|
1
|
Antshel KM and Russo N: Autism spectrum
disorders and ADHD: Overlapping phenomenology, diagnostic issues
and treatment considerations. Curr Psychiatry Rep.
21(34)2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Johnson KR, Ennis-Cole D and Bonhamgregory
M: Workplace success strategies for employees with autism spectrum
disorder: A new frontier for human resource development. Human
Resource Development Review. 19:122–151. 2020.
|
|
3
|
Weitlauf AS, Gotham KO, Vehorn AC and
Warren ZE: Brief report: DSM-5 ‘levels of support:’ A comment on
discrepant conceptualizations of severity in ASD. J Autism Dev
Disord. 44:471–476. 2014.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Lotter V: Epidemiology of autistic
conditions in young children. Soc Psychiatry. 1:124–135. 1966.
|
|
5
|
World Health Organization (WHO): Autism.
WHO, Geneva, 2023. https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders.
Accessed November 15, 2023.
|
|
6
|
King Salman Center for Disability
Research: Statistics of Saudi Arabia Regions. https://kscdr.org.sa/ar/stats. Accessed December 10,
2017.
|
|
7
|
AlBatti TH, Alsaghan LB, Alsharif MF,
Alharbi JS, BinOmair AI, Alghurair HA, Aleissa GA and Bashiri FA:
Prevalence of autism spectrum disorder among Saudi children between
2 and 4 years old in Riyadh. Asian J Psychiatr.
71(103054)2022.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Taha GRA and Hussein H: ‘Autism spectrum
disorders in developing countries: Lessons from the Arab world.’.
Comprehensive guide to autism. 2509–2531. 2014.
|
|
9
|
Alruwaili M, Elsayed Ramadan OM, Shaban M,
Alruwaili A, Alsadaan N, Ali S, Al Thobaity A and Salihu D: An
Assessment of Pediatric Nurses Awareness and Perceived Knowledge of
Autism Spectrum Disorders: A Gulf State Survey. Perspect Psychiatr
Care. 2023(4815914)2023.
|
|
10
|
Qoronflesh MW, Essa MM, Alharahsheh ST,
Al-Farsi YM and Al-Adawi S: . Autism in the Gulf States: A regional
overview. Front Biosci (Landmark Ed). 24:334–346. 2019.PubMed/NCBI View
Article : Google Scholar
|
|
11
|
Waizbard-Bartov E, Ferrer E, Young GS,
Heath B, Rogers S, Wu Nordahl C, Solomon M and Amaral DG:
Trajectories of autism symptom severity change during early
childhood. J Autism Dev Disord. 51:227–224. 2021.PubMed/NCBI View Article : Google Scholar
|
|
12
|
American Psychiatric Association: DSM-5
Task Force. Diagnostic and Statistical Manual of Mental Disorders:
DSM-5™. 5th edition. American Psychiatric Publishing, Inc.,
Washington DC, 2013.
|
|
13
|
Lai MC, Lombardo MV and Baron-Cohen S:
Autism. Lancet. 383:896–910. 2014.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Chung BH, Tao VQ and Tso WW: Copy number
variation and autism: New insights and clinical implications. J
Formos Med Assoc. 113:400–408. 2014.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Girirajan S, Dennis MY, Baker C, Malig M,
Coe BP, Campbell CD, Mark K, Vu TH, Alkan C, Cheng Z, et al:
Refinement and discovery of new hotspots of copy-number variation
associated with autism spectrum disorder. Am J Hum Genet.
92:221–237. 2013.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Sorte HS, Gjevik E, Sponheim E, Eiklid KL
and Rødningen OK: Copy number variation findings among 50 children
and adolescents with autism spectrum disorder. Psychiatr Genet.
23:61–69. 2013.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Mirzaei G and Petreaca RC: Distribution of
copy number variations and rearrangement endpoints in human cancers
with a review of literature. Mutat Res. 824(111773)2022.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Thapar A and Cooper M: Copy number
variation: What is it and what has it told us about child
psychiatric disorders? J Am Acad Child Adolesc Psychiatry.
52(772)2013.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Girirajan S, Campbell CD and Eichler EE:
Human copy number variation and complex genetic disease. Annu Rev
Genet. 45:203–226. 2011.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Murphy KC, Jones LA and Owen MJ: High
rates of schizophrenia in adults with velo-cardio-facial syndrome.
Arch Gen Psychiatry. 56:940–945. 1999.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Abu-Amero KK, Hellani AM, Salih MA,
Seidahmed MZ, Elmalik TS, Zidan G and Bosley TM: A de novo marker
chromosome derived from 9p in a patient with 9p partial duplication
syndrome and autism features: genotype-phenotype correlation. BMC
Med Genet. 11(135)2010.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Ashitha SNM and Ramachandra NB: Integrated
functional analysis implicates syndromic and rare copy number
variation genes as prominent molecular players in pathogenesis of
autism spectrum disorders. Neuroscience. 438:25–40. 2020.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Tammimies K, Li D, Rabkina I, Stamouli S,
Becker M, Nicolaou V, Berggren S, Coco C, Falkmer T, Jonsson U, et
al: Association between copy number variation and response to
social skills training in autism spectrum disorder. Sci Rep.
9(9810)2019.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Vicari S, Napoli E, Cordeddu V, Menghini
D, Alesi V, Loddo S, Novelli A and Tartaglia M: Copy number
variants in autism spectrum disorders. Prog Neuropsychopharmacol
Biol Psychiatry. 92:421–427. 2019.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Stankiewicz P and Lupski JR: Structural
variation in the human genome and its role in disease. Annu Rev
Med. 61:437–455. 2010.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Fanciulli M, Norsworthy PJ, Petretto E,
Dong R, Harper L, Kamesh L, Heward JM, Gough SC, de Smith A,
Blakemore AI, et al: FCGR3B copy number variation is associated
with susceptibility to systemic, but not organ-specific,
autoimmunity. Nat Genet. 39:721–723. 2007.PubMed/NCBI View
Article : Google Scholar
|
|
27
|
Gonzalez E, Kulkarni H, Bolivar H, Mangano
A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad
MJ, et al: The influence of CCL3L1 gene-containing segmental
duplications on HIV-1/AIDS susceptibility. Science. 307:1434–1440.
2005.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Brasch-Andersen C, Christiansen L, Tan Q,
Haagerup A, Vestbo J and Kruse TA: Possible gene dosage effect of
glutathione-S-transferases on atopic asthma: using real-time PCR
for quantification of GSTM1 and GSTT1 gene copy numbers. Hum Mutat.
24:208–214. 2004.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Abedini SS, Akhavan S, Heng J,
Alizadehsani R, Dehzangi I, Bauer DC and Rokny H: A Critical Review
of the Impact of Candidate Copy Number Variants on Autism Spectrum.
Disorders. arXiv: https://doi.org/10.48550/arXiv.2302.03211.
|
|
30
|
Torres F, Barbosa M and Maciel P:
Recurrent copy number variations as risk factors for
neurodevelopmental disorders: Critical overview and analysis of
clinical implications. J Med Genet. 53:73–90. 2016.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Velinov M: Genomic Copy number variations
in the autism clinic-work in progress. Front Cell Neurosci.
13(57)2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Dumas LJ, O'Bleness MS, Davis JM, Dickens
CM, Anderson N, Keeney JG, Jackson J, Sikela M, Raznahan A, Giedd
J, et al: DUF1220-domain copy number implicated in human brain-size
pathology and evolution. Am J Hum Genet. 91:444–454.
2012.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Searles Quick VB, Davis JM, Olincy A and
Sikela JM: DUF1220 copy number is associated with schizophrenia
risk and severity: implications for understanding autism and
schizophrenia as related diseases. Transl Psychiatry.
5(e697)2015.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Gandawijaya J, Bamford RA, Burbach JPH and
Oguro-Ando A: Cell adhesion molecules involved in
neurodevelopmental pathways implicated in 3p-deletion syndrome and
autism spectrum disorder. Front Cell Neurosci.
