|
1
|
Piętowska Z, Nowicka D and Szepietowski
JC: Understanding melasma-how can pharmacology and cosmetology
procedures and prevention help to achieve optimal treatment
results? A narrative review. Int J Environ Res Public Health.
19(12084)2022.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Handel AC, Miot LDB and Miot HA: Melasma:
A clinical and epidemiological review. An Bras Dermatol.
89:771–782. 2014.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Zhu Y, Zeng X, Ying J, Cai Y, Qiu Y and
Xiang W: Evaluating the quality of life among melasma patients
using the MELASQoL scale: A systematic review and meta-analysis.
PLoS One. 17(e0262833)2022.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Majid I and Aleem S: Melasma: Update on
epidemiology, clinical presentation, assessment, and scoring. J
Skin Stem Cell. 8(e120283)2022.
|
|
5
|
Jusuf NK, Putra IB and Mahdalena M: Is
there a correlation between severity of melasma and quality of
life? Open Access Maced J Med Sci. 7(2615)2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Yalamanchili R, Shastry V and Betkerur J:
Clinico-epidemiological study and quality of life assessment in
melasma. Indian J Dermatol. 60(519)2015.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Tsai J and Chien AL: Photoprotection for
skin of color. Am J Clin Dermatol. 23:195–205. 2022.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Espósito ACC, Brianezi G, de Souza NP,
Miot LDB, Marques MEA and Miot HA: Exploring pathways for sustained
melanogenesis in facial melasma: An immunofluorescence study. Int J
Cosmet Sci. 40:420–424. 2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Cichorek M, Wachulska M, Stasiewicz A and
Tymińska A: Skin melanocytes: Biology and development. Postepy
Dermatol Alergol. 30:30–41. 2013.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Espósito ACC, Cassiano DP, da Silva CN,
Lima PB, Dias JAF, Hassun K, Bagatin E, Miot LDB and Miot HA:
Update on melasma-part I: Pathogenesis. Dermatol Ther (Heidelb).
12:1967–1988. 2022.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Maddaleno AS, Camargo J, Mitjans M and
Vinardell MP: Melanogenesis and melasma treatment. Cosmetics.
8(82)2021.
|
|
12
|
Slominski RM, Sarna T, Płonka PM, Raman C,
Brożyna AA and Slominski AT: Melanoma, melanin, and melanogenesis:
The Yin and Yang relationship. Front Oncol.
12(842496)2022.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Ansary TM, Hossain MR, Kamiya K, Komine M
and Ohtsuki M: Inflammatory molecules associated with ultraviolet
radiation-mediated skin aging. Int J Mol Sci.
22(3974)2021.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Calniquer G, Khanin M, Ovadia H,
Linnewiel-Hermoni K, Stepensky D, Trachtenberg A, Sedlov T,
Braverman O, Levy J and Sharoni Y: Combined effects of carotenoids
and polyphenols in balancing the response of skin cells to UV
irradiation. Molecules. 26(1931)2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Slominski AT, Zmijewski MA, Plonka PM,
Szaflarski JP and Paus R: How UV light touches the brain and
endocrine system through skin, and why. Endocrinology.
159(1992)2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Slominski A, Tobin DJ, Shibahara S and
Wortsman J: Melanin pigmentation in mammalian skin and its hormonal
regulation. Physiol Rev. 84:1155–1228. 2004.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Skobowiat C, Sayre RM, Dowdy JC and
Slominski AT: Ultraviolet radiation regulates cortisol activity in
a waveband-dependent manner in human skin ex vivo. Br J Dermatol.
168:595–601. 2013.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Skobowiat C, Dowdy JC, Sayre RM, Tuckey RC
and Slominski A: Cutaneous hypothalamic-pituitary-adrenal axis
homolog: Regulation by ultraviolet radiation. Am J Physiol
Endocrinol Metab. 301:E484–E493. 2011.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Schiller M, Brzoska T, Böhm M, Metze D,
Scholzen TE, Rougier A and Luger TA: Solar-simulated ultraviolet
radiation-induced upregulation of the melanocortin-1 receptor,
proopiomelanocortin, and alpha-melanocyte-stimulating hormone in
human epidermis in vivo. J Invest Dermatol. 122:468–476.
2004.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Artzi O, Horovitz T, Bar-Ilan E, Shehadeh
W, Koren A, Zusmanovitch L, Mehrabi JN, Salameh F, Isman Nelkenbaum
G, Zur E, et al: The pathogenesis of melasma and implications for
treatment. J Cosmet Dermatol. 20:3432–3445. 2021.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Nautiyal A and Wairkar S: Management of
hyperpigmentation: Current treatments and emerging therapies.
