Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
March-2024 Volume 20 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2024 Volume 20 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Andrographolide acts with dexamethasone to inhibit the growth of acute lymphoblastic leukemia CEM‑C1 cells via the regulation of the autophagy‑dependent PI3K/AKT/mTOR signaling pathway

  • Authors:
    • Xiaowen Li
    • Tong Wu
    • Weihong Chen
    • Jiannan Zhang
    • Yanping Jiang
    • Jianzhi Deng
    • Wenqing Long
    • Xi Qin
    • Yuehan Zhou
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Pharmacy, College of Pharmacy, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China, Department of Clinical Medicine, College of Lingui Clinical Medicine, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541199, P.R. China, Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, Guangxi Zhuang Autonomous Region 541004, P.R. China, Department of Medical Oncology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region 541001, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 43
    |
    Published online on: January 19, 2024
       https://doi.org/10.3892/br.2024.1731
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Acute lymphoblastic leukemia (ALL) is one of the most common malignant tumor types of the circulatory system. Dexamethasone (DEX) acts on the glucocorticoid (GC) receptor (GR) and is a first‑line chemotherapy drug for ALL. However, long‑term or high‑dose applications of the drug can not only cause adverse reactions, such as osteoporosis and high blood pressure, but can also cause downregulation of GR and lead to drug resistance. In the present study, reverse transcription‑quantitative PCR, western blotting and LysoTracker Red staining were used to observe the effects of DEX and andrographolide (AND; a botanical with antitumorigenic properties) combined treatment. It was found that AND enhanced the sensitivity of CEM‑C1 cells, a GC‑resistant cell line, to DEX, and synergistically upregulated GR both at the transcriptional and post‑transcriptional level with DEX. The combination of AND with DEX synergistically alkalized lysosomal lumen and downregulated the expression of autophagy‑related genes Beclin1 and microtubule‑associated 1 protein light chain 3 (LC3), thereby inhibiting autophagy. Knocking down LC3 expression enhanced GR expression, suggesting that GR was regulated by autophagy. Furthermore, compared with the monotherapy group (AND or DEX in isolation), AND interacted with DEX to activate the autophagy‑dependent PI3K/AKT/mTOR signaling pathway by enhancing the phosphorylation of PI3K, AKT and mTOR, thereby decreasing GR degradation and increasing the sensitivity of cells to GCs. In conclusion, the present study demonstrated that AND exhibited a synergistic anti‑ALL effect with DEX via upregulation of GR, which was orchestrated by the autophagy‑related PI3K/AKT/mTOR signaling pathway. The results of the present study therefore provided novel research avenues and strategies for the treatment of ALL.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Olivas-Aguirre M, Torres-López L, Pottosin I and Dobrovinskaya O: Overcoming glucocorticoid resistance in acute lymphoblastic leukemia: repurposed drugs can improve the protocol. Front Oncol. 11(617937)2021.PubMed/NCBI View Article : Google Scholar

2 

Gregory S: Adult acute lymphoblastic leukemia: treatment and management updates. Semin Oncol Nurs. 35(150951)2019.PubMed/NCBI View Article : Google Scholar

3 

Koh WJ, Greer BE, Abu-Rustum NR, Campos SM, Cho KR, Chon HS, Chu C, Cohn D, Crispens MA, Dizon DS, et al: Vulvar cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 15:92–120. 2017.PubMed/NCBI View Article : Google Scholar

4 

Huang FL, Yu SJ and Li CL: Role of autophagy and apoptosis in acute lymphoblastic leukemia. Cancer Control. 28(10732748211019138)2021.PubMed/NCBI View Article : Google Scholar

5 

Chennamadhavuni A, Lyengar V, Mukkamalla SKR and Shimanovsky A: Leukemia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2023.