14(611379)2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Li C, Liu C, Zhou B, Hu C and Xu X: Novel
microduplication of CHL1 gene in a patient with autism spectrum
disorder: A case report and a brief literature review. Mol
Cytogenet. 9(51)2016.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Palumbo O, Fischetto R, Palumbo P,
Nicastro F, Papadia F, Zelante L and Carella M: De novo
microduplication of CHL1 in a patient with non-syndromic
developmental phenotypes. Mol Cytogenet. 8(66)2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Shoukier M, Fuchs S, Schwaibold E, Lingen
M, Gärtner J, Brockmann K and Zirn B: Microduplication of 3p26. 3
in nonsyndromic intellectual disability indicates an important role
of CHL1 for normal cognitive function. Neuropediatrics. 44:268–271.
2013.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Frints SG, Marynen P, Hartmann D, Fryns
JP, Steyaert J, Schachner M, Rolf B, Craessaerts K, Snellinx A,
Hollanders K, et al: CALL interrupted in a patient with
non-specific mental retardation: Gene dosage-dependent alteration
of murine brain development and behavior. Hum Mol Genet.
12:1463–1474. 2003.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Pratte M, Rougon G, Schachner M and Jamon
M: Mice deficient for the close homologue of the neural adhesion
cell L1 (CHL1) display alterations in emotional reactivity and
motor coordination. Behav Brain Res. 147:31–39. 2003.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Tassano E, Biancheri R, Denegri L, Porta
S, Novara F, Zuffardi O, Gimelli G and Cuoco C: Heterozygous
deletion of CHL1 gene: Detailed array-CGH and clinical
characterization of a new case and review of the literature. Eur J
Med Genet. 57:626–629. 2014.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Quintela I, Barros F, Fernandez-Prieto M,
Martinez-Regueiro R, Castro-Gago M, Carracedo A, Gomez-Lado C and
Eiris J: Interstitial microdeletions including the chromosome band
4q13. 2 and the UBA6 gene as possible causes of intellectual
disability and behavior disorder. Am J Med Genet A. 167A:3113–3120.
2015.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Baron-Cohen S, Auyeung B,
Nørgaard-Pedersen B, Hougaard DM, Abdallah MW, Melgaard L, Cohen
AS, Chakrabarti B, Ruta L and Lombardo MV: Elevated fetal
steroidogenic activity in autism. Mol Psychiatry. 20:369–376.
2015.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Chakrabarti B, Dudbridge F, Kent L,
Wheelwright S, Hill-Cawthorne G, Allison C, Banerjee-Basu S and
Baron-Cohen S: Genes related to sex steroids, neural growth, and
social-emotional behavior are associated with autistic traits,
empathy, and Asperger syndrome. Autism Res. 2:157–177.
2009.PubMed/NCBI View
Article : Google Scholar
|
|
44
|
El-Baz F, Hamza RT, Ayad MS and Mahmoud
NH: Hyperandrogenemia in male autistic children and adolescents:
Relation to disease severity. Int J Adolesc Med Health. 26:79–84.
2014.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Gasser BA, Kurz J, Dick B and Mohaupt MG:
Steroid metabolites support evidence of autism as a spectrum. Behav
Sci (Basel). 9(52)2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Gasser BA, Kurz J, Dick B and Mohaupt MG:
Are steroid hormones dysregulated in autistic girls? Diseases.
8(6)2020.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Janšáková K, Hill M, Čelárová D,
Celušáková H, Repiská G, Bičíková M, Máčová L and Ostatníková D:
Alteration of the steroidogenesis in boys with autism spectrum
disorders. Transl Psychiatry. 10(340)2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Knickmeyer R, Baron-Cohen S, Fane BA,
Wheelwright S, Mathews GA, Conway GS, Brook CG and Hines M:
Androgens and autistic traits: A study of individuals with
congenital adrenal hyperplasia. Horm Behav. 50:148–153.
2006.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Lapcík O, Hampl R, Hill M and Stárka L:
Plasma levels of epitestosterone from prepuberty to adult life. J
Steroid Biochem Mol Biol. 55:405–408. 1995.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Majewska MD, Hill M, Urbanowicz E,
Rok-Bujko P, Bieńkowski P, Namysłowska I and Mierzejewski P: Marked
elevation of adrenal steroids, especially androgens, in saliva of
prepubertal autistic children. Eur Child Adolesc Psychiatry.
