|
1
|
Commisso MS, Martinez-Reina J and Mayo J:
A study of the temporomandibular joint during bruxism. Int J Oral
Sci. 6:116–123. 2014.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Lobbezoo F, Ahlberg J, Glaros AG, Kato T,
Koyano K, Lavigne GJ, de Leeuw R, Manfredini D, Svensson P and
Winocur E: Bruxism defined and graded: An international consensus.
J Oral Rehabil. 40:2–4. 2013.PubMed/NCBI View Article : Google Scholar
|
|
3
|
K L: How sleep bruxism and tension
headaches affect the masseter inhibitory reflex. J Sleep Disor
Treat Care. 6:2017.
|
|
4
|
Lobbezoo F, Ahlberg J, Raphael KG, Glaros
AG, Kato T, Santiago V, Winocur E, De Laat A, De Leeuw R, Koyano K,
et al: International consensus on the assessment of bruxism: Report
of a work in progress. J Oral Rehabil. 45:837–844. 2018.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Simoes WA: Occlusal plane: A clinical
evaluation. J Clin Pediatr Dent. 19:75–81. 1995.PubMed/NCBI
|
|
6
|
Lavigne GJ, Huynh N, Kato T, Okura K,
Adachi K, Yao D and Sessle B: Genesis of sleep bruxism: Motor and
autonomic-cardiac interactions. Arch Oral Biol. 52:381–384.
2007.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Manfredini D, Winocur E, Guarda-Nardini L,
Paesani D and Lobbezoo F: Epidemiology of bruxism in adults: A
systematic review of the literature. J Orofac Pain. 27:99–110.
2013.PubMed/NCBI View
Article : Google Scholar
|
|
8
|
Manfredini D, Piccotti F, Ferronato G and
Guarda-Nardini L: Age peaks of different RDC/TMD diagnoses in a
patient population. J Dent. 38:392–399. 2010.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Chisnoiu AM, Buduru S, Lascu L, Vesa SC,
Picos AM, Pascu L and Chisnoiu R: Influence of occlusal
characteristics on temporomandibular joint disorder development-a
cross-sectional study. Hum Vet Med. 7:197–201. 2015.
|
|
10
|
Bostwick JM and Jaffee MS: Buspirone as an
antidote to SSRI-induced bruxism in 4 cases. J Clin Psychiatry.
60:857–860. 1999.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Bayar GR, Tutuncu R and Acikel C:
Psychopathological profile of patients with different forms of
bruxism. Clin Oral Investig. 16:305–311. 2012.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Segall SK, Maixner W, Belfer I, Wiltshire
T, Seltzer Z and Diatchenko L: Janus molecule I: Dichotomous
effects of COMT in neuropathic vs nociceptive pain modalities. CNS
Neurol Disord Drug Targets. 11:222–235. 2012.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Smith SB, Maixner DW, Greenspan JD, Dubner
R, Fillingim RB, Ohrbach R, Knott C, Slade GD, Bair E, Gibson DG,
et al: Potential genetic risk factors for chronic TMD: Genetic
associations from the OPPERA case control study. J Pain. 12 (11
Suppl):T92–T101. 2011.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Oporto GH V, Bornhardt T, Iturriaga V and
Salazar LA: Genetic polymorphisms in the serotonergic system are
associated with circadian manifestations of bruxism. J Oral
Rehabil. 43:805–812. 2016.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Cruz-Fierro N, Martinez-Fierro M,
Cerda-Flores RM, Gómez-Govea MA, Delgado-Enciso I,
Martínez-De-Villarreal LE, González-Ramírez MT and
Rodríguez-Sánchez IP: The phenotype, psychotype and genotype of
bruxism. Biomed Rep. 8:264–268. 2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Fillingim RB, Ohrbach R, Greenspan JD,
Knott C, Diatchenko L, Dubner R, Bair E, Baraian C, Mack N, Slade
GD and Maixner W: Psychological factors associated with development
of TMD: The OPPERA prospective cohort study. J Pain. 14 (12
Suppl):T75–T90. 2013.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Bertoli E, de Leeuw R, Schmidt JE, Okeson
JP and Carlson CR: Prevalence and impact of post-traumatic stress
disorder symptoms in patients with masticatory muscle or
temporomandibular joint pain: Differences and similarities. J
Orofac Pain. 21:107–119. 2007.PubMed/NCBI
|
|
18
|
Guidi J, Lucente M, Sonino N and Fava GA:
Allostatic load and its impact on health: A systematic review.