6 

Park H, Youk J, Shin DY, Hong J, Kim I, Kim NJ, Lee JO, Bang SM, Yoon SS, Park WB and Koh Y: Micafungin prophylaxis for acute leukemia patients undergoing induction chemotherapy. BMC Cancer. 19(358)2019.PubMed/NCBI View Article : Google Scholar

7 

Rafei H, Kantarjian HM and Jabbour EJ: Recent advances in the treatment of acute lymphoblastic leukemia. Leuk Lymphoma. 60:2606–2621. 2019.PubMed/NCBI View Article : Google Scholar

8 

Kato M and Manabe A: Treatment and biology of pediatric acute lymphoblastic leukemia. Pediatr Int. 60:4–12. 2018.PubMed/NCBI View Article : Google Scholar

9 

Martinelli G, Papayannidis C, Piciocchi A, Robustelli V, Soverini S, Terragna C, Marconi G, Lemoli RM, Guolo F, Fornaro A, et al: INCB84344-201: Ponatinib and steroids in frontline therapy for unfit patients with Ph+ acute lymphoblastic leukemia. Blood Adv. 6:1742–1753. 2022.PubMed/NCBI View Article : Google Scholar

10 

Imai K: Acute lymphoblastic leukemia: Pathophysiology and current therapy. Rinsho Ketsueki. 58:460–470. 2017.PubMed/NCBI View Article : Google Scholar : (In Japanese).

11 

Aureli A, Marziani B, Venditti A, Sconocchia T and Sconocchia G: Acute lymphoblastic leukemia immunotherapy treatment: Now, next, and beyond. Cancers (Basel). 15(3346)2023.PubMed/NCBI View Article : Google Scholar

12 

Lato MW, Przysucha A, Grosman S, Zawitkowska J and Lejman M: The new therapeutic strategies in pediatric T-cell acute lymphoblastic leukemia. Int J Mol Sci. 22(4502)2021.PubMed/NCBI View Article : Google Scholar

13 

Guo XM, Fang YJ, Lv CL, Wang YR and Sun XY: Changes of peripheral blood marrow-derived suppressor cell level after chemotherapy induction remission by VDLP regimen and their relationship with immune system in B-ALL children. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 25:1611–1614. 2017.PubMed/NCBI View Article : Google Scholar : (In Chinese).

14 

Follini E, Marchesini M and Roti G: Strategies to overcome resistance mechanisms in T-cell acute lymphoblastic leukemia. Int J Mol Sci. 20(3021)2019.PubMed/NCBI View Article : Google Scholar

15 

Samii B, Jafarian A, Rabbani M, Zolfaghari B, Rahgozar S and Pouraboutaleb E: The effects of Astragalus polysaccharides, tragacanthin, and bassorin on methotrexate-resistant acute lymphoblastic leukemia. Res Pharm Sci. 18:381–391. 2023.PubMed/NCBI View Article : Google Scholar

16 

Inaba H and Pui CH: Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 11:1096–1106. 2010.PubMed/NCBI View Article : Google Scholar

17 

Kruth KA, Fang M, Shelton DN, Abu-Halawa O, Mahling R, Yang H, Weissman JS, Loh ML, Müschen M, Tasian SK, et al: Suppression of B-cell development genes is key to glucocorticoid efficacy in treatment of acute lymphoblastic leukemia. Blood. 129:3000–3008. 2017.PubMed/NCBI View Article : Google Scholar

18 

Bedewy AM, El-Maghraby SM, Kandil NS and El-Bendary WR: The prognostic value of glucocorticoid receptors for adult acute lymphoblastic leukemia. Blood Res. 50:235–241. 2015.PubMed/NCBI View Article : Google Scholar

19 

Xu JY and Luo JM: Association between BIM gene and glucocorticoid resistance in children with acute lymphoblastic leukemia. Zhongguo Dang Dai Er Ke Za Zhi. 19:945–949. 2017.PubMed/NCBI View Article : Google Scholar : (In Chinese).

20 

Gong H, Liu L, Cui L, Ma H and Shen L: ALKBH5-mediated m6A-demethylation of USP1 regulated T-cell acute lymphoblastic leukemia cell glucocorticoid resistance by Aurora B. Mol Carcinog. 60:644–657. 2021.PubMed/NCBI View Article : Google Scholar

21 

Yuan N, Song L, Zhang S, Lin W, Cao Y, Xu F, Fang Y, Wang Z, Zhang H, Li X, et al: Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica. 100:345–356. 2015.PubMed/NCBI View Article : Google Scholar

22 

Wandler AM, Huang BJ, Craig JW, Hayes K, Yan H, Meyer LK, Scacchetti A, Monsalve G, Dail M, Li Q, et al: Loss of glucocorticoid receptor expression mediates in vivo dexamethasone resistance in T-cell acute lymphoblastic leukemia. Leukemia. 34:2025–2037. 2020.PubMed/NCBI View Article : Google Scholar

