|
1
|
Gustafson B, Nerstedt A and Smith U:
Reduced subcutaneous adipogenesis in human hypertrophic obesity is
linked to senescent precursor cells. Nat Commun.
10(2757)2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Kivimäki M, Strandberg T, Pentti J, Nyberg
ST, Frank P, Jokela M, Ervasti J, Suominen SB, Vahtera J, Sipilä
PN, et al: Body-mass index and risk of obesity-related complex
multimorbidity: An observational multicohort study. Lancet Diabetes
Endocrinol. 10:253–263. 2022.PubMed/NCBI View Article : Google Scholar
|
|
3
|
NCD Risk Factor Collaboration (NCD-RisC).
Trends in adult body-mass index in 200 countries from 1975 to 2014:
A pooled analysis of 1698 population-based measurement studies with
19·2 million participants. Lancet. 387:1377–1396. 2016.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Chen K, Shen Z, Gu W, Lyu Z, Qi X, Mu Y
and Ning Y: Meinian Investigator Group. Prevalence of obesity and
associated complications in China: A cross-sectional, real-world
study in 15.8 million adults. Diabetes Obes Metab. 25:3390–3399.
2023.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Glaviano A, Foo ASC, Lam HY, Yap KCH,
Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, et al:
PI3K/AKT/mTOR signaling transduction pathway and targeted therapies
in cancer. Mol Cancer. 22(138)2023.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Kim J, Han D, Byun SH, Kwon M, Cho SJ, