|
1
|
Khan I, Saeed K and Khan I: Nanoparticles:
Properties, applications and toxicities. Arab J Chem. 12:908–931.
2019.
|
|
2
|
Haleem A, Javaid M, Singh RP, Rab S and
Suman R: Applications of nanotechnology in medical field: A brief
review. Glob Health J. 7:70–77. 2023.
|
|
3
|
Wang L, Hu C and Shao L: The antimicrobial
activity of nanoparticles: Present situation and prospects for the
future. Int J Nanomedicine. 12:1227–1249. 2017.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Sekiya T, Ohno M, Nomura N, Handabile C,
Shingai M, Jackson DC, Brown LE and Kida H: Selecting and using the
appropriate influenza vaccine for each individual. Viruses.
13(971)2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Sarkar J, Das S, Aich S, Bhattacharyya P
and Acharya K: Antiviral potential of nanoparticles for the
treatment of Coronavirus infections. J Trace Elem Med Biol.
72(126977)2022.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Moreira EA, Yamauchi Y and Matthias P: How
influenza virus uses host cell pathways during uncoating. Cells.
10(1722)2021.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Krammer F, Smith GJD, Fouchier RAM, Peiris
M, Kedzierska K, Doherty PC, Palese P, Shaw ML, Treanor J, Webster
RG and García-Sastre A: Influenza. Nat Rev Dis Primer.
4(3)2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
To J and Torres J: Viroporins in the
influenza virus. Cells. 8(654)2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Park JE and Ryu Y: Transmissibility and
severity of influenza virus by subtype. Infect Genet Evol.
65:288–292. 2018.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Hutchinson EC: Influenza virus. Trends
Microbiol. 26:809–810. 2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Gaitonde DY, Moore FC and Morgan MK:
Influenza: Diagnosis and treatment. Am Fam Physician. 100:751–758.
2019.PubMed/NCBI
|
|
12
|
Centers for Disease Control and Prevention
(CDC): Antiviral drugs for seasonal influenza. CDC, Atlanta, GA,
2022.
|
|
13
|
Javanian M, Barary M, Ghebrehewet S,
Koppolu V, Vasigala V and Ebrahimpour S: A brief review of
influenza virus infection. J Med Virol. 93:4638–4646.
2021.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Wieczorek K, Szutkowska B and Kierzek E:
Anti-influenza strategies based on nanoparticle applications.
Pathogens. 9(1020)2020.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Ghaffari H, Tavakoli A, Moradi A,
Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, Farahmand M,
Javanmard D, Kiani SJ, Esghaei M, et al: Inhibition of H1N1
influenza virus infection by zinc oxide nanoparticles: Another
emerging application of nanomedicine. J Biomed Sci.
26(70)2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Kheirollahpour M, Mehrabi M, Dounighi NM,
Mohammadi M and Masoudi A: Nanoparticles and vaccine development.
Pharm Nanotechnol. 8:6–21. 2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Ielo I, Rando G, Giacobello F, Sfameni S,
Castellano A, Galletta M, Drommi D, Rosace G and Plutino MR:
Synthesis, chemical-physical characterization, and biomedical
applications of functional gold nanoparticles: A review. Molecules.
26(5823)2021.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Salazar-González JA, González-Ortega O and
Rosales-Mendoza S: Gold nanoparticles and vaccine development.
Expert Rev Vaccines. 14:1197–1211. 2015.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Bowman MC, Ballard TE, Ackerson CJ,
Feldheim DL, Margolis DM and Melander C: Inhibition of HIV fusion
with multivalent gold nanoparticles. J Am Chem Soc. 130:6896–6897.
2008.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Papp I, Sieben C, Ludwig K, Roskamp M,
Böttcher C, Schlecht S, Herrmann A and Haag R: Inhibition of
influenza virus infection by multivalent sialic-acid-functionalized
gold nanoparticles. Small. 6:2900–2906. 2010.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Mikhailova EO: Gold nanoparticles:
Biosynthesis and potential of biomedical application. J Funct
Biomater. 12(70)2021.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Li F, Huang Q, Zhou Z, Guan Q, Ye F, Huang
B, Guo W and Liang XJ: Gold nanoparticles combat enveloped RNA
virus by affecting organelle dynamics. Signal Transduct Target
Ther. 8(285)2023.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Wang C, Zhu W, Luo Y and Wang BZ: Gold
nanoparticles conjugating recombinant influenza hemagglutinin
trimers and flagellin enhanced mucosal cellular immunity.