23:485–498. 2014.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Ruta L, Ingudomnukul E, Taylor K,
Chakrabarti B and Baron-Cohen S: Increased serum androstenedione in
adults with autism spectrum conditions. Psychoneuroendocrinology.
36:1154–1163. 2011.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Takagishi H, Takahashi T, Yamagishi T,
Shinada M, Inukai K, Tanida S, Mifune N, Horita Y, Hashimoto H,
Yang Y and Kameda T: Salivary testosterone levels and
autism-spectrum quotient in adults. Neuro Endocrinol Lett.
31(837)2010.PubMed/NCBI
|
|
53
|
Tordjman S, Anderson GM, McBride PA,
Hertzig ME, Snow ME, Hall LM, Ferrari P and Cohen DJ: Plasma
androgens in autism. J Autism Dev Disord. 25:295–304.
1995.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Gasser B, Kurz J and Mohaupt M:
Testosterone/Epitestosterone ratios-further hints to explain
hyperandrogenemia in children with autism. Diseases.
9(13)2021.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Jakobsson J, Ekström L, Inotsume N, Garle
M, Lorentzon M, Ohlsson C, Roh HK, Carlström K and Rane A: Large
differences in testosterone excretion in Korean and Swedish men are
strongly associated with a UDP-glucuronosyl transferase 2B17
polymorphism. J Clin Endocrinol Metab. 91:687–693. 2006.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Lin RJ, Cherry AM, Chen KC, Lyons M, Hoyme
HE and Hudgins L: Terminal deletion of 6p results in a recognizable
phenotype. Am J Med Genet A. 136:162–168. 2005.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Celestino-Soper PB, Skinner C, Schroer R,
Eng P, Shenai J, Nowaczyk MM, Terespolsky D, Cushing D, Patel GS,
Immken L, et al: Deletions in chromosome 6p22. 3-p24. 3, including
ATXN1, are associated with developmental delay and autism spectrum
disorders. Mol Cytogenet. 5(17)2012.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Vega-Benedetti AF, Saucedo C, Zavattari P,
Vanni R, Zugaza JL and Parada LA: PLAGL1: An important player in
diverse pathological processes. J Appl Genet. 58:71–78.
2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Iglesias-Platas I, Martin-Trujillo A,
Cirillo D, Court F, Guillaumet-Adkins A, Camprubi C, Bourc'his D,
Hata K, Feil R, Tartaglia G, et al: Characterization of novel
paternal ncRNAs at the Plagl1 locus, including Hymai, predicted to
interact with regulators of active chromatin. PLoS One.
7(e38907)2012.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Bergström T and Forsberg-Nilsson K: Neural
stem cells: Brain building blocks and beyond. Ups J Med Sci.
117:132–142. 2012.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Al-Naama N, Mackeh R and Kino T: C2H2-type
zinc finger proteins in brain development, neurodevelopmental, and
other neuropsychiatric disorders: Systematic literature-based
analysis. Front Neurol. 11(32)2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Androutsellis-Theotokis A, Rueger MA,
Mkhikian H, Korb E and McKay RD: Signaling pathways controlling
neural stem cells slow progressive brain disease. Cold Spring Harb
Symp Quant Biol. 73:403–410. 2008.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Lein ES, Belgard TG, Hawrylycz M and
Molnár Z: Transcriptomic perspectives on neocortical structure,
development, evolution, and disease. Annu Rev Neurosci. 40:629–652.
2017.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Silbereis JC, Pochareddy S, Zhu Y, Li M
and Sestan N: The cellular and molecular landscapes of the
developing human central nervous system. Neuron. 89:248–268.
2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Prasad A, Merico D, Thiruvahindrapuram B,
Wei J, Lionel AC, Sato D, Rickaby J, Lu C, Szatmari P, Roberts W,
et al: A discovery resource of rare copy number variations in
individuals with autism spectrum disorder. G3 (Bethesda).