Pigment Cell Melanoma Res. 34:1000–1014. 2021.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Kim HJ, Kim JS, Woo JT, Lee IS and Cha BY:
Hyperpigmentation mechanism of methyl 3,5-di-caffeoylquinate
through activation of p38 and MITF induction of tyrosinase. Acta
Biochim Biophys Sin (Shanghai). 47:548–556. 2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Tuerxuntayi A, Liu YQ, Tulake A, Kabas M,
Eblimit A and Aisa HA: Kaliziri extract upregulates tyrosinase,
TRP-1, TRP-2 and MITF expression in murine B16 melanoma cells. BMC
Complement Altern Med. 14(166)2014.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Meléndez-Martínez AJ, Stinco CM and
Mapelli-Brahm P: Skin carotenoids in public health and
nutricosmetics: The emerging roles and applications of the UV
radiation-absorbing colourless carotenoids phytoene and
phytofluene. Nutrients. 11(1093)2019.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Cassiano DP, Espósito ACC, da Silva CN,
Lima PB, Dias JAF, Hassun K, Miot LDB, Miot HA and Bagatin E:
Update on melasma-part II: Treatment. Dermatol Ther (Heidelb).
12:1989–2012. 2022.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Solano F: Photoprotection and skin
pigmentation: Melanin-related molecules and some other new agents
obtained from natural sources. Molecules. 25(1537)2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Cao C, Xiao Z, Wu Y and Ge C: Diet and
skin aging-from the perspective of food nutrition. Nutrients.
12(870)2020.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Saini RK, Prasad P, Lokesh V, Shang X,
Shin J, Keum YS and Lee JH: Carotenoids: Dietary sources,
extraction, encapsulation, bioavailability, and health benefits-A
review of recent advancements. Antioxidants (Basel).
11(795)2022.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Rivera-Madrid R, Carballo-Uicab VM,
Cárdenas-Conejo Y, Aguilar-Espinosa M and Siva R: Overview of
carotenoids and beneficial effects on human health. In:
Carotenoids: Properties, Processing and Applications. Elsevier,
Amsterdam, pp1-40, 2020.
|
|
30
|
Balić A and Mokos M: Do we utilize our
knowledge of the skin protective effects of carotenoids enough?
Antioxidants (Basel). 8(259)2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Fiedor J and Burda K: Potential role of
carotenoids as antioxidants in human health and disease. Nutrients.
6:466–488. 2014.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Hoang HT, Moon JY and Lee YC: Natural
antioxidants from plant extracts in skincare cosmetics: Recent
applications, challenges and perspectives. Cosmetics.
8(106)2021.
|
|
33
|
Nahhas AF, Abdel-Malek ZA, Kohli I,
Braunberger TL, Lim HW and Hamzavi IH: The potential role of
antioxidants in mitigating skin hyperpigmentation resulting from
ultraviolet and visible light-induced oxidative stress.
Photodermatol Photoimmunol Photomed. 35:420–428. 2019.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Wertz K, Hunziker PB, Seifert N, Riss G,
Neeb M, Steiner G, Hunziker W and Goralczyk R: beta-Carotene
interferes with ultraviolet light A-induced gene expression by
multiple pathways. J Invest Dermatol. 124:428–434. 2005.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Hadden WL, Watkins RH, Levy LW, Regalado
E, Rivadeneira DM, Van Breemen RB and Schwartz SJ: Carotenoid
composition of marigold (Tagetes erecta) flower extract used as
nutritional supplement. J Agric Food Chem. 47:4189–4194.
1999.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Xia N, Schirra C, Hasselwander S,
Förstermann U and Li H: Red fruit (Pandanus conoideus Lam)
oil stimulates nitric oxide production and reduces oxidative stress
in endothelial cells. J Funct Foods. 51:65–74. 2018.
|
|
37
|
Sugiritama LW, Dewi Ratnayanti IGA, Sri
Wiryawan IGN, Ika Wahyuniari IA, Linawati NM and Arijana IGKN:
Effect of Red Fruit Oil (Pandanus conoideus Lam) on animal
model of preeclampsia. Int J Sci Res. 5:1770–1773. 2016.
|
|
38
|
Sumarsono P, Widjiati W and Susilowati S:
Red fruit oil increases trophoblast cells and decreases caspase-9
expression in placenta of lead exposed mice. Univ Med.