Nanomedicine. 14:1349–1360. 2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Kim J, Yeom M, Lee T, Kim HO, Na W, Kang
A, Lim JW, Park G, Park C, Song D and Haam S: Porous gold
nanoparticles for attenuating infectivity of influenza A virus. J
Nanobiotechnology. 18(54)2020.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Xia Q, Huang J, Feng Q, Chen X, Liu X, Li
X, Zhang T, Xiao S, Li H, Zhong Z and Xiao K: Size- and cell
type-dependent cellular uptake, cytotoxicity and in vivo
distribution of gold nanoparticles. Int J Nanomedicine.
14:6957–6970. 2019.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Bimler L, Song AY, Le DT, Murphy Schafer A
and Paust S: AuNP-M2e + sCpG vaccination of juvenile mice generates
lifelong protective immunity to influenza A virus infection. Immun
Ageing. 16(23)2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Tao W, Hurst BL, Shakya AK, Uddin MJ,
Ingrole RS, Hernandez-Sanabria M, Arya RP, Bimler L, Paust S,
Tarbet EB and Gill HS: Consensus M2e peptide conjugated to gold
nanoparticles confers protection against H1N1, H3N2 and H5N1
influenza A viruses. Antiviral Res. 141:62–72. 2017.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Tazaki T, Tabata K, Ainai A, Ohara Y,
Kobayashi S, Ninomiya T, Orba Y, Mitomo H, Nakano T, Hasegawa H, et
al: Shape-dependent adjuvanticity of nanoparticle-conjugated RNA
adjuvants for intranasal inactivated influenza vaccines. RSC Adv.
8:16527–16536. 2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Aarreberg LD, Esser-Nobis K, Driscoll C,
Shuvarikov A, Roby JA and Gale M Jr: Interleukin-1β induces mtDNA
release to activate innate immune signaling via cGAS-STING. Mol
Cell. 74:801–815.e6. 2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Johnston SC, Lin KL, Connor JH, Ruthel G,
Goff A and Hensley LE: In vitro inhibition of monkeypox virus
production and spread by interferon-β. Virol J. 9(5)2012.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Puthothu B, Bierbaum S, Kopp MV, Forster
J, Heinze J, Weckmann M, Krueger M and Heinzmann A: Association of
TNF-alpha with severe respiratory syncytial virus infection and
bronchial asthma. Pediatr Allergy Immunol. 20:157–163.
2009.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Sun Y, Jiang X, Liu Y, Liu D, Chen C, Lu
C, Zhuang S, Kumar A and Liu J: Recent advances in
Cu(II)/Cu(I)-MOFs based nano-platforms for developing new
nano-medicines. J Inorg Biochem. 225(111599)2021.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Grigore ME, Biscu ER, Holban AM, Gestal MC
and Grumezescu AM: Methods of synthesis, properties and biomedical
applications of CuO nanoparticles. Pharmaceuticals (Basel).
9(75)2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Chang YN, Zhang M, Xia L, Zhang J and Xing
G: The toxic effects and mechanisms of CuO and ZnO nanoparticles.
Materials (Basel). 5:2850–2871. 2012.
|
|
35
|
Ali ZI, Ghazy OA, Meligi G, Saleh HH and
Bekhit M: Radiation-induced synthesis of copper/poly(vinyl alcohol)
nanocomposites and their catalytic activity. Adv Polym Technol.
37:365–375. 2018.
|
|
36
|
Ermini ML and Voliani V: Antimicrobial
nano-agents: The copper age. ACS Nano. 15:6008–6029.
2021.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Applerot G, Lellouche J, Lipovsky A,
Nitzan Y, Lubart R, Gedanken A and Banin E: Understanding the
antibacterial mechanism of CuO nanoparticles: Revealing the route
of induced oxidative stress. Small. 8:3326–3337. 2012.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Ha T, Pham TTM, Kim M, Kim YH, Park JH,
Seo JH, Kim KM and Ha E: Antiviral activities of high energy E-beam
induced copper nanoparticles against H1N1 influenza virus.
Nanomaterials (Basel). 12(268)2022.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Puchkova LV, Kiseleva IV, Polishchuk EV,
Broggini M and Ilyechova EY: The crossroads between host copper
metabolism and influenza infection. Int J Mol Sci.
22(5498)2021.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Sportelli MC, Izzi M, Kukushkina EA,
Hossain SI, Picca RA, Ditaranto N and Cioffi N: Can nanotechnology
and materials science help the fight against SARS-CoV-2?
