Sirithanaratanakul N,
Fucharoen S, Thongboonkerd V and Pattanapanyasat K:
Characterizations and proteome analysis of platelet-free
plasma-derived microparticles in β-thalassemia/hemoglobin E
patients. J Proteomics 76 Spec No.: 239-250, 2012.
|
|
46
|
Kittivorapart J, Crew VK, Wilson MC,
Heesom KJ, Siritanaratkul N and Toye AM: Quantitative proteomics of
plasma vesicles identify novel biomarkers for hemoglobin
E/β-thalassemic patients. Blood Adv. 2:95–104. 2018.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Ferru E, Pantaleo A, Carta F, Mannu F,
Khadjavi A, Gallo V, Ronzoni L, Graziadei G, Cappellini MD and
Turrini F: Thalassemic erythrocytes release microparticles loaded
with hemichromes by redox activation of p72Syk kinase.
Haematologica. 99:570–578. 2014.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Levin C, Koren A, Rebibo-Sabbah A, Koifman
N, Brenner B and Aharon A: Extracellular Vesicle Characteristics in
β-thalassemia as Potential Biomarkers for Spleen Functional Status
and Ineffective Erythropoiesis. Front Physiol.
9(1214)2018.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Tzounakas VL, Anastasiadi AT,
Dzieciatkowska M, Karadimas DG, Stamoulis K, Papassideri IS, Hansen
KC, D'Alessandro A, Kriebardis AG and Antonelou MH: Proteome of
Stored RBC membrane and vesicles from heterozygous beta thalassemia
donors. Int J Mol Sci. 22(3369)2021.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Elsayh KI, Zahran AM, El-Abaseri TB,
Mohamed AO and El-Metwally TH: Hypoxia biomarkers, oxidative
stress, and circulating microparticles in pediatric patients with
thalassemia in Upper Egypt. Clin Appl Thromb Hemost. 20:536–545.
2014.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Adly AA, El-Sherif NH, Ismail EA, El-Zaher
YA, Farouk A, El-Refaey AM and Wahba MS: Vascular dysfunction in
patients with young β-thalassemia: Relation to cardiovascular
complications and subclinical atherosclerosis. Clin Appl Thromb
Hemost. 21:733–744. 2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Manakeng K, Prasertphol P, Phongpao K,
Chuncharunee S, Tanyong D, Worawichawong S, Svasti S and
Chaichompoo P: Elevated levels of platelet- and red cell-derived
extracellular vesicles in transfusion-dependent β-thalassemia/HbE
patients with pulmonary arterial hypertension. Ann Hematol.
98:281–288. 2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Li N, Wu B, Wang J, Yan Y, An P, Li Y, Liu
Y, Hou Y, Qing X, Niu L, et al: Differential proteomic patterns of
plasma extracellular vesicles show potential to discriminate
β-thalassemia subtypes. iScience. 26(106048)2023.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Chaemsaithong P, Luewan S, Taweevisit M,
Chiangjong W, Pongchaikul P, Thorner PS, Tongsong T and
Chutipongtanate S: Placenta-Derived extracellular vesicles in
pregnancy complications and prospects on a liquid biopsy for
hemoglobin Bart's Disease. Int J Mol Sci. 24(5658)2023.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Kheansaard W, Phongpao K, Paiboonsukwong
K, Pattanapanyasat K, Chaichompoo P and Svasti S: Microparticles
from β-thalassaemia/HbE patients induce endothelial cell
dysfunction. Sci Rep. 8(13033)2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Klaihmon P, Khuhapinant A, Kheansaard W
and Pattanapanyasat K: Internalization of cell-derived
microparticles triggers endothelial pro-inflammatory responses.
Asian Pac J Allergy Immunol: Apr 18, 2021 (Epub ahead of
print).
|
|
57
|
Atipimonpat A, Siwaponanan P, Khuhapinant
A, Svasti S, Sukapirom K, Khowawisetsut L and Pattanapanyasat K:
Extracellular vesicles from thalassemia patients carry
iron-containing ferritin and hemichrome that promote cardiac cell
proliferation. Ann Hematol. 100:1929–1946. 2021.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Sun KT, Huang YN, Palanisamy K, Chang SS,
Wang IK, Wu KH, Chen P, Peng CT and Li CY: Reciprocal regulation of
ү-globin expression by exo-miRNAs: Relevance to ү-globin silencing
in β-thalassemia major. Sci Rep. 7(202)2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Levin C, Koren A, Rebibo-Sabbah A, Levin
M, Koifman N, Brenner B and Aharon A: Extracellular Vesicle
MicroRNA That Are Involved in β-Thalassemia complications. Int J
Mol Sci. 22(9760)2021.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Anurathapan U, Hongeng S, Pakakasama S,
Sirachainan N, Songdej D, Chuansumrit A, Charoenkwan P,
Jetsrisuparb A, Sanpakit K, Rujkijyanont P, et al: Hematopoietic
stem cell transplantation for homozygous β-thalassemia and
β-thalassemia/hemoglobin E patients from haploidentical donors.
Bone Marrow Transplant. 51:813–818. 2016.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Anurathapan U, Hongeng S, Pakakasama S,
Songdej D, Sirachainan N, Pongphitcha P, Chuansumrit A, Charoenkwan
P, Jetsrisuparb A, Sanpakit K, et al: Hematopoietic stem cell
transplantation for severe thalassemia patients from haploidentical
donors using a novel conditioning regimen. Biol Blood Marrow
Transplant. 26:1106–1112. 2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Lertthammakiat S, Sitthirat P, Anurathapan
U, Songdej D, Pakakasama S, Chuansumrit A, Putawornsub N,
Sirasittikarn S, Wantanawijarn S, Kadegasem P, et al: No
differences in hemostatic and endothelial activations between
haploidentical and matched-donor hematopoietic stem cell
transplantation in thalassemia disease. Thromb J.
