Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
February-2025 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2025 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.xlsx
    • Supplementary_Data3.xlsx
    • Supplementary_Data4.xlsx
    • Supplementary_Data5.xlsx
    • Supplementary_Data6.xlsx
    • Supplementary_Data7.xlsx
Article Open Access

Genes involved in osteogenic differentiation induced by low‑intensity pulsed ultrasound in goldfish scales

  • Authors:
    • Yoshiaki Tabuchi
    • Kouhei Kuroda
    • Yukihiro Furusawa
    • Tetsushi Hirano
    • Ryo Nagaoka
    • Masaaki Omura
    • Hideyuki Hasegawa
    • Jun Hirayama
    • Nobuo Suzuki
  • View Affiliations / Copyright

    Affiliations: Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan, Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927‑0553, Japan, Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama 939‑0398, Japan, Laboratory of Medical Information Sensing, Faculty of Engineering, University of Toyama, Toyama 930‑8555, Japan, Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Ishikawa 923‑0961, Japan
    Copyright: © Tabuchi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 18
    |
    Published online on: November 22, 2024
       https://doi.org/10.3892/br.2024.1896
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The teleost scale is a unique calcified tissue that contains osteoclasts, osteoblasts, osteocytes and the bone matrix, similar to mammalian bone. Here, the effects of low‑intensity pulsed ultrasound (LIPUS) on osteoblasts and osteoclasts in goldfish scales were investigated. Scales were treated with LIPUS, which is equivalent to use under clinical conditions (30 mW/cm2 for 20 min), then cultured at 15˚C. Alkaline phosphatase activity, a marker of osteoblasts, or tartrate‑resistant acid phosphatase (TRAP) activity, a marker of osteoclasts was measured. The gene expression profile was examined using RNA‑sequencing. Gene network and biological function analyses were performed using the Ingenuity® Pathways Knowledge Base. A single exposure of LIPUS significantly increased ALP activity but did not affect TRAP activity. These data indicated that LIPUS induced osteoblastic activation in goldfish scales. Using RNA‑sequencing, numerous genes that were significantly and differentially expressed 3, 6, and 24 h after LIPUS exposure were observed. Ingenuity® pathway analysis demonstrated that three gene networks, GN‑3h, GN‑6h, and GN‑24h, were obtained from upregulated genes at 3, 6 and 24 h culture, respectively, and included several genes associated with osteoblast differentiation, such as protein kinase D1, prostaglandin‑endoperoxide synthase 2, TNFRSF11B (tumor necrosis factor receptor superfamily, member 11b) and WNT3A (Wnt family member 3A). A significant upregulation of expression levels of these genes in scales treated with LIPUS was confirmed by reverse transcription‑quantitative polymerase chain reaction. These results contribute to elucidating the molecular mechanisms of osteoblast activation induced by LIPUS.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Barnett SB, Ter Haar GR, Ziskin MC, Rott HD, Duck FA and Maeda K: International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med Biol. 26:355–366. 2000.PubMed/NCBI View Article : Google Scholar

2 

Snehota M, Vachutka J, Ter Haar G, Dolezal L and Kolarova H: Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility. Ultrasonics. 107(106167)2020.PubMed/NCBI View Article : Google Scholar

3 

Padilla F, Puts R, Vico L and Raum K: Stimulation of bone repair with ultrasound: A review of the possible mechanic effects. Ultrasonics. 54:1125–1145. 2014.PubMed/NCBI View Article : Google Scholar

4 

Harrison A, Lin S, Pounder N and Mikuni-Takagaki Y: Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair. Ultrasonics. 70:45–52. 2016.PubMed/NCBI View Article : Google Scholar

5 

Kennedy JE: High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 5:321–327. 2005.PubMed/NCBI View Article : Google Scholar

6 

Uchida T, Nakano M, Hongo S, Shoji S, Nagata Y, Satoh T, Baba S, Usui Y and Terachi T: High-intensity focused ultrasound therapy for prostate cancer. Int J Urol. 19:187–201. 2012.PubMed/NCBI View Article : Google Scholar

7 

Duarte LR: The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg (1978). 101:153–159. 1983.PubMed/NCBI View Article : Google Scholar

8 

Azuma Y, Ito M, Harada Y, Takagi H, Ohta T and Jingushi S: Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res. 16:671–680. 2001.PubMed/NCBI View Article : Google Scholar

9 

Cheung WH, Chow SK, Sun MH, Qin L and Leung KS: Low-intensity pulsed ultrasound accelerated callus formation, angiogenesis and callus remodeling in osteoporotic fracture healing. Ultrasound Med Biol. 37:231–238. 2011.PubMed/NCBI View Article : Google Scholar