23 

Kaveh K, Takahashi Y, Farrar MA, Storme G, Guido M, Piepenburg J, Penning J, Foo J, Leder KZ and Hui SK: Combination therapeutics of Nilotinib and radiation in acute lymphoblastic leukemia as an effective method against drug-resistance. PLoS Comput Biol. 13(e1005482)2017.PubMed/NCBI View Article : Google Scholar

24 

Burgos RA, Alarcón P, Quiroga J, Manosalva C and Hancke J: Andrographolide, an anti-inflammatory multitarget drug: All roads lead to cellular metabolism. Molecules. 26(5)2020.PubMed/NCBI View Article : Google Scholar

25 

Guo BJ, Liu Z, Ding MY, Li F, Jing M, Xu LP, Wang YQ, Zhang ZJ, Wang Y, Wang D, et al: Andrographolide derivative ameliorates dextran sulfate sodium-induced experimental colitis in mice. Biochem Pharmacol. 163:416–424. 2019.PubMed/NCBI View Article : Google Scholar

26 

Li X, Yuan K, Zhu Q, Lu Q, Jiang H, Zhu M, Huang G and Xu A: Andrographolide ameliorates rheumatoid arthritis by regulating the apoptosis-NETosis balance of neutrophils. Int J Mol Sci. 20(5035)2019.PubMed/NCBI View Article : Google Scholar

27 

Ahmed S, Kwatra M, Ranjan Panda S, Murty USN and Naidu VGM: Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain Behav Immun. 91:142–158. 2021.PubMed/NCBI View Article : Google Scholar

28 

Doi H, Matsui T, Dijkstra JM, Ogasawara A, Higashimoto Y, Imamura S, Ohye T, Takematsu H, Katsuda I and Akiyama H: Andrographolide, isolated from Andrographis paniculata, induces apoptosis in monocytic leukemia and multiple myeloma cells via augmentation of reactive oxygen species production. F1000Res. 10(542)2021.PubMed/NCBI View Article : Google Scholar

29 

Latif R and Wang CY: Andrographolide as a potent and promising antiviral agent. Chin J Nat Med. 18:760–769. 2020.PubMed/NCBI View Article : Google Scholar

30 

Adiguna SP, Panggabean JA, Atikana A, Untari F, Izzati F, Bayu A, Rosyidah A, Rahmawati SI and Putra MY: Antiviral activities of andrographolide and its derivatives: Mechanism of action and delivery system. Pharmaceuticals (Basel). 14(1102)2021.PubMed/NCBI View Article : Google Scholar

31 

Zhang L, Bao M, Liu B, Zhao H, Zhang Y, Ji X, Zhao N, Zhang C, He X, Yi J, et al: Effect of andrographolide and its analogs on bacterial infection: A review. Pharmacology. 105:123–134. 2020.PubMed/NCBI View Article : Google Scholar

32 

Kumar G, Singh D, Tali JA, Dheer D and Shankar R: Andrographolide: Chemical modification and its effect on biological activities. Bioorg Chem. 95(103511)2020.PubMed/NCBI View Article : Google Scholar

33 

Mussard E, Cesaro A, Lespessailles E, Legrain B, Berteina-Raboin S and Toumi H: Andrographolide, a natural antioxidant: An update. Antioxidants (Basel). 8(571)2019.PubMed/NCBI View Article : Google Scholar

34 

Jadhav AK and Karuppayil SM: Andrographis paniculata (Burm. F) wall ex nees: Antiviral properties. Phytother Res. 35:5365–5373. 2021.PubMed/NCBI View Article : Google Scholar

35 

Tandoh A, Danquah CA, Benneh CK, Adongo DW, Boakye-Gyasi E and Woode E: Effect of diclofenac and andrographolide combination on carrageenan-induced paw edema and hyperalgesia in rats. Dose Response. 20(15593258221103846)2022.PubMed/NCBI View Article : Google Scholar

36 

Yuwen D, Mi S, Ma Y, Guo W, Xu Q, Shen Y and Shu Y: Andrographolide enhances cisplatin-mediated anticancer effects in lung cancer cells through blockade of autophagy. Anticancer Drugs. 28:967–976. 2017.PubMed/NCBI View Article : Google Scholar