2:1665–1685. 2012.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Dauwerse JG, Ruivenkamp CA, Hansson K,
Marijnissen GM, Peters DJ, Breuning MH and Hilhorst-Hofstee Y: A
complex chromosome 7q rearrangement identified in a patient with
mental retardation, anxiety disorder, and autistic features. Am J
Med Genet A. 152A:427–433. 2010.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Depienne C, Heron D, Betancur C, Benyahia
B, Trouillard O, Bouteiller D, Verloes A, LeGuern E, Leboyer M and
Brice A: Autism, language delay and mental retardation in a patient
with 7q11 duplication. J Med Genet. 44:452–458. 2007.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Sanders SJ, Ercan-Sencicek AG, Hus V, Luo
R, Murtha MT, Moreno-De-Luca D, Chu SH, Moreau MP, Gupta AR,
Thomson SA, et al: Multiple recurrent de novo CNVs, including
duplications of the 7q11.23 Williams syndrome region, are strongly
associated with autism. Neuron. 70:863–885. 2011.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Udayakumar AM, Al-Mamari W, Al-Sayegh A
and Al-Kindy A: De Novo Duplication of 7p21.1p22.2 in a Child with
Autism Spectrum Disorder and Craniofacial Dysmorphism. Sultan
Qaboos Univ Med J. 15:e415–e419. 2015.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Schuch JB, Paixão-Côrtes VR, Longo D,
Roman T, Riesgo RDS, Ranzan J, Becker MM, Riegel M and
Schuler-Faccini L: Analysis of a protein network related to copy
number variations in autism spectrum disorder. J Mol Neurosci.
69:140–149. 2019.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Glancy M, Barnicoat A, Vijeratnam R, de
Souza S, Gilmore J, Huang S, Maloney VK, Thomas NS, Bunyan DJ,
Jackson A and Barber JC: Transmitted duplication of 8p23. 1-8p23. 2
associated with speech delay, autism and learning difficulties. Eur
J Hum Genet. 17:37–43. 2009.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Shi S, Lin S, Chen B and Zhou Y: Isolated
chromosome 8p23. 2-pter deletion: Novel evidence for developmental
delay, intellectual disability, microcephaly and neurobehavioral
disorders. Mol Med Rep. 16:6837–6845. 2017.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Kraus DM, Elliott GS, Chute H, Horan T,
Pfenninger KH, Sanford SD, Foster S, Scully S, Welcher AA and
Holers VM: . CSMD1 is a novel multiple domain complement-regulatory
protein highly expressed in the central nervous system and
epithelial tissues. J Immunol. 176:4419–4430. 2006.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Liu X, Shimada T, Otowa T, Wu YY, Kawamura
Y, Tochigi M, Iwata Y, Umekage T, Toyota T, Maekawa M, et al:
Genome-wide association study of autism spectrum disorder in the
East Asian populations. Autism Res. 9:340–349. 2016.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Costa CIS, da Silva Montenegro EM, Zarrei
M, de Sá Moreira E, Silva IMW, de Oliveira Scliar M, Wang JYT,
Zachi EC, Branco EV, da Costa SS, et al: Copy number variations in
a Brazilian cohort with autism spectrum disorders highlight the
contribution of cell adhesion genes. Clin Genet. 101:134–141.
2022.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Ritvo ER, Creel D, Realmuto G, Crandall
AS, Freeman BJ, Bateman JB, Barr R, Pingree C, Coleman M and Purple
RL: Electroretinograms in autism: A pilot study of b-wave
amplitudes. Am J Psychiatry. 145:229–232. 1988.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Steffenburg S: Neuropsychiatric
assessmenit of children with autism: A population-based study. Dev
Med Child Neurol. 33:495–511. 1991.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Collaborative Linkage Study of Autism. An
autosomal genomic screen for autism. Am J Med Genet. 105:609–615.