10 

Naruse K, Sekiya H, Harada Y, Iwabuchi S, Kozai Y, Kawamata R, Kashima I, Uchida K, Urabe K, Seto K, et al: Prolonged endochondral bone healing in senescence is shortened by low-intensity pulsed ultrasound in a manner dependent on COX-2. Ultrasound Med Biol. 36:1098–1108. 2010.PubMed/NCBI View Article : Google Scholar

11 

Heckman JD, Ryaby JP, McCabe J, Frey JJ and Kilcoyne RF: Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am. 76:26–34. 1994.PubMed/NCBI View Article : Google Scholar

12 

Kristiansen TK, Ryaby JP, McCabe J, Frey JJ and Roe LR: Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am. 79:961–973. 1997.PubMed/NCBI View Article : Google Scholar

13 

Tang CH, Yang RS, Huang TH, Lu DY, Chuang WJ, Huang TF and Fu WM: Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, focal adhesion kinase, phosphatidylinositol 3-kinase, and Akt pathway in osteoblasts. Mol Pharmacol. 69:2047–2057. 2006.PubMed/NCBI View Article : Google Scholar

14 

Unsworth J, Kaneez S, Harris S, Ridgway J, Fenwick S, Chenery D and Harrison A: Pulsed low intensity ultrasound enhances mineralisation in preosteoblast cells. Ultrasound Med Biol. 9:1468–1474. 2007.PubMed/NCBI View Article : Google Scholar

15 

Borsje MA, Ren Y, de Haan-Visser HW and Kuijer R: Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells. Angle Orthod. 80:498–503. 2010.PubMed/NCBI View Article : Google Scholar

16 

Kitamura K, Suzuki N, Sato Y, Nemoto T, Ikegame M, Shimizu N, Kondo T, Furusawa Y, Wada S and Hattori A: Osteoblast activity in the goldfish scale responds sensitively to mechanical stress. Comp Biochem Physiol A Mol Integr Physiol. 156:357–363. 2010.PubMed/NCBI View Article : Google Scholar

17 

Costa V, Carina V, Fontana S, De Luca A, Monteleone F, Pagani S, Sartori M, Setti S, Faldini C, Alessandro R, et al: Osteogenic commitment and differentiation of human mesenchymal stem cells by low-intensity pulsed ultrasound stimulation. J Cell Physiol. 233:1558–1573. 2018.PubMed/NCBI View Article : Google Scholar

18 

Chiu CY, Tsai TL, Vanderby R Jr, Bradica G, Lou SL and Li WJ: Osteoblastogenesis of mesenchymal stem cells in 3-D culture enhanced by low-intensity pulsed ultrasound through soluble receptor activator of nuclear factor kappa B ligand. Ultrasound Med Biol. 41:1842–1852. 2015.PubMed/NCBI View Article : Google Scholar

19 

Miyasaka M, Nakata H, Hao J, Kim YK, Kasugai S and Kuroda S: Low-intensity pulsed ultrasound stimulation enhances heat-shock protein 90 and mineralized nodule formation in mouse calvaria-derived osteoblasts. Tissue Eng Part A. 21:2829–2839. 2015.PubMed/NCBI View Article : Google Scholar

20 

Zhang Z, Ma Y, Guo S, He Y, Bai G and Zhang W: Low-intensity pulsed ultrasound stimulation facilitates in vitro osteogenic differentiation of human adipose-derived stem cells via up-regulation of heat shock protein (HSP)70, HSP90, and bone morphogenetic protein (BMP) signaling pathway. Biosci Rep. 38(BSR20180087)2018.PubMed/NCBI View Article : Google Scholar

21 

Zhou J, Zhu Y, Ai D, Zhou M, Li H, Fu Y and Song J: Low-intensity pulsed ultrasound regulates osteoblast-osteoclast crosstalk via EphrinB2/EphB4 signaling for orthodontic alveolar bone remodeling. Front Bioeng Biotechnol. 11(1192720)2023.PubMed/NCBI View Article : Google Scholar

22 

Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ and Cerri PS: Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed Res Int. 2015(421746)2015.PubMed/NCBI View Article : Google Scholar

23 

Mikuni-Takagaki Y: Mechanical responses and signal transduction pathways in stretched osteocytes. J Bone Miner Metab. 17:57–60. 1999.PubMed/NCBI View Article : Google Scholar

24 

Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A and Weinbaum S: Mechanosensation and transduction in osteocytes. Bone. 54:182–190. 2013.PubMed/NCBI View Article : Google Scholar

25 

Ma Q, Miri Z, Haugen HJ, Moghanian A and Loca D: Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng. 14(20417314231172573)2023.PubMed/NCBI View Article : Google Scholar

26 

Bereiter-Hahn J and Zylberberg L: Regeneration of teleost fish scale. Comp Biochem Physiol. 105A:625–641. 1993.