37 

Mi S, Xiang G, Yuwen D, Gao J, Guo W, Wu X, Wu X, Sun Y, Su Y, Shen Y and Xu Q: Inhibition of autophagy by andrographolide resensitizes cisplatin-resistant non-small cell lung carcinoma cells via activation of the Akt/mTOR pathway. Toxicol Appl Pharmacol. 310:78–86. 2016.PubMed/NCBI View Article : Google Scholar

38 

Yang T, Yao S, Zhang X and Guo Y: Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways. Drug Des Devel Ther. 10:1389–1397. 2016.PubMed/NCBI View Article : Google Scholar

39 

Kocak M, Ezazi Erdi S, Jorba G, Maestro I, Farrés J, Kirkin V, Martinez A and Pless O: Targeting autophagy in disease: Established and new strategies. Autophagy. 18:473–495. 2022.PubMed/NCBI View Article : Google Scholar

40 

Chen Y and Gibson SB: Three dimensions of autophagy in regulating tumor growth: Cell survival/death, cell proliferation, and tumor dormancy. Biochim Biophys Acta Mol Basis Dis. 1867(166265)2021.PubMed/NCBI View Article : Google Scholar

41 

Wei H, Wang C, Croce CM and Guan JL: p62/SQSTM1 synergizes with autophagy for tumor growth in vivo. Genes Dev. 28:1204–1216. 2014.PubMed/NCBI View Article : Google Scholar

42 

Li X, He S and Ma B: Autophagy and autophagy-related proteins in cancer. Mol Cancer. 19(12)2020.PubMed/NCBI View Article : Google Scholar

43 

Amaravadi RK, Kimmelman AC and Debnath J: Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov. 9:1167–1181. 2019.PubMed/NCBI View Article : Google Scholar

44 

Pugsley HR: Quantifying autophagy: Measuring LC3 puncta and autolysosome formation in cells using multispectral imaging flow cytometry. Methods. 112:147–156. 2017.PubMed/NCBI View Article : Google Scholar

45 

Shi B, Ma M, Zheng Y, Pan Y and Lin X: mTOR and Beclin1: Two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. J Cell Physiol. 234:12562–12568. 2019.PubMed/NCBI View Article : Google Scholar

46 

Nishimura T and Tooze SA: Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discov. 6(32)2020.PubMed/NCBI View Article : Google Scholar

47 

Tran S, Fairlie WD and Lee EF: BECLIN1: Protein structure, function and regulation. Cells. 10(1522)2021.PubMed/NCBI View Article : Google Scholar

48 

Dunn WA Jr: Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol. 4:139–143. 1994.PubMed/NCBI View Article : Google Scholar

49 

Gu X, Guo W, Zhao Y, Liu G, Wu J and Chang C: Deoxynivalenol-induced cytotoxicity and apoptosis in IPEC-J2 cells through the activation of autophagy by inhibiting PI3K-AKT-mTOR signaling pathway. ACS Omega. 4:18478–18486. 2019.PubMed/NCBI View Article : Google Scholar

50 

Song G, Lu H, Chen F, Wang Y, Fan W, Shao W, Lu H and Lin B: Tetrahydrocurcumin-induced autophagy via suppression of PI3K/Akt/mTOR in non-small cell lung carcinoma cells. Mol Med Rep. 17:5964–5969. 2018.PubMed/NCBI View Article : Google Scholar

51 

Fattahi S, Amjadi-Moheb F, Tabaripour R, Ashrafi GH and Akhavan-Niaki H: PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci. 262(118513)2020.PubMed/NCBI View Article : Google Scholar

52 

Xu Z, Han X, Ou D, Liu T, Li Z, Jiang G, Liu J and Zhang J: Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl Microbiol Biotechnol. 104:575–587. 2020.PubMed/NCBI View Article : Google Scholar

53 

Li X, Zhang W, Liang L, Duan X, Deng J and Zhou Y: Natural product-derived icaritin exerts anti-glioblastoma effects by positively modulating estrogen receptor β. Exp Ther Med. 19:2841–2850. 2020.PubMed/NCBI View Article : Google Scholar

54 

Duarte D, Falcão SI, El Mehdi I, Vilas-Boas M and Vale N: Honeybee venom synergistically enhances the cytotoxic effect of CNS drugs in HT-29 colon and MCF-7 breast cancer cell lines. Pharmaceutics. 14(511)2022.PubMed/NCBI View Article : Google Scholar