35(110)2016.
|
|
39
|
Schirra C, Xia N, Schüffler A, Heck A,
Hasselwander S, Förstermann U and Li H: Phosphorylation and
activation of endothelial nitric oxide synthase by red fruit
(Pandanus conoideus Lam) oil and its fractions. J
Ethnopharmacol. 251(112534)2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Ratnawati H, Chandra Y and Kho E:
Anticancer effect of red fruit fractions toward breast cancer in
T47D cell and oral squamous cancer in KB cell. In: Proceedings of
the 4th International Conference on Life Sciences and Biotechnology
(ICOLIB 2021). Atlantis Press International BV, Dordrecht,
pp330-340, 2023.
|
|
41
|
Astuti Y and Dewi LLR: Pengaruh ekstrak
buah merah (Pandanus conoideus L.) terhadap kadar glukosa
darah. The effect of red fruit extract (Pandanus conoideus
L.) to the blood glucose level. Mutiara Medika Edisi Khusus. 7:1–6.
2007.
|
|
42
|
Heriyanto Gunawan IA, Fujii R, Maoka T,
Shioi Y, Kameubun KMB, Limantara L and Brotosudarmo TP: Carotenoid
composition in buah merah (Pandanus conoideus Lam.), an
indigenous red fruit of the Papua Islands. J Food Compos Anal.
96(103722)2021.
|
|
43
|
Suprijono MM, Sujuti H, Kurnia D and
Widjanarko SB: Absorption, distribution, metabolism, excretion, and
toxicity evaluation of Papua red fruit flavonoids through a
computational study. In: IOP Conference Series: Earth and
Environmental Science. vol. 475. Institute of Physics Publishing,
pp012078, 2020.
|
|
44
|
Sugianto M, Achadiyani A and Nugraha GI:
Antioxidant effects of red fruit oil on MMP-1 gene expression and
malondialdehyde levels on skin exposed to UVB rays. Mol Cell Bio
Scie. 3(100)2019.
|
|
45
|
Slominski A and Wortsman J:
Neuroendocrinology of the skin1. Endocr Rev. 21:457–487. 2000.
|
|
46
|
Slominski AT, Zmijewski MA, Zbytek B,
Tobin DJ, Theoharides TC and Rivier J: Key role of CRF in the skin
stress response system. Endocr Rev. 34:827–884. 2013.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Bocheva G, Slominski RM and Slominski AT:
Neuroendocrine aspects of skin aging. Int J Mol Sci.
20(2798)2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Pang S, Wu H, Wang Q, Cai M, Shi W and
Shang J: Chronic stress suppresses the expression of cutaneous
hypothalamic-pituitary-adrenocortical axis elements and
melanogenesis. PLoS One. 9(e98283)2014.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Slominski A, Wortsman J, Luger T, Paus R
and Solomon S: Corticotropin releasing hormone and
proopiomelanocortin involvement in the cutaneous response to
stress. Physiol Rev. 80:979–1020. 2000.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Rousseau K, Kauser S, Pritchard LE,
Warhurst A, Oliver RL, Slominski A, Wei ET, Thody AJ, Tobin DJ and
White A: Proopiomelanocortin (POMC), the ACTH/melanocortin
precursor, is secreted by human epidermal keratinocytes and
melanocytes and stimulates melanogenesis. FASEB J. 21:1844–1856.
2007.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Slominski A, Zbytek B, Szczesniewski A,
Semak I, Kaminski J, Sweatman T and Wortsman J: CRH stimulation of
corticosteroids production in melanocytes is mediated by ACTH. Am J
Physiol Endocrinol Metab. 288:E701–E706. 2005.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Raymond JH, Aktary Z, Larue L and Delmas
V: Targeting GPCRs and their signaling as a therapeutic option in
melanoma. Cancers (Basel). 14(706)2022.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Slominski AT, Zmijewski MA, Skobowiat C,
Zbytek B, Slominski RM and Steketee JD: Sensing the environment:
Regulation of local and global homeostasis by the skin's
neuroendocrine system. Adv Anat Embryol Cell Biol. 212:1–115.
2012.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Slominski AT, Slominski RM, Raman C, Chen
JY, Athar M and Elmets C: Neuroendocrine signaling in the skin with
a special focus on the epidermal neuropeptides. Am J Physiol Cell
Physiol. 323:C1757–C1776. 2022.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Böhm M and Grässel S: Role of
proopiomelanocortin-derived peptides and their receptors in the
osteoarticular system: From basic to translational research. Endocr
Rev. 33:623–651. 2012.PubMed/NCBI View Article : Google Scholar
|
|
56
|
D'Mello SAN, Finlay GJ, Baguley BC and
Askarian-Amiri ME: Signaling pathways in melanogenesis. Int J Mol
Sci. 17(1144)2016.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Merecz-Sadowska A, Sitarek P, Stelmach J,
Zajdel K, Kucharska E and Zajdel R: Plants as modulators of
melanogenesis: Role of extracts, pure compounds and patented
compositions in therapy of pigmentation disorders. Int J Mol Sci.