27 

Suzuki N, Kitamura K, Omori K, Nemoto T, Satoh Y, Tabata MJ, Ikegame M, Yamamoto T, Ijiri K, Furusawa Y, et al: Response of osteoblasts and osteoclasts in regenerating scales to gravity loading. Biol Sci Space. 23:211–217. 2009.

28 

Hirayama J, Hattori A, Takahashi A, Furusawa Y, Tabuchi Y, Shibata M, Nagamatsu A, Yano S, Maruyama Y, Matsubara H, et al: Physiological consequences of space flight, including abnormal bone metabolism, space radiation injury, and circadian clock dysregulation: Implications of melatonin use and regulation as a countermeasure. J Pineal Res. 74(e12834)2023.PubMed/NCBI View Article : Google Scholar

29 

Yamamoto T, Ikegame M, Hirayama J, Kitamura KI, Tabuchi Y, Furusawa Y, Sekiguchi T, Endo M, Mishima H, Seki A, et al: Expression of sclerostin in the regenerating scales of goldfish and its increase under microgravity during space flight. Biomed Res. 41:279–288. 2020.PubMed/NCBI View Article : Google Scholar

30 

Ikegame M, Hattori A, Tabata MJ, Kitamura KI, Tabuchi Y, Furusawa Y, Maruyama Y, Yamamoto T, Sekiguchi T, Matsuoka R, et al: Melatonin is a potential drug for the prevention of bone loss during space flight. J Pineal Res. 67(e12594)2019.PubMed/NCBI View Article : Google Scholar

31 

Suzuki N, Hanmoto T, Yano S, Furusawa Y, Ikegame M, Tabuchi Y, Kondo T, Kitamura K, Endo M, Yamamoto T, et al: Low-intensity pulsed ultrasound induces apoptosis in osteoclasts: Fish scales are a suitable model for the analysis of bone metabolism by ultrasound. Comp Biochem Physiol A Mol Integr Physiol. 195:26–31. 2016.PubMed/NCBI View Article : Google Scholar

32 

Hanmoto T, Tabuchi Y, Ikegame M, Kondo T, Kitamura KI, Endo M, Kobayashi I, Mishima H, Sekiguchi T, Urata M, et al: Effects of low-intensity pulsed ultrasound on osteoclasts: Analysis with goldfish scales as a model of bone. Biomed Res. 38:71–77. 2017.PubMed/NCBI View Article : Google Scholar

33 

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al: De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 8:1494–1512. 2013.PubMed/NCBI View Article : Google Scholar

34 

Furusawa Y, Yamamoto T, Hattori A, Suzuki N, Hirayama J, Sekiguchi T and Tabuchi Y: De novo transcriptome analysis and gene expression profiling of fish scales isolated from Carassius auratus during space flight: Impact of melatonin on gene expression in response to space radiation. Mol Med Rep. 22:2627–2636. 2020.PubMed/NCBI View Article : Google Scholar

35 

Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, et al: Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(e3000411)2020.PubMed/NCBI View Article : Google Scholar

36 

Iwabuchi S, Ito M, Hata J, Chikanishi T, Azuma Y and Haro H: In vitro evaluation of low-intensity pulsed ultrasound in herniated disc resorption. Biomaterials. 26:7104–7114. 2005.PubMed/NCBI View Article : Google Scholar

37 

Tabuchi Y, Hasegawa H, Suzuki N, Furusawa Y, Hirano T, Nagaoka R, Hirayama J, Hoshi N and Mochizuki T: Genetic response to low-intensity ultrasound on mouse ST2 bone marrow stromal cells. Mol Med Rep. 23(173)2021.PubMed/NCBI View Article : Google Scholar

38 

Shen W, Le S, Li Y and Hu F: SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 11(e0163962)2016.PubMed/NCBI View Article : Google Scholar

39 

Bray NL, Pimentel H, Melsted P and Pachter L: Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 34:525–527. 2016.PubMed/NCBI View Article : Google Scholar

40 

Robinson MD and Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11(R25)2010.PubMed/NCBI View Article : Google Scholar

41 

Tabuchi Y, Takasaki I, Doi T, Ishii Y, Sakai H and Kondo T: Genetic networks responsive to sodium butyrate in colonic epithelial cells. FEBS Lett. 580:3035–3041. 2006.PubMed/NCBI View Article : Google Scholar