Psychother Psychosom. 90:11–27. 2021.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Tsai CM, Chou SL, Gale EN and McCall WD
Jr: Human masticatory muscle activity and jaw position under
experimental stress. J Oral Rehabil. 29:44–51. 2002.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Manfredini D and Lobbezoo F: Role of
psychosocial factors in the etiology of bruxism. J Orofac Pain.
23:153–166. 2009.PubMed/NCBI
|
|
21
|
Herman JP and Mueller NK: Role of the
ventral subiculum in stress integration. Behav Brain Res.
174:215–224. 2006.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Rosen JB, Fanselow MS, Young SL, Sitcoske
M and Maren S: Immediate-early gene expression in the amygdala
following footshock stress and contextual fear conditioning. Brain
Res. 796:132–142. 1998.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Piazza PV and Le Moal M: The role of
stress in drug self-administration. Trends Pharmacol Sci. 19:67–74.
1998.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Floresco SB, West AR, Ash B, Moore H and
Grace AA: Afferent modulation of dopamine neuron firing
differentially regulates tonic and phasic dopamine transmission.
Nat Neurosci. 6:968–973. 2003.PubMed/NCBI View
Article : Google Scholar
|
|
25
|
Lavigne GJ, Kato T, Kolta A and Sessle BJ:
Neurobiological mechanisms involved in sleep bruxism. Crit Rev Oral
Biol Med. 14:30–46. 2003.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Blanchet PJ, Rompré PH, Lavigne GJ and
Lamarche C: Oral dyskinesia: A clinical overview. Int J
Prosthodont. 18:10–19. 2005.PubMed/NCBI
|
|
27
|
Clark GT and Ram S: Four oral motor
disorders: Bruxism, dystonia, dyskinesia and drug-induced dystonic
extrapyramidal reactions. Dent Clin North Am. 51:225–243, viii-ix.
2007.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Kwak YT, Han IW, Lee PH, Yoon JK and Suk
SH: Associated conditions and clinical significance of awake
bruxism. Geriatr Gerontol Int. 9:382–390. 2009.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Garrett AR and Hawley JS: SSRI-associated
bruxism: A systematic review of published case reports. Neurol Clin
Pract. 8:135–141. 2018.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Okamoto K, Imbe H, Tashiro A, Kimura A,
Donishi T, Tamai Y and Senba E: The role of peripheral 5HT2A and
5HT1A receptors on the orofacial formalin test in rats with
persistent temporomandibular joint inflammation. Neuroscience.
130:465–474. 2005.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Nakanishi O and Ishikawa T: Involvement of
peripheral 5-HT2A receptor activation in inflammatory pain. Nihon
Rinsho. 59:1675–1680. 2001.PubMed/NCBI(In Japanese).
|
|
32
|
López JF, Vázquez DM, Chalmers DT and
Watson SJ: Regulation of 5-HT receptors and the
hypothalamic-pituitary-adrenal axis. Implications for the
neurobiology of suicide. Ann N Y Acad Sci. 836:106–134.
1997.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Yeung LY, Kung HF and Yew DT: Localization
of 5-HT1A and 5-HT2A positive cells in the brainstems of control
age-matched and Alzheimer individuals. Age (Dordr). 32:483–495.
2010.PubMed/NCBI View Article : Google Scholar
|
|
34
|
İnan R, Şenel GB, Yavlal F, Karadeniz D,
Gündüz A and Kiziltan ME: Sleep bruxism is related to decreased
inhibitory control of trigeminal motoneurons, but not with
reticulobulbar system. Neurol Sci. 38:75–81. 2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Belujon P and Grace AA: Critical role of
the prefrontal cortex in the regulation of hippocampus-accumbens
information flow. J Neurosci. 28:9797–9805. 2008.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Floresco SB, Blaha CD, Yang CR and
Phillips AG: Modulation of hippocampal and amygdalar-evoked
activity of nucleus accumbens neurons by dopamine: Cellular
mechanisms of input selection. J Neurosci. 21:2851–2860.