23(14787)2022.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Bento-Lopes L, Cabaço LC, Charneca J, Neto
MV, Seabra MC and Barral DC: Melanin's journey from melanocytes to
keratinocytes: Uncovering the molecular mechanisms of melanin
transfer and processing. Int J Mol Sci. 24(11289)2023.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Le L, Sirés-Campos J, Raposo G, Delevoye C
and Marks MS: Melanosome biogenesis in the pigmentation of
mammalian skin. Integr Comp Biol. 61:1517–1545. 2021.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Fu C, Chen J, Lu J, Yi L, Tong X, Kang L,
Pei S, Ouyang Y, Jiang L, Ding Y, et al: Roles of inflammation
factors in melanogenesis (Review). Mol Med Rep. 21:1421–1430.
2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Ng L, Kaur P, Bunnag N, Suresh J, Sung
ICH, Tan QH, Gruber J and Tolwinski NS: WNT signaling in disease.
Cells. 8(826)2019.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Zhang J, Li Y, Wu Y, Yang T, Yang K, Wang
R, Yang J and Guo H: Wnt5a inhibits the proliferation and
melanogenesis of melanocytes. Int J Med Sci. 10:699–706.
2013.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Lin X, Meng X and Lin J: The possible role
of Wnt/β-catenin signalling in vitiligo treatment. J Eur Acad
Dermatol Venereol. 37:2208–2221. 2023.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Liu W, Chen Q and Xia Y: New mechanistic
insights of melasma. Clin Cosmet Investig Dermatol. 16:429–442.
2023.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Hsiao JJ and Fisher DE: The roles of
microphthalmia-associated transcription factor and pigmentation in
melanoma. Arch Biochem Biophys. 563:28–34. 2014.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Kim H, Kim I, Dong Y, Lee IS, Kim JS, Kim
JS, Woo JT and Cha BY: Melanogenesis-inducing effect of
cirsimaritin through increases in microphthalmia-associated
transcription factor and tyrosinase expression. Int J Mol Sci.
16:8772–8788. 2015.PubMed/NCBI View Article : Google Scholar
|
|
67
|
da Cunha MG and da Silva Urzedo AP:
Melasma: A review about pathophysiology and treatment. In:
Pigmentation Disorders-Etiology and Recent Advances in Treatments.
IntechOpen, 2023.
|
|
68
|
Slominski A, Zmijewski MA and Pawelek J:
L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators
of melanocyte functions. Pigment Cell Melanoma Res. 25:14–27.
2012.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Niu C and Aisa HA: Upregulation of
melanogenesis and tyrosinase activity: Potential agents for
vitiligo. Molecules. 22(1303)2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Phacharapiyangkul N, Thirapanmethee K,
Sa-ngiamsuntorn K, Panich U, Lee CH and Chomnawang MT: The ethanol
extract of Musa sapientum Linn. Peel inhibits melanogenesis
through AKT signaling pathway. Cosmetics. 8(70)2021.
|
|
71
|
D'Orazio J, Jarrett S, Amaro-Ortiz A and
Scott T: UV radiation and the skin. Int J Mol Sci. 14:12222–12248.
2013.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Kamiński K, Kazimierczak U and Kolenda T:
Oxidative stress in melanogenesis and melanoma development. Contemp
Oncol (Pozn). 26:1–7. 2022.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Hseu YC, Vudhya Gowrisankar Y, Wang LW,
Zhang YZ, Chen XZ, Huang PJ, Yen HR and Yang HL: The in vitro and
in vivo depigmenting activity of pterostilbene through induction of
autophagy in melanocytes and inhibition of UVA-irradiated α-MSH in
keratinocytes via Nrf2-mediated antioxidant pathways. Redox Biol.
44(102007)2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Herraiz C, Martínez-Vicente I and Maresca
V: The α-melanocyte-stimulating hormone/melanocortin-1 receptor
interaction: A driver of pleiotropic effects beyond pigmentation.
Pigment Cell Melanoma Res. 34:748–761. 2021.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Yardman-Frank JM and Fisher DE: Skin
pigmentation and its control: From ultraviolet radiation to stem
cells. Exp Dermatol. 30:560–571. 2021.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Panzella L and Napolitano A: Natural and
bioinspired phenolic compounds as tyrosinase inhibitors for the
treatment of skin hyperpigmentation: Recent advances. Cosmetics.