42 

Larionov A, Krause A and Miller W: A standard curve based method for relative real time PCR data processing. BMC Bioinformatics. 6(62)2005.PubMed/NCBI View Article : Google Scholar

43 

Tabuchi Y, Ohta S, Arai Y, Kawahara M, Ishibashi K, Sugiyama N, Horiuchi T, Furusawa M, Obinata M, Fuse H, et al: Establishment and characterization of a colonic epithelial cell line MCE301 from transgenic mice harboring temperature-sensitive simian virus 40 large T-antigen gene. Cell Struct Funct. 25:297–307. 2000.PubMed/NCBI View Article : Google Scholar

44 

Hanyu R, Wehbi VL, Hayata T, Moriya S, Feinstein TN, Ezura Y, Nagao M, Saita Y, Hemmi H, Notomi T, et al: Anabolic action of parathyroid hormone regulated by the β2-adrenergic receptor. Proc Natl Acad Sci USA. 109:7433–7438. 2012.PubMed/NCBI View Article : Google Scholar

45 

Bollag WB, Choudhary V, Zhong Q, Ding KH, Xu J, Elsayed R, Yu K, Su Y, Bailey LJ, Shi XM, et al: Deletion of protein kinase D1 in osteoprogenitor cells results in decreased osteogenesis in vitro and reduced bone mineral density in vivo. Mol Cell Endocrinol. 461:22–31. 2018.PubMed/NCBI View Article : Google Scholar

46 

Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, et al: Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 12:1260–1268. 1998.PubMed/NCBI View Article : Google Scholar

47 

Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, et al: The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest. 120:2457–2473. 2010.PubMed/NCBI View Article : Google Scholar

48 

Jensen ED, Gopalakrishnan R and Westendorf JJ: Bone morphogenic protein 2 activates protein kinase D to regulate histone deacetylase 7 localization and repression of Runx2. J Biol Chem. 284:2225–2234. 2009.PubMed/NCBI View Article : Google Scholar

49 

Yu H, de Vos P and Ren Y: Overexpression of osteoprotegerin promotes preosteoblast differentiation to mature osteoblasts. Angle Orthod. 81:100–106. 2011.PubMed/NCBI View Article : Google Scholar

50 

Si W, Kang Q, Luu HH, Park JK, Luo Q, Song WX, Jiang W, Luo X, Li X, Yin H, et al: CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Mol Cell Biol. 26:2955–2964. 2006.PubMed/NCBI View Article : Google Scholar

51 

Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN and O'Keefe RJ: Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest. 109:1405–1415. 2002.PubMed/NCBI View Article : Google Scholar

52 

Ford JJ, Yeh LC, Schmidgal EC, Thompson JF, Adamo ML and Lee JC: Protein kinase D1 is essential for bone acquisition during pubertal growth. Endocrinology. 154:4182–4191. 2013.PubMed/NCBI View Article : Google Scholar

53 

Yang B, Li S, Chen Z, Feng F, He L, Liu B, He T, Wang X, Chen R, Chen Z, et al: Amyloid β peptide promotes bone formation by regulating Wnt/β-catenin signaling and the OPG/RANKL/RANK system. FASEB J. 34:3583–3593. 2020.PubMed/NCBI View Article : Google Scholar

54 

Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, San Martin J and Dansey R: Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov. 11:401–419. 2012.PubMed/NCBI View Article : Google Scholar

55 

Hoter A, El-Sabban ME and Naim HY: The HSP90 family: Structure, regulation, function, and implications in health and disease. Int J Mol Sci. 19(2560)2018.PubMed/NCBI View Article : Google Scholar

56 

Palumbo S and Li WJ: Osteoprotegerin enhances osteogenesis of human mesenchymal stem cells. Tissue Eng Part A. 19:2176–2187. 2013.PubMed/NCBI View Article : Google Scholar

57 

Sena K, Leven RM, Mazhar K, Sumner DR and Virdi AS: Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med Biol. 31:703–708. 2005.PubMed/NCBI View Article : Google Scholar

58 

Tabuchi Y, Hasegawa H, Suzuki N, Furusawa Y, Hirano T, Nagaoka R, Takeuchi SI, Shiiba M and Mochizuki T: Low-intensity pulsed ultrasound promotes the expression of immediate-early genes in mouse ST2 bone marrow stromal cells. J Med Ultrason (2001). 47:193–201. 2020.PubMed/NCBI View Article : Google Scholar

59 

Veronick JA, Assanah F, Piscopo N, Kutes Y, Vyas V, Nair LS, Huey BD and Khan Y: Mechanically loading cell/hydrogel constructs with low-intensity pulsed ultrasound for bone repair. Tissue Eng Part A. 24:254–263. 2018.PubMed/NCBI View Article : Google Scholar