2001.PubMed/NCBI
|
|
79
|
Gillberg C: Chromosomal disorders and
autism. J Autism Dev Disord. 28:415–425. 1998.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Steele MM, Al-Adeimi M, Siu VM and Fan YS:
Brief report: A case of autism with interstitial deletion of
chromosome 13. J Autism Dev Disord. 31:231–234. 2001.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Roza E, Streață I, Sosoi S, Burada F, Puiu
M, Ioana M and Teleanu RI: A 14q31. 1-q32. 11 deletion case:
Genotype-neurological phenotype correlations in 14q interstitial
deletion syndrome. Rom Biotechnol Lett. 25:1677–1682. 2020.
|
|
82
|
Lovrečić L, Rajar P, Volk M, Bertok S,
Gnidovec Stražišar B, Osredkar D, Jekovec Vrhovšek M and Peterlin
B: Diagnostic efficacy and new variants in isolated and complex
autism spectrum disorder using molecular karyotyping. J Appl Genet.
59:179–185. 2018.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Nicita F, Di Giacomo M, Palumbo O, Ferri
E, Maiorani D, Vigevano F, Carella M and Capuano A: Neurological
features of 14q24-q32 interstitial deletion: Report of a new case.
Mol Cytogenet. 8(93)2015.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Oehl-Jaschkowitz B, Vanakker OM, De Paepe
A, Menten B, Martin T, Weber G, Christmann A, Krier R, Scheid S,
McNerlan SE, et al: Deletions in 14q24. 1q24. 3 are associated with
congenital heart defects, brachydactyly, and mild intellectual
disability. Am J Med Genet A. 164A:620–626. 2014.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Prontera P, Ottaviani V, Toccaceli D,
Rogaia D, Ardisia C, Romani R, Stangoni G, Pierini A and Donti E:
Recurrent ~100 Kb microdeletion in the chromosomal region 14q11. 2,
involving CHD8 gene, is associated with autism and macrocephaly. Am
J Med Genet A. 164A:3137–3141. 2014.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Waszak SM, Hasin Y, Zichner T, Olender T,
Keydar I, Khen M, Stütz AM, Schlattl A, Lancet D and Korbel JO:
Systematic inference of copy-number genotypes from personal genome
sequencing data reveals extensive olfactory receptor gene content
diversity. PLoS Comput Biol. 6(e1000988)2010.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Kalsner L and Chamberlain SJ:
Prader-Willi, Angelman, and 15q11-q13 Duplication Syndromes.
Pediatr Clin North Am. 62:587–606. 2015.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Cox DM and Butler MG: The 15q11.2 BP1-BP2
microdeletion syndrome: A review. Int J Mol Sci. 16:4068–4082.
2015.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Hogart A, Wu D, LaSalle JM and Schanen NC:
The comorbidity of autism with the genomic disorders of chromosome
15q11. 2-q13. Neurobiol Dis. 38:181–191. 2010.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Endevelt-Shapira Y, Perl O, Ravia A, Amir
D, Eisen A, Bezalel V, Rozenkrantz L, Mishor E, Pinchover L, Soroka
T, et al: Altered responses to social chemosignals in autism
spectrum disorder. Nat Neurosci. 21:111–119. 2018.PubMed/NCBI View Article : Google Scholar
|
|
91
|
The National Center for Biotechnology
Information (NCBI): PPP2R3B protein phosphatase 2 regulatory
subunit B'beta [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/28227. Accessed
April 3, 2024.
|
|
92
|
Gross C: Defective phosphoinositide
metabolism in autism. J Neurosci Res. 95:1161–1173. 2017.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Dickson EJ: Recent advances in
understanding phosphoinositide signaling in the nervous system.
F1000Res 8: F1000 Faculty Rev-278, 2019.
|
|
94
|
Enriquez-Barreto L and Morales M: The PI3K
signaling pathway as a pharmacological target in Autism related
disorders and Schizophrenia. Mol Cell Ther. 4(2)2016.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Sato A and Ikeda K: Genetic and
environmental contributions to autism spectrum disorder through
mechanistic target of rapamycin. Biol Psychiatry Glob Open Sci.
2:95–105. 2022.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Brown RB: Dysregulated phosphate
metabolism in autism spectrum disorder: Associations and insights
for future research. Expert Rev Mol Med. 25(e20)2023.PubMed/NCBI View Article : Google Scholar
|