2001.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Valenti O, Gill KM and Grace AA: Different
stressors produce excitation or inhibition of mesolimbic dopamine
neuron activity: Response alteration by stress pre-exposure. Eur J
Neurosci. 35:1312–1321. 2012.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Dunlop BW and Nemeroff CB: The role of
dopamine in the pathophysiology of depression. Arch Gen Psychiatry.
64:327–337. 2007.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Ueno Y, Higashiyama M, Haque T, Masuda Y,
Katagiri A, Toyoda H, Uzawa N, Yoshida A and Kato T: Motor
representation of rhythmic jaw movements in the amygdala of guinea
pigs. Arch Oral Biol. 135(105362)2022.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Jie F, Yin G, Yang W, Yang M, Gao S, Lv J
and Li B: Stress in regulation of GABA amygdala system and
relevance to neuropsychiatric diseases. Front Neurosci.
12(562)2018.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Klausberger T and Somogyi P: Neuronal
diversity and temporal dynamics: The unity of hippocampal circuit
operations. Science. 321:53–57. 2008.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Prager EM, Bergstrom HC, Wynn GH and Braga
MF: The basolateral amygdala γ-aminobutyric acidergic system in
health and disease. J Neurosci Res. 94:548–567. 2016.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Liu ZP, Song C, Wang M, He Y, Xu XB, Pan
HQ, Chen WB, Peng WJ and Pan BX: Chronic stress impairs GABAergic
control of amygdala through suppressing the tonic GABAA receptor
currents. Mol Brain. 7(32)2014.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Quessy F, Bittar T, Blanchette LJ,
Lévesque M and Labonté B: Stress-induced alterations of
mesocortical and mesolimbic dopaminergic pathways. Sci Rep.
11(11000)2021.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Peña CJ, Kronman HG, Walker DM, Cates HM,
Bagot RC, Purushothaman I, Issler O, Loh YE, Leong T, Kiraly DD, et
al: Early life stress confers lifelong stress susceptibility in
mice via ventral tegmental area OTX2. Science. 356:1185–1188.
2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Bagot RC, Cates HM, Purushothaman I,
Lorsch ZS, Walker DM, Wang J, Huang X, Schlüter OM, Maze I, Peña
CJ, et al: Circuit-wide transcriptional profiling reveals brain
region-specific gene networks regulating depression susceptibility.
Neuron. 90:969–983. 2016.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Watanabe M, Narita M, Hamada Y, Yamashita
A, Tamura H, Ikegami D, Kondo T, Shinzato T, Shimizu T, Fukuchi Y,
et al: Activation of ventral tegmental area dopaminergic neurons
reverses pathological allodynia resulting from nerve injury or bone
cancer. Mol Pain. 14(1744806918756406)2018.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Baliki MN, Geha PY, Fields HL and Apkarian
AV: Predicting value of pain and analgesia: Nucleus accumbens
response to noxious stimuli changes in the presence of chronic
pain. Neuron. 66:149–160. 2010.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Martikainen IK, Nuechterlein EB, Peciña M,
Love TM, Cummiford CM, Green CR, Stohler CS and Zubieta JK: Chronic
back pain is associated with alterations in dopamine
neurotransmission in the ventral striatum. J Neurosci.
35:9957–9965. 2015.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Borsook D, Linnman C, Faria V, Strassman
AM, Becerra L and Elman I: Reward deficiency and anti-reward in
pain chronification. Neurosci Biobehav Rev. 68:282–297.
2016.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Ramdani C, Carbonnell L, Vidal F, Béranger
C, Dagher A and Hasbroucq T: Dopamine precursors depletion impairs
impulse control in healthy volunteers. Psychopharmacology (Berl).
232:477–487. 2015.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Zhao YJ, Liu Y, Wang J, Li Q, Zhang ZM, Tu
T, Lei R, Zhang M and Chen YJ: Activation of the mesencephalic
trigeminal nucleus contributes to masseter hyperactivity induced by
chronic restraint stress. Front Cell Neurosci.