Nanomaterials (Basel). 10(802)2020.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Gurunathan S, Park JH, Han JW and Kim JH:
Comparative assessment of the apoptotic potential of silver
nanoparticles synthesized by Bacillus tequilensis and Calocybe
indica in MDA-MB-231 human breast cancer cells: Targeting p53 for
anticancer therapy. Int J Nanomedicine. 10:4203–4223.
2015.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Lu L, Sun RWY, Chen R, Hui CK, Ho CM, Luk
JM, Lau GK and Che CM: Silver nanoparticles inhibit hepatitis B
virus replication. Antivir Ther. 13:253–262. 2008.PubMed/NCBI
|
|
43
|
Galdiero S, Falanga A, Vitiello M,
Cantisani M, Marra V and Galdiero M: Silver nanoparticles as
potential antiviral agents. Molecules. 16:8894–8918.
2011.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Mori Y, Ono T, Miyahira Y, Nguyen VQ,
Matsui T and Ishihara M: Antiviral activity of silver
nanoparticle/chitosan composites against H1N1 influenza A virus.
Nanoscale Res Lett. 8(93)2013.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Feng F, Sakoda Y, Ohyanagi T, Nagahori N,
Shibuya H, Okamastu M, Miura N, Kida H and Nishimura S: Novel
thiosialosides tethered to metal nanoparticles as potent influenza
A virus haemagglutinin blockers. Antivir Chem Chemother. 23:59–65.
2013.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Morris D, Ansar M, Speshock J, Ivanciuc T,
Qu Y, Casola A and Garofalo R: Antiviral and immunomodulatory
activity of silver nanoparticles in experimental RSV infection.
Viruses. 11(732)2019.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Ratan ZA, Mashrur FR, Chhoan AP, Shahriar
SM, Haidere MF, Runa NJ, Kim S, Kweon DH, Hosseinzadeh H and Cho
JY: Silver nanoparticles as potential antiviral agents.
Pharmaceutics. 13(2034)2021.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Meineke R, Rimmelzwaan G and Elbahesh H:
Influenza virus infections and cellular kinases. Viruses.
11(171)2019.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Trefry JC and Wooley DP: Silver
nanoparticles inhibit vaccinia virus infection by preventing viral
entry through a macropinocytosis-dependent mechanism. J Biomed
Nanotechnol. 9:1624–1635. 2013.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Tripathi S, White MR and Hartshorn KL: The
amazing innate immune response to influenza A virus infection.
Innate Immun. 21:73–98. 2015.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Xiang D, Zheng Y, Duan W, Li X, Yin J,
Shigdar S, O'Connor ML, Marappan M, Zhao X, Miao Y, et al:
Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection
by silver nanoparticles in vitro and in vivo. Int J Nanomedicine.
8:4103–4113. 2013.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Li Y, Lin Z, Zhao M, Xu T, Wang C, Hua L,
Wang H, Xia H and Zhu B: Silver nanoparticle based codelivery of
oseltamivir to inhibit the activity of the H1N1 influenza virus
through ROS-mediated signaling pathways. ACS Appl Mater Interfaces.
8:24385–24393. 2016.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Yang Y, Zhang M, Song H and Yu C:
Silica-based nanoparticles for biomedical applications: From
nanocarriers to biomodulators. Acc Chem Res. 53:1545–1556.
2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Häffner SM, Parra-Ortiz E, Browning KL,
Jørgensen E, Skoda MWA, Montis C, Li X, Berti D, Zhao D and
Malmsten M: Membrane interactions of virus-like mesoporous silica
nanoparticles. ACS Nano. 15:6787–6800. 2021.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Maurer-Jones MA, Lin YS and Haynes CL:
Functional assessment of metal oxide nanoparticle toxicity in
immune cells. ACS Nano. 4:3363–3373. 2010.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Cheng K, El-Boubbou K and Landry CC:
Binding of HIV-1 gp120 glycoprotein to silica nanoparticles
modified with CD4 glycoprotein and CD4 peptide fragments. ACS Appl
Mater Interfaces. 4:235–243. 2012.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Tng DJH and Low JGH: Current status of
silica-based nanoparticles as therapeutics and its potential as
therapies against viruses. Antiviral Res.
210(105488)2023.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Neuhaus V, Schwarz K, Klee A, Seehase S,
Förster C, Pfennig O, Jonigk D, Fieguth HG, Koch W, Warnecke G, et
al: Functional testing of an inhalable nanoparticle based influenza
vaccine using a human precision cut lung slice technique. PLoS One.