6(57)2019.
|
|
77
|
Grimes PE, Ijaz S, Nashawati R and Kwak D:
New oral and topical approaches for the treatment of melasma. Int J
Womens Dermatol. 5:30–36. 2019.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Lee A, Kim JY, Heo J, Cho DH, Kim HS, An
IS, An S and Bae S: The inhibition of melanogenesis via the PKA and
ERK signaling pathways by Chlamydomonas reinhardtii extract
in B16F10 melanoma cells and artificial human skin equivalents. J
Microbiol Biotechnol. 28:2121–2132. 2018.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Hashemi-Shahri SH, Golshan A, Mohajeri SA,
Baharara J, Amini E, Salek F, Sahebkar A and Tayarani-Najaran Z:
ROS-scavenging and anti-tyrosinase properties of crocetin on B16F10
murine melanoma cells. Anticancer Agents Med Chem. 18:1064–1069.
2018.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Roberts RL, Green J and Lewis B: Lutein
and zeaxanthin in eye and skin health. Clin Dermatol. 27:195–201.
2009.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Juturu V, Bowman J and Deshpande J:
Overall skin tone and skin-lightening-improving effects with oral
supplementation of lutein and zeaxanthin isomers: A double-blind,
placebo-controlled clinical trial. Clin Cosmet Investig Dermatol.
9:325–332. 2016.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Arct J and Mieloch M: β-carotene in skin
care. Pol J Cosmetol. 19:206–213. 2016.
|
|
83
|
Madaan T, Choudhary AN, Gyenwalee S,
Thomas S, Mishra H, ariq M, Vohora D and Talegaonkar S: Lutein, a
versatile phyto-nutraceutical: An insight on pharmacology,
therapeutic indications, challenges and recent advances in drug
delivery. PharmaNutrition. 5:64–75. 2017.
|
|
84
|
Babbush K, Babbush R and Khachemoune A:
The therapeutic use of antioxidants for melasma. J Drugs Dermatol.
19:788–792. 2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Mzabri I, Addi M and Berrichi A:
Traditional and modern uses of saffron (Crocus sativus).
Cosmetics. 6(63)2019.
|
|
86
|
Kumar A, P N, Kumar M, Jose A, Tomer V, Oz
E, Proestos C, Zeng M, Elobeid T, K S and Oz F: Major
phytochemicals: Recent advances in health benefits and extraction
method. Molecules. 28(887)2023.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Zhao C, Kam HT, Chen Y, Gong G, Hoi MP,
Skalicka-Woźniak K, Dias ACP and Lee SM: Crocetin and its glycoside
crocin, two bioactive constituents from Crocus sativus L.
(saffron), differentially inhibit angiogenesis by inhibiting
endothelial cytoskeleton organization and cell migration through
VEGFR2/SRC/FAK and VEGFR2/MEK/ERK signaling pathways. Front
Pharmacol. 12(675359)2021.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Ćetković GS, Djilas SM, Čanadanović-Brunet
JM and Tumbas VT: Antioxidant properties of marigold extracts. Food
Res Int. 37:643–650. 2004.
|
|
89
|
Vu HT, Scarlett CJ and Vuong QV: Phenolic
compounds within banana peel and their potential uses: A review. J
Funct Foods. 40:238–248. 2018.
|
|
90
|
Youryon P and Supapvanich S:
Physicochemical quality and antioxidant changes in ‘Leb Mue Nang’
banana fruit during ripening. Agric Nat Resour. 51:47–52. 2017.
|
|
91
|
Wulansari D, Wawo AH and Agusta A:
Carotenoid content of five accessions red fruit (Pandanus
conoideus Lam.) oil. IOP Conf Ser Earth Environ Sci.
591(012033)2020.
|
|
92
|
Roreng M, Palupi N and Prangdimurti E:
Carotenoids from red fruit (Pandanus conoideus Lam.) extract
are bioavailable: A study in rats. IOSR J Pharm. 4:11–16. 2014.
|
|
93
|
Dumaria CH, Wiraguna A and Pangkahila W:
Krim ekstrak buah merah (Pandanus conoideus) 10% sama
efektifnya dengan krim hidrokuinon 4% dalam mencegah peningkatan
jumlah melanin kulit marmut (Cavia porcellus) yang dipapar
sinar ultraviolet B. J Biomed. 10:85–91. 2018.
|
|
94
|
Freitas JV, Junqueira HC, Martins WK,
Baptista MS and Gaspar LR: Antioxidant role on the protection of
melanocytes against visible light-induced photodamage. Free Radic
Biol Med. 131:399–407. 2019.PubMed/NCBI View Article : Google Scholar
|