16(841133)2022.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Wall EM and Woolley SC: Acetylcholine in
action. Elife. 9(e57515)2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Miranda-Vilela AL, Akimoto AK, Lordelo GS,
Pereira LC, Grisolia CK and Klautau-Guimarães Mde N: Creatine
kinase MM TaqI and methylenetetrahydrofolate reductase C677T and
A1298C gene polymorphisms influence exercise-induced C-reactive
protein levels. Eur J Appl Physiol. 112:183–192. 2012.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Boscato N, Exposto F, Nascimento GG,
Svensson P and Costa YM: Is bruxism associated with changes in
neural pathways? A systematic review and meta-analysis of clinical
studies using neurophysiological techniques. Brain Imaging Behav.
16:2268–2280. 2022.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Chmieliauskaite M, Stelson EA, Epstein JB,
Klasser GD, Farag A, Carey B, Albuquerque R, Mejia L, Ariyawardana
A, Nasri-Heir C, et al: Consensus agreement to rename burning mouth
syndrome and improve international classification of diseases-11
disease criteria: An international Delphi study. Pain.
162:2548–2557. 2021.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Jääskeläinen SK: Pathophysiology of
primary burning mouth syndrome. Clin Neurophysiol. 123:71–77.
2012.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Corsalini M, Di Venere D, Pettini F,
Lauritano D and Petruzzi M: Temporomandibular disorders in burning
mouth syndrome patients: An observational study. Int J Med Sci.
10:1784–1789. 2013.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Lauria G, Majorana A, Borgna M, Lombardi
R, Penza P, Padovani A and Sapelli P: Trigeminal small-fiber
sensory neuropathy causes burning mouth syndrome. Pain.
115:332–337. 2005.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Forssell H, Jääskeläinen S, Tenovuo O and
Hinkka S: Sensory dysfunction in burning mouth syndrome. Pain.
99:41–47. 2002.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Kubo KY, Iinuma M and Chen H: Mastication
as a Stress-coping behavior. Biomed Res Int.
2015(876409)2015.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Chen H, Iinuma M, Onozuka M and Kubo KY:
Chewing maintains hippocampus-dependent cognitive function. Int J
Med Sci. 12:502–509. 2015.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Mori D, Katayama T, Miyake H, Fujiwara S
and Kubo KY: Occlusal disharmony leads to learning deficits
associated with decreased cellular proliferation in the hippocampal
dentate gyrus of SAMP8 mice. Neurosci Lett. 534:228–232.
2013.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Mori D, Miyake H, Mizutani K, Shimpo K,
Sonoda S, Yamamoto T, Fujiwara S and Kubo KY: Effects of occlusal
disharmony on the hippocampal dentate gyrus in aged
senescence-accelerated mouse prone 8 (SAMP8). Arch Oral Biol.
65:95–101. 2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Azuma K, Ogura M, Kondo H, Suzuki A,
Hayashi S, Iinuma M, Onozuka M and Kubo KY: Maternal active
mastication during prenatal stress ameliorates prenatal
stress-induced lower bone mass in adult mouse offspring. Int J Med
Sci. 14:348–355. 2017.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Suzuki A, Iinuma M, Hayashi S, Sato Y,
Azuma K and Kubo KY: Maternal chewing during prenatal stress
ameliorates stress-induced hypomyelination, synaptic alterations,
and learning impairment in mouse offspring. Brain Res. 1651:36–43.
2016.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Onishi M, Iinuma M, Tamura Y and Kubo KY:
Learning deficits and suppression of the cell proliferation in the
hippocampal dentate gyrus of offspring are attenuated by maternal
chewing during prenatal stress. Neurosci Lett. 560:77–80.
2014.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Snyder JS, Soumier A, Brewer M, Pickel J
and Cameron HA: Adult hippocampal neurogenesis buffers stress
responses and depressive behaviour. Nature. 476:458–461.
2011.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Shirasu M, Takahashi T, Yamamoto T, Itoh
K, Sato S and Nakamura H: Direct projections from the central
amygdaloid nucleus to the mesencephalic trigeminal nucleus in rats.