60 

Choudhary S, Halbout P, Alander C, Raisz L and Pilbeam C: Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: Involvement of prostaglandins. J Bone Miner Res. 22:1002–1010. 2007.PubMed/NCBI View Article : Google Scholar

61 

Allen HL, Wase A and Bear WT: Indomethacin and aspirin: Effect of nonsteroidal anti-inflammatory agents on the rate of fracture repair in the rat. Acta Orthop Scand. 51:595–600. 1980.PubMed/NCBI View Article : Google Scholar

62 

Elmstedt E, Lindholm TS, Nilsson OS and Törnkvist H: Effect of ibuprofen on heterotopic ossification after hip replacement. Acta Orthop Scand. 56:25–27. 1985.PubMed/NCBI View Article : Google Scholar

63 

Omori K, Wada S, Maruyama Y, Hattori A, Kitamura K, Sato Y, Nara M, Funahashi H, Yachiguchi K, Hayakawa K, et al: Prostaglandin E2 increases both osteoblastic and osteoclastic activities in the scales of goldfish and participates in the calcium metabolism in goldfish. Zoolog Sci. 29:499–504. 2012.PubMed/NCBI View Article : Google Scholar

64 

Zuehlke AD, Beebe K, Neckers L and Prince T: Regulation and function of the human HSP90AA1 gene. Gene. 570:8–16. 2015.PubMed/NCBI View Article : Google Scholar

65 

Akerfelt M, Morimoto RI and Sistonen L: Heat shock factors: Integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 11:545–555. 2010.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tabuchi Y, Kuroda K, Furusawa Y, Hirano T, Nagaoka R, Omura M, Hasegawa H, Hirayama J and Suzuki N: Genes involved in osteogenic differentiation induced by low‑intensity pulsed ultrasound in goldfish scales. Biomed Rep 22: 18, 2025.
APA
Tabuchi, Y., Kuroda, K., Furusawa, Y., Hirano, T., Nagaoka, R., Omura, M. ... Suzuki, N. (2025). Genes involved in osteogenic differentiation induced by low‑intensity pulsed ultrasound in goldfish scales. Biomedical Reports, 22, 18. https://doi.org/10.3892/br.2024.1896
MLA
Tabuchi, Y., Kuroda, K., Furusawa, Y., Hirano, T., Nagaoka, R., Omura, M., Hasegawa, H., Hirayama, J., Suzuki, N."Genes involved in osteogenic differentiation induced by low‑intensity pulsed ultrasound in goldfish scales". Biomedical Reports 22.2 (2025): 18.
Chicago
Tabuchi, Y., Kuroda, K., Furusawa, Y., Hirano, T., Nagaoka, R., Omura, M., Hasegawa, H., Hirayama, J., Suzuki, N."Genes involved in osteogenic differentiation induced by low‑intensity pulsed ultrasound in goldfish scales". Biomedical Reports 22, no. 2 (2025): 18. https://doi.org/10.3892/br.2024.1896
Copy and paste a formatted citation
x
Spandidos Publications style
Tabuchi Y, Kuroda K, Furusawa Y, Hirano T, Nagaoka R, Omura M, Hasegawa H, Hirayama J and Suzuki N: Genes involved in osteogenic differentiation induced by low‑intensity pulsed ultrasound in goldfish scales. Biomed Rep 22: 18, 2025.
APA
Tabuchi, Y., Kuroda, K., Furusawa, Y., Hirano, T., Nagaoka, R., Omura, M. ... Suzuki, N. (2025). Genes involved in osteogenic differentiation induced by low‑intensity pulsed ultrasound in goldfish scales. Biomedical Reports, 22, 18. https://doi.org/10.3892/br.2024.1896
MLA
Tabuchi, Y., Kuroda, K., Furusawa, Y., Hirano, T., Nagaoka, R., Omura, M., Hasegawa, H., Hirayama, J., Suzuki, N."Genes involved in osteogenic differentiation induced by low‑intensity pulsed ultrasound in goldfish scales". Biomedical Reports 22.2 (2025): 18.
Chicago
Tabuchi, Y., Kuroda, K., Furusawa, Y., Hirano, T., Nagaoka, R., Omura, M., Hasegawa, H., Hirayama, J., Suzuki, N."Genes involved in osteogenic differentiation induced by low‑intensity pulsed ultrasound in goldfish scales". Biomedical Reports 22, no. 2 (2025): 18. https://doi.org/10.3892/br.2024.1896
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team