18(21)2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Sirachainan N, Thongsad J, Pakakasama S,
Hongeng S, Chuansumrit A, Kadegasem P, Tirakanjana A, Archararit N
and Sirireung S: Normalized coagulation markers and anticoagulation
proteins in children with severe β-thalassemia disease after stem
cell transplantation. Thromb Res. 129:765–770. 2012.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Trummer A, De Rop C, Stadler M, Ganser A
and Buchholz S: P-selectin glycoprotein ligand-1 positive
microparticles in allogeneic stem cell transplantation of
hematologic malignancies. Exp Hematol. 9:1047–1055. 2011.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Ataga KI, Cappellini MD and Rachmilewitz
EA: Beta-thalassaemia and sickle cell anaemia as paradigms of
hypercoagulability. Br J Haematol. 139:3–13. 2007.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Garnier Y, Ferdinand S, Garnier M, Cita
KC, Hierso R, Claes A, Connes P, Hardy-Dessources MD, Lapouméroulie
C, Lemonne N, et al: Plasma microparticles of sickle patients
during crisis or taking hydroxyurea modify endothelium inflammatory
properties. Blood. 136:247–256. 2020.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Camus SM, De Moraes JA, Bonnin P, Abbyad
P, Le Jeune S, Lionnet F, Loufrani L, Grimaud L, Lambry JC, Charue
D, et al: Circulating cell membrane microparticles transfer heme to
endothelial cells and trigger vasoocclusions in sickle cell
disease. Blood. 125:3805–3814. 2015.PubMed/NCBI View Article : Google Scholar
|
|
68
|
An R, Man Y, Cheng K, Zhang T, Chen C,
Wang F, Abdulla F, Kucukal E, Wulftange WJ, Goreke U, et al: Sickle
red blood cell-derived extracellular vesicles activate endothelial
cells and enhance sickle red cell adhesion mediated by von
Willebrand factor. Br J Haematol. 201:552–563. 2023.PubMed/NCBI View Article : Google Scholar
|
|
69
|
van Beers EJ, Schaap MC, Berckmans RJ,
Nieuwland R, Sturk A, van Doormaal FF, Meijers JC and Biemond BJ:
CURAMA study group. Circulating erythrocyte-derived microparticles
are associated with coagulation activation in sickle cell disease.
Haematologica. 94:1513–1519. 2009.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Nebor D, Bowers A, Connes P,
Hardy-Dessources MD, Knight-Madden J, Cumming V, Reid M and Romana
M: Plasma concentration of platelet-derived microparticles is
related to painful vaso-occlusive phenotype severity in sickle cell
anemia. PLoS One. 9(e87243)2014.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Gerotziafas GT, Van Dreden P, Chaari M,
Galea V, Khaterchi A, Lionnet F, Stankovic-Stojanovic K,
Blanc-Brude O, Woodhams B, Maier-Redelsperger M, et al: The
acceleration of the propagation phase of thrombin generation in
patients with steady-state sickle cell disease is associated with
circulating erythrocyte-derived microparticles. Thromb Haemost.
107:1044–1052. 2012.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Smith RA, Mankelow TJ, Drizou D, Bullock
T, Latham T, Trompeter S, Blair A and Anstee DJ: Large red
cell-derived membrane particles are major contributors to
hypercoagulability in sickle cell disease. Sci Rep.
11(11035)2021.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Nouraie M, Lee JS, Zhang Y, Kanias T, Zhao
X, Xiong Z, Oriss TB, Zeng Q, Kato GJ, Gibbs JS, et al: The
relationship between the severity of hemolysis, clinical
manifestations and risk of death in 415 patients with sickle cell
anemia in the US and Europe. Haematologica. 98:464–472.
2013.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Garnier Y, Ferdinand S, Connes P, Garnier
M, Etienne-Julan M, Lemonne N and Romana M: Decrease of
externalized phosphatidylserine density on red blood cell-derived
microparticles in SCA patients treated with hydroxycarbamide. Br J
Haematol. 182:448–451. 2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Hierso R, Lemonne N, Villaescusa R,
Lalanne-Mistrih ML, Charlot K, Etienne-Julan M, Tressières B,
Lamarre Y, Tarer V, Garnier Y, et al: Exacerbation of oxidative
stress during sickle vaso-occlusive crisis is associated with
decreased anti-band 3 autoantibodies rate and increased red blood
cell-derived microparticle level: A prospective study. Br J
Haematol. 176:805–813. 2017.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Marsh A, Schiffelers R, Kuypers F, Larkin
S, Gildengorin G, van Solinge W and Hoppe C: Microparticles as
biomarkers of osteonecrosis of the hip in sickle cell disease. Br J
Haematol. 168:135–138. 2015.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Olatunya OS, Lanaro C, Longhini AL,
Penteado CFF, Fertrin KY, Adekile A, Saad STO and Costa FF: Red
blood cells microparticles are associated with hemolysis markers
and may contribute to clinical events among sickle cell disease
patients. Ann Hematol. 98:2507–2521. 2019.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Khalyfa A, Khalyfa AA, Akbarpour M, Connes
P, Romana M, Lapping-Carr G, Zhang C, Andrade J and Gozal D:
Extracellular microvesicle microRNAs in children with sickle cell
anaemia with divergent clinical phenotypes. Br J Haematol.
174:786–798. 2016.PubMed/NCBI View Article : Google Scholar
|