Brain Res. 1400:19–30. 2011.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Han W, Tellez LA, Rangel MJ Jr, Motta SC,
Zhang X, Perez IO, Canteras NS, Shammah-Lagnado SJ, van den Pol AN
and de Araujo IE: Integrated control of predatory hunting by the
central nucleus of the amygdala. Cell. 168:311–324.e18.
2017.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Kaya B, Geha P, de Araujo I, Cioffi I and
Moayedi M: Identification of central amygdala and trigeminal motor
nucleus connectivity in humans: An ultra-high field diffusion MRI
study. Hum Brain Mapp. 44:1309–1319. 2023.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Kolta A, Westberg KG and Lund JP:
Identification of brainstem interneurons projecting to the
trigeminal motor nucleus and adjacent structures in the rabbit. J
Chem Neuroanat. 19:175–195. 2000.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Nishigawa K, Bando E and Nakano M:
Quantitative study of bite force during sleep associated bruxism. J
Oral Rehabil. 28:485–491. 2001.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Trulsson M: Sensory-motor function of
human periodontal mechanoreceptors. J Oral Rehabil. 33:262–273.
2006.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Trulsson M: Force encoding by human
periodontal mechanoreceptors during mastication. Arch Oral Biol.
52:357–360. 2007.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Trulsson M, Johansson RS and Olsson KA:
Directional sensitivity of human periodontal mechanoreceptive
afferents to forces applied to the teeth. J Physiol. 447:373–389.
1992.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Pang YW, Li JL, Nakamura K, Wu S, Kaneko T
and Mizuno N: Expression of vesicular glutamate transporter 1
immunoreactivity in peripheral and central endings of trigeminal
mesencephalic nucleus neurons in the rat. J Comp Neurol.
498:129–141. 2006.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Ishii T, Suenaga R, Iwata W, Miyata R,
Fujikawa R and Muroi Y: Bilateral lesions of the mesencephalic
trigeminal sensory nucleus stimulate hippocampal neurogenesis but
lead to severe deficits in spatial memory resetting. Brain Res.
1342:74–84. 2010.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Yokoyama S, Kinoshita K, Muroi Y and Ishii
T: The effects of bilateral lesions of the mesencephalic trigeminal
sensory nucleus on nocturnal feeding and related behaviors in mice.
Life Sci. 93:681–686. 2013.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Andrisani G: Teeth and central nervous
system: What happens when you go to sleep. Sleep Med Dis Int J.
1:21–25. 2017.
|
|
81
|
Saper CB, Chou TC and Scammell TE: The
sleep switch: Hypothalamic control of sleep and wakefulness. Trends
Neurosci. 24:726–731. 2001.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Szymusiak R and McGinty D: Hypothalamic
regulation of sleep and arousal. Ann N Y Acad Sci. 1129:275–286.
2008.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Luppi PH: Neurochemical aspects of sleep
regulation with specific focus on slow-wave sleep. World J Biol
Psychiatry. 11 (Suppl 1):S4–S8. 2010.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Zhu J, Li X, Zhu F, Chen L, Zhang C,
McGrath C, He F, Xiao Y and Jin L: Multiple tooth loss is
associated with vascular cognitive impairment in subjects with
acute ischemic stroke. J Periodontal Res. 50:683–688.
2015.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Horvath TL, Peyron C, Diano S, Ivanov A,
Aston-Jones G, Kilduff TS and van Den Pol AN: Hypocretin (orexin)
activation and synaptic innervation of the locus coeruleus
noradrenergic system. J Comp Neurol. 415:145–159. 1999.PubMed/NCBI
|
|
86
|
Okumura T, Takeuchi S, Motomura W, Yamada
H, Egashira Si S, Asahi S, Kanatani A, Ihara M and Kohgo Y:
Requirement of intact disulfide bonds in orexin-A-induced
stimulation of gastric acid secretion that is mediated by OX1
receptor activation. Biochem Biophys Res Commun. 280:976–981.
2001.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Satoh Y, Uchida M, Fujita A, Nishio H,
Takeuchi T and Hata F: Possible role of orexin A in nonadrenergic,
noncholinergic inhibitory response of muscle of the mouse small
intestine. Eur J Pharmacol. 428:337–342. 2001.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Cruccu G, Frisardi G, Pauletti G,
Romaniello A and Manfredi M: Excitability of the central
masticatory pathways in patients with painful temporomandibular
disorders. Pain. 73:447–454. 1997.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Floresco SB: Dopaminergic regulation of
limbic-striatal interplay. J Psychiatry Neurosci. 32:400–411.
2007.PubMed/NCBI
|
|
90
|
Belujon P and Grace AA: Regulation of
dopamine system responsivity and its adaptive and pathological
response to stress. Proc Biol Sci. 282(20142516)2015.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Ono Y, Yamamoto T, Kubo KY and Onozuka M:
Occlusion and brain function: Mastication as a prevention of
cognitive dysfunction. J Oral Rehabil. 37:624–640. 2010.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Hansen PO, Svensson P, Arendt-Nielsen L
and Jensen TS: Human masseter inhibitory reflexes evoked by
repetitive electrical stimulation. Clin Neurophysiol. 113:236–242.
2002.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Onozuka M, Watanabe K, Nagasaki S, Jiang
Y, Ozono S, Nishiyama K, Kawase T, Karasawa N and Nagatsu I:
Impairment of spatial memory and changes in astroglial
responsiveness following loss of molar teeth in aged SAMP8 mice.
Behav Brain Res. 108:145–155. 2000.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Kubo KY, Yamada Y, Iinuma M, Iwaku F,
Tamura Y, Watanabe K, Nakamura H and Onozuka M: Occlusal disharmony
induces spatial memory impairment and hippocampal neuron
degeneration via stress in SAMP8 mice. Neurosci Lett. 414:188–191.
2007.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Proietti R, Mapelli D, Volpe B, Bartoletti
S, Sagone A, Dal Bianco L and Daliento L: Mental stress and
ischemic heart disease: evolving awareness of a complex
association. Future Cardiol. 7:425–437. 2011.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Reber SO: Stress and animal models of
inflammatory bowel disease-an update on the role of the
hypothalamo-pituitary-adrenal axis. Psychoneuroendocrinology.
37:1–19. 2012.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Furuzawa M, Chen H, Fujiwara S, Yamada K
and Kubo KY: Chewing ameliorates chronic mild stress-induced bone
loss in senescence-accelerated mouse (SAMP8), a murine model of
senile osteoporosis. Exp Gerontol. 55:12–18. 2014.PubMed/NCBI View Article : Google Scholar
|
|
98
|
van Selms MK, Lobbezoo F, Visscher CM and
Naeije M: Myofascial temporomandibular disorder pain, parafunctions
and psychological stress. J Oral Rehabil. 35:45–52. 2008.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Di Paolo C, Costanzo GD, Panti F, Rampello
A, Falisi G, Pilloni A, Cascone P and Iannetti G: Epidemiological
analysis on 2375 patients with TMJ disorders: Basic statistical
aspects. Ann Stomatol (Roma). 4:161–169. 2013.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Safari A, Jowkar Z and Farzin M:
Evaluation of the relationship between bruxism and premature
occlusal contacts. J Contemp Dent Pract. 14:616–621.
2013.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Fritzen VM, Colonetti T, Cruz MVB, Ferraz
SD, Ceretta L, Tuon L, DA Rosa MI and Ceretta RA: Levels of
salivary cortisol in adults and children with bruxism diagnosis: A
systematic review and meta-analysis. J Evid Based Dent Pract.
22(101634)2022.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Chung S, Son GH and Kim K: Circadian
rhythm of adrenal glucocorticoid: Its regulation and clinical
implications. Biochim Biophys Acta. 1812:581–591. 2011.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Glaros AG, Williams K and Lausten L: The
role of parafunctions, emotions and stress in predicting facial
pain. J Am Dent Assoc. 136:451–458. 2005.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Leistad RB, Sand T, Westgaard RH, Nilsen
KB and Stovner LJ: Stress-induced pain and muscle activity in
patients with migraine and tension-type headache. Cephalalgia.