8(e71728)2013.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Yazdi AS, Guarda G, Riteau N, Drexler SK,
Tardivel A, Couillin I and Tschopp J: Nanoparticles activate the
NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause
pulmonary inflammation through release of IL-1α and IL-1β. Proc
Natl Acad Sci USA. 107:19449–19454. 2010.PubMed/NCBI View Article : Google Scholar
|
|
60
|
AbouAitah K, Swiderska-Sroda A, Kandeil A,
Salman AMM, Wojnarowicz J, Ali MA, Opalinska A, Gierlotka S, Ciach
T and Lojkowski W: Virucidal action against avian influenza H5N1
virus and immunomodulatory effects of nanoformulations consisting
of mesoporous silica nanoparticles loaded with natural prodrugs.
Int J Nanomedicine. 15:5181–5202. 2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Wang H, Chen L, Li R, Lv C, Xu Y and Xiong
Y: Polydopamine-coated mesoporous silica nanoparticles co-loaded
with Ziyuglycoside I and Oseltamivir for synergistic treatment of
viral pneumonia. Int J Pharm. 645(123412)2023.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Lakshmipriya T and Gopinath SCB:
1-Introduction to nanoparticles and analytical devices. In:
Nanoparticles in Analytical and Medical Devices. Gopinath SCB and
Gang F (eds.) Elsevier, pp1-29, 2021.
|
|
63
|
Attia GH, Moemen YS, Youns M, Ibrahim AM,
Abdou R and El Raey MA: Antiviral zinc oxide nanoparticles mediated
by hesperidin and in silico comparison study between antiviral
phenolics as anti-SARS-CoV-2. Colloids Surf B Biointerfaces.
203(111724)2021.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Singh TA, Sharma A, Tejwan N, Ghosh N, Das
J and Sil PC: A state of the art review on the synthesis,
antibacterial, antioxidant, antidiabetic and tissue regeneration
activities of zinc oxide nanoparticles. Adv Colloid Interface Sci.
295(102495)2021.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Poon WL, Alenius H, Ndika J, Fortino V,
Kolhinen V, Meščeriakovas A, Wang M, Greco D, Lähde A, Jokiniemi J,
et al: Nano-sized zinc oxide and silver, but not titanium dioxide,
induce innate and adaptive immunity and antiviral response in
differentiated THP-1 cells. Nanotoxicology. 11:936–951.
2017.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Mandal AK, Katuwal S, Tettey F, Gupta A,
Bhattarai S, Jaisi S, Bhandari DP, Shah AK, Bhattarai N and
Parajuli N: Current research on zinc oxide nanoparticles:
Synthesis, Characterization, and biomedical applications.
Nanomaterials (Basel). 12(3066)2022.PubMed/NCBI View Article : Google Scholar
|
|
67
|
te Velthuis AJW, van den Worm SHE, Sims
AC, Baric RS, Snijder EJ and van Hemert MJ: Zn(2+) inhibits
coronavirus and arterivirus RNA polymerase activity in vitro and
zinc ionophores block the replication of these viruses in cell
culture. PLoS Pathog. 6(e1001176)2010.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Imani SM, Ladouceur L, Marshall T,
Maclachlan R, Soleymani L and Didar TF: Antimicrobial nanomaterials
and coatings: Current mechanisms and future perspectives to control
the spread of viruses including SARS-CoV-2. ACS Nano.
14:12341–12369. 2020.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Shahabadi N, Zendehcheshm S and Khademi F:
Selenium nanoparticles: Synthesis, in-vitro cytotoxicity,
antioxidant activity and interaction studies with ct-DNA and HSA,
HHb and Cyt c serum proteins. Biotechnol Rep (Amst).
30(e00615)2021.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Zhang T, Qi M, Wu Q, Xiang P, Tang D and
Li Q: Recent research progress on the synthesis and biological
effects of selenium nanoparticles. Front Nutr.