55 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar

56 

Feng L, Lu CK, Wu J, Chan LL and Yue J: Identification of anhydrodebromoaplysiatoxin as a dichotomic autophagy inhibitor. Mar Drugs. 21(46)2023.PubMed/NCBI View Article : Google Scholar

57 

Pierro J, Hogan LE, Bhatla T and Carroll WL: New targeted therapies for relapsed pediatric acute lymphoblastic leukemia. Expert Rev Anticancer Ther. 17:725–736. 2017.PubMed/NCBI View Article : Google Scholar

58 

Habiel DM, Krepostman N, Lilly M, Cavassani K, Coelho AL, Shibata T, Elenitoba-Johnson K and Hogaboam CM: Senescent stromal cell-induced divergence and therapeutic resistance in T cell acute lymphoblastic leukemia/lymphoma. Oncotarget. 7:83514–83529. 2016.PubMed/NCBI View Article : Google Scholar

59 

Rose-James A, Shiji R, Kusumakumary P, Nair M, George SK and Sreelekha TT: Profiling gene mutations, translocations, and multidrug resistance in pediatric acute lymphoblastic leukemia: A step forward to personalizing medicine. Med Oncol. 33(98)2016.PubMed/NCBI View Article : Google Scholar

60 

Palmer AC, Chidley C and Sorger PK: A curative combination cancer therapy achieves high fractional cell killing through low cross-resistance and drug additivity. Elife. 8(e50036)2019.PubMed/NCBI View Article : Google Scholar

61 

Jaaks P, Coker EA, Vis DJ, Edwards O, Carpenter EF, Leto SM, Dwane L, Sassi F, Lightfoot H, Barthorpe S, et al: Effective drug combinations in breast, colon and pancreatic cancer cells. Nature. 603:166–173. 2022.PubMed/NCBI View Article : Google Scholar

62 

Pemovska T, Bigenzahn JW and Superti-Furga G: Recent advances in combinatorial drug screening and synergy scoring. Curr Opin Pharmacol. 42:102–110. 2018.PubMed/NCBI View Article : Google Scholar

63 

Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM and Chen ZS: Autophagy and multidrug resistance in cancer. Chin J Cancer. 36(52)2017.PubMed/NCBI View Article : Google Scholar

64 

Sarang Z, Gyurina K, Scholtz B, Kiss C and Szegedi I: Altered expression of autophagy-related genes might contribute to glucocorticoid resistance in precursor B-cell-type acute lymphoblastic leukemia. Eur J Haematol. 97:453–460. 2016.PubMed/NCBI View Article : Google Scholar

65 

Li Y, Qu M, Xing F, Li H, Cheng D, Xing N and Zhang W: The protective mechanism of dexmedetomidine in regulating Atg14L-Beclin1-Vps34 complex against myocardial ischemia-reperfusion injury. J Cardiovasc Transl Res. 14:1063–1074. 2021.PubMed/NCBI View Article : Google Scholar

66 

Wu S, He Y, Qiu X, Yang W, Liu W, Li X, Li Y, Shen HM, Wang R, Yue Z and Zhao Y: Targeting the potent Beclin 1-UVRAG coiled-coil interaction with designed peptides enhances autophagy and endolysosomal trafficking. Proc Natl Acad Sci USA. 115:E5669–E5678. 2018.PubMed/NCBI View Article : Google Scholar

67 

Wu W, Wang X, Sun Y, Berleth N, Deitersen J, Schlutermann D, Stuhldreier F, Wallot-Hieke N, José Mendiburo M, Cox J, et al: TNF-induced necroptosis initiates early autophagy events via RIPK3-dependent AMPK activation, but inhibits late autophagy. Autophagy. 17:3992–4009. 2021.PubMed/NCBI View Article : Google Scholar

68 

Nakahira K, Pabon Porras MA and Choi AM: Autophagy in pulmonary diseases. Am J Respir Crit Care Med. 194:1196–1207. 2016.PubMed/NCBI View Article : Google Scholar

69 

Wesch N, Kirkin V and Rogov VV: Atg8-family proteins-structural features and molecular interactions in autophagy and beyond. Cells. 9(2008)2020.PubMed/NCBI View Article : Google Scholar