26:64–73. 2006.PubMed/NCBI View Article : Google Scholar
|
|
105
|
de Leeuw R, Schmidt JE and Carlson CR:
Traumatic stressors and post-traumatic stress disorder symptoms in
headache patients. Headache. 45:1365–1374. 2005.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Rompré PH, Daigle-Landry D, Guitard F,
Montplaisir JY and Lavigne GJ: Identification of a sleep bruxism
subgroup with a higher risk of pain. J Dent Res. 86:837–842.
2007.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Camparis CM, Formigoni G, Teixeira MJ,
Bittencourt LR, Tufik S and de Siqueira JT: Sleep bruxism and
temporomandibular disorder: Clinical and polysomnographic
evaluation. Arch Oral Biol. 51:721–728. 2006.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Rossetti LM, Pereira de Araujo Cdos R,
Rossetti PH and Conti PC: Association between rhythmic masticatory
muscle activity during sleep and masticatory myofascial pain: A
polysomnographic study. J Orofac Pain. 22:190–200. 2008.PubMed/NCBI
|
|
109
|
Lavigne GJ, Rompré PH, Poirier G, Huard H,
Kato T and Montplaisir JY: Rhythmic masticatory muscle activity
during sleep in humans. J Dent Res. 80:443–448. 2001.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Miyake H, Mori D, Katayama T, Fujiwara S,
Sato Y, Azuma K and Kubo KY: Novel stress increases
hypothalamic-pituitary-adrenal activity in mice with a raised bite.
Arch Oral Biol. 68:55–60. 2016.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Aizawa H, Cui W, Tanaka K and Okamoto H:
Hyperactivation of the habenula as a link between depression and
sleep disturbance. Front Hum Neurosci. 7(826)2013.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Gameiro GH, da Silva Andrade A, Nouer DF
and Ferraz de Arruda Veiga MC: How may stressful experiences
contribute to the development of temporomandibular disorders? Clin
Oral Investig. 10:261–268. 2006.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Liu X, Zhou KX, Yin NN, Zhang CK, Shi MH,
Zhang HY, Wang DM, Xu ZJ, Zhang JD, Li JL and Wang MQ: Malocclusion
generates anxiety-like behavior through a putative lateral
habenula-mesencephalic trigeminal nucleus pathway. Front Mol
Neurosci. 12(174)2019.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Kubo KY, Huayue C and Onozuk M: The
relationship between mastication and cognition. Senescence and
Senescence-Related Disorders. 2013.
|
|
115
|
Onozuka M, Hirano Y, Tachibana A, Kim W,
Ono Y, Sasaguri K, Kubo K, Niwa M, Kanematsu K and Watanabe K:
Interactions between chewing and brain activity in humans. In:
Novel Trends in Brain Science: Brain Imaging, Learning and Memory,
Stress and Fear, and Pain. Onozuka M and Yen CT (eds). Springer
Japan, Tokyo, pp99-113, 2008.
|
|
116
|
Ichihashi Y, Arakawa Y, Iinuma M, Tamura
Y, Kubo KY, Iwaku F, Sato Y and Onozuka M: Occlusal disharmony
attenuates glucocorticoid negative feedback in aged SAMP8 mice.
Neurosci Lett. 427:71–76. 2007.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Miura H, Kariyasu M, Yamasaki K, Arai Y
and Sumi Y: Relationship between general health status and the
change in chewing ability: A longitudinal study of the frail
elderly in Japan over a 3-year period. Gerodontology. 22:200–205.
2005.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Watanabe K, Ozono S, Nishiyama K, Saito S,
Tonosaki K, Fujita M and Onozuka M: The molarless condition in aged
SAMP8 mice attenuates hippocampal Fos induction linked to water
maze performance. Behav Brain Res. 128:19–25. 2002.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Onozuka M, Watanabe K, Fujita M, Tonosaki
K and Saito S: Evidence for involvement of glucocorticoid response
in the hippocampal changes in aged molarless SAMP8 mice. Behav
Brain Res. 131:125–129. 2002.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Kubo KY, Iwaku F, Watanabe K, Fujita M and
Onozuka M: Molarless-induced changes of spines in hippocampal
region of SAMP8 mice. Brain Res. 1057:191–195. 2005.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Aoki H, Kimoto K, Hori N, Hoshi N,
Yamamoto T and Onozuka M: Molarless condition suppresses
proliferation but not differentiation rates into neurons in the rat
dentate gyrus. Neurosci Lett. 469:44–48. 2010.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Iinuma M, Kondo H, Kurahashi M, Ohnishi M,
Tamura Y, Caen H and Kubo KY: Relationship between the early
toothless condition and hippocampal functional morphology. Anat
Physiol. 4(1000149)2014.