10(1183487)2023.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Ferro C, Florindo HF and Santos HA:
Selenium nanoparticles for biomedical applications: From
development and characterization to therapeutics. Adv Healthc
Mater. 10(2100598)2021.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Cheng Z, Zhi X, Sun G, Guo W, Huang Y, Sun
W, Tian X, Zhao F and Hu K: Sodium selenite suppresses hepatitis B
virus transcription and replication in human hepatoma cell lines. J
Med Virol. 88:653–663. 2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Li Y, Lin Z, Guo M, Xia Y, Zhao M, Wang C,
Xu T, Chen T and Zhu B: Inhibitory activity of selenium
nanoparticles functionalized with oseltamivir on H1N1 influenza
virus. Int J Nanomedicine. 12:5733–5743. 2017.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Kopel J, Fralick J and Reid TW: The
potential antiviral effects of selenium nanoparticles and coated
surfaces. Antibiotics (Basel). 11(1683)2022.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Liu X, Chen D, Su J, Zheng R, Ning Z, Zhao
M, Zhu B and Li Y: Selenium nanoparticles inhibited H1N1 influenza
virus-induced apoptosis by ROS-mediated signaling pathways. RSC
Adv. 12:3862–3870. 2022.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Xu T, Lai J, Su J, Chen D, Zhao M, Li Y
and Zhu B: Inhibition of H3N2 influenza virus induced apoptosis by
selenium nanoparticles with chitosan through ROS-mediated signaling
pathways. ACS Omega. 8:8473–8480. 2023.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Banoth B and Cassel SL: Mitochondria in
innate immune signaling. Transl Res. 202:52–68. 2018.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Li Y, Lin Z, Guo M, Zhao M, Xia Y, Wang C,
Xu T and Zhu B: Inhibition of H1N1 influenza virus-induced
apoptosis by functionalized selenium nanoparticles with amantadine
through ROS-mediated AKT signaling pathways. Int J Nanomedicine.
13:2005–2016. 2018.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Khanna M, Sharma S, Kumar B and Rajput R:
Protective immunity based on the conserved hemagglutinin stalk
domain and its prospects for universal influenza vaccine
development. Biomed Res Int. 2014(546274)2014.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Cilento ME, Kirby KA and Sarafianos SG:
Avoiding drug resistance in HIV reverse transcriptase. Chem Rev.
121:3271–3296. 2021.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Draz MS and Shafiee H: Applications of
gold nanoparticles in virus detection. Theranostics. 8:1985–2017.
2018.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Zhang Z, Schepens B, Nuhn L, Saelens X,
Schotsaert M, Callewaert N, De Rycke R, Zhang Q, Moins S, Benali S,
et al: Influenza-binding sialylated polymer coated gold
nanoparticles prepared via RAFT polymerization and reductive
amination. Chem Commun (Camb). 52:3352–3355. 2016.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Corti D, Cameroni E, Guarino B, Kallewaard
NL, Zhu Q and Lanzavecchia A: Tackling influenza with broadly
neutralizing antibodies. Curr Opin Virol. 24:60–69. 2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Joyce MG, Wheatley AK, Thomas PV, Chuang
GY, Soto C, Bailer RT, Druz A, Georgiev IS, Gillespie RA, Kanekiyo
M, et al: Vaccine-induced antibodies that neutralize group 1 and
group 2 influenza A viruses. Cell. 166:609–623. 2016.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest
D, Khayat R, Ekiert DC, Lee JH, Metlagel Z, Bujny MV, Jongeneelen
M, et al: Highly conserved protective epitopes on influenza B
viruses. Science. 337:1343–1348. 2012.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Kang SM, Song JM and Compans RW: Novel
vaccines against influenza viruses. Virus Res. 162:31–38.
2011.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Nesovic LD, Roach CJ, Joshi G and Gill HS:
Delivery of gold nanoparticle-conjugated M2e influenza vaccine in
mice using coated microneedles. Biomater Sci. 11:5859–5871.
2023.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Chen L and Liang J: An overview of
functional nanoparticles as novel emerging antiviral therapeutic
agents. Mater Sci Eng C Mater Biol Appl. 112(110924)2020.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Nagy A and Robbins NL: The hurdles of
nanotoxicity in transplant nanomedicine. Nanomedicine (Lond).
14:2749–2762. 2019.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Tagami T and Ozeki T: Recent trends in
clinical trials related to carrier-based drugs. J Pharm Sci.
106:2219–2226. 2017.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Gopal J, Muthu M and Sivanesan I: A
comprehensive survey on the expediated anti-COVID-19 options
enabled by metal complexes-tasks and trials. Molecules.
28(3354)2023.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Abukabda AB, Stapleton PA and Nurkiewicz
TR: Metal nanomaterial toxicity variations within the vascular
system. Curr Environ Health Rep. 3:379–391. 2016.PubMed/NCBI View Article : Google Scholar
|