70 

Prieto-Domínguez N, Ordóñez R, Fernández A, García-Palomo A, Muntané J, González-Gallego J and Mauriz JL: Modulation of autophagy by sorafenib: Effects on treatment response. Front Pharmacol. 7(151)2016.PubMed/NCBI View Article : Google Scholar

71 

Yang G, Li Z, Dong L and Zhou F: lncRNA ADAMTS9-AS1 promotes bladder cancer cell invasion, migration, and inhibits apoptosis and autophagy through PI3K/AKT/mTOR signaling pathway. Int J Biochem Cell Biol. 140(106069)2021.PubMed/NCBI View Article : Google Scholar

72 

Petrulea MS, Plantinga TS, Smit JW, Georgescu CE and Netea-Maier RT: PI3K/Akt/mTOR: A promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treat Rev. 41:707–713. 2015.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li X, Wu T, Chen W, Zhang J, Jiang Y, Deng J, Long W, Qin X and Zhou Y: Andrographolide acts with dexamethasone to inhibit the growth of acute lymphoblastic leukemia CEM‑C1 cells via the regulation of the autophagy‑dependent PI3K/AKT/mTOR signaling pathway. Biomed Rep 20: 43, 2024.
APA
Li, X., Wu, T., Chen, W., Zhang, J., Jiang, Y., Deng, J. ... Zhou, Y. (2024). Andrographolide acts with dexamethasone to inhibit the growth of acute lymphoblastic leukemia CEM‑C1 cells via the regulation of the autophagy‑dependent PI3K/AKT/mTOR signaling pathway. Biomedical Reports, 20, 43. https://doi.org/10.3892/br.2024.1731
MLA
Li, X., Wu, T., Chen, W., Zhang, J., Jiang, Y., Deng, J., Long, W., Qin, X., Zhou, Y."Andrographolide acts with dexamethasone to inhibit the growth of acute lymphoblastic leukemia CEM‑C1 cells via the regulation of the autophagy‑dependent PI3K/AKT/mTOR signaling pathway". Biomedical Reports 20.3 (2024): 43.
Chicago
Li, X., Wu, T., Chen, W., Zhang, J., Jiang, Y., Deng, J., Long, W., Qin, X., Zhou, Y."Andrographolide acts with dexamethasone to inhibit the growth of acute lymphoblastic leukemia CEM‑C1 cells via the regulation of the autophagy‑dependent PI3K/AKT/mTOR signaling pathway". Biomedical Reports 20, no. 3 (2024): 43. https://doi.org/10.3892/br.2024.1731
Copy and paste a formatted citation
x
Spandidos Publications style
Li X, Wu T, Chen W, Zhang J, Jiang Y, Deng J, Long W, Qin X and Zhou Y: Andrographolide acts with dexamethasone to inhibit the growth of acute lymphoblastic leukemia CEM‑C1 cells via the regulation of the autophagy‑dependent PI3K/AKT/mTOR signaling pathway. Biomed Rep 20: 43, 2024.
APA
Li, X., Wu, T., Chen, W., Zhang, J., Jiang, Y., Deng, J. ... Zhou, Y. (2024). Andrographolide acts with dexamethasone to inhibit the growth of acute lymphoblastic leukemia CEM‑C1 cells via the regulation of the autophagy‑dependent PI3K/AKT/mTOR signaling pathway. Biomedical Reports, 20, 43. https://doi.org/10.3892/br.2024.1731
MLA
Li, X., Wu, T., Chen, W., Zhang, J., Jiang, Y., Deng, J., Long, W., Qin, X., Zhou, Y."Andrographolide acts with dexamethasone to inhibit the growth of acute lymphoblastic leukemia CEM‑C1 cells via the regulation of the autophagy‑dependent PI3K/AKT/mTOR signaling pathway". Biomedical Reports 20.3 (2024): 43.
Chicago
Li, X., Wu, T., Chen, W., Zhang, J., Jiang, Y., Deng, J., Long, W., Qin, X., Zhou, Y."Andrographolide acts with dexamethasone to inhibit the growth of acute lymphoblastic leukemia CEM‑C1 cells via the regulation of the autophagy‑dependent PI3K/AKT/mTOR signaling pathway". Biomedical Reports 20, no. 3 (2024): 43. https://doi.org/10.3892/br.2024.1731
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team