|
|
123
|
Onozuka M, Watanabe K, Mirbod SM, Ozono S,
Nishiyama K, Karasawa N and Nagatsu I: Reduced mastication
stimulates impairment of spatial memory and degeneration of
hippocampal neurons in aged SAMP8 mice. Brain Res. 826:148–153.
1999.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Kubo KY, Kojo A, Yamamoto T and Onozuka M:
The bite-raised condition in aged SAMP8 mice induces dendritic
spine changes in the hippocampal region. Neurosci Lett.
441:141–144. 2008.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Katayama T, Mori D, Miyake H, Fujiwara S,
Ono Y, Takahashi T, Onozuka M and Kubo KY: Effect of bite-raised
condition on the hippocampal cholinergic system of aged SAMP8 mice.
Neurosci Lett. 520:77–81. 2012.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Chaouloff F: Regulation of 5-HT receptors
by corticosteroids: Where do we stand? Fundam Clin Pharmacol.
9:219–233. 1995.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Hikosaka O: The habenula: From stress
evasion to value-based decision-making. Nat Rev Neurosci.
11:503–513. 2010.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Shelton L, Becerra L and Borsook D:
Unmasking the mysteries of the habenula in pain and analgesia. Prog
Neurobiol. 96:208–219. 2012.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Boulos LJ, Darcq E and Kieffer BL:
Translating the habenula-from rodents to humans. Biol Psychiatry.
81:296–305. 2017.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Ohara H, Tachibana Y, Fujio T,
Takeda-Ikeda R, Sato F, Oka A, Kato T, Ikenoue E, Yamashiro T and
Yoshida A: Direct projection from the lateral habenula to the
trigeminal mesencephalic nucleus in rats. Brain Res. 1630:183–197.
2016.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Li K, Zhou T, Liao L, Yang Z, Wong C, Henn
F, Malinow R, Yates JR III and Hu H: βCaMKII in lateral habenula
mediates core symptoms of depression. Science. 341:1016–1020.
2013.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Jacinto LR, Mata R, Novais A, Marques F
and Sousa N: The habenula as a critical node in chronic
stress-related anxiety. Exp Neurol. 289:46–54. 2017.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Luco K: The relationship of the
trigemino-cardiac reflex to sleep bruxism. Lupine Publishers LLC,
Online Journal of Neurobiology and Brain Disorders, 2018.
|
|
134
|
Keskinruzgar A DDS, Kalenderoglu A MD,
Yapici Yavuz G DDS, Koparal M DDS, Simsek A MD, Karadag AS MD and
Utkun M DDS: Investigation of neurodegenerative and inflammatory
processes in sleep bruxism. Cranio. 38:358–364. 2020.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Kalenderoglu A, Sevgi-Karadag A, Celik M,
Egilmez OB, Han-Almis B and Ozen ME: Can the retinal ganglion cell
layer (GCL) volume be a new marker to detect neurodegeneration in
bipolar disorder? Compr Psychiatry. 67:66–72. 2016.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Kalenderoglu A, Çelik M, Sevgi-Karadag A
and Egilmez OB: Optic coherence tomography shows inflammation and
degeneration in major depressive disorder patients correlated with
disease severity. J Affect Disord. 204:159–165. 2016.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Minakuchi H, Fujisawa M, Abe Y, Iida T,
Oki K, Okura K, Tanabe N and Nishiyama A: Managements of sleep
bruxism in adult: A systematic review. Jpn Dent Sci Rev.
58:124–136. 2022.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Bhattacharjee B, Saneja R, Bhatnagar A and
Gupta P: Effect of dopaminergic agonist group of drugs in treatment
of sleep bruxism: A systematic review. J Prosthet Dent.
127:709–715. 2022.PubMed/NCBI View Article : Google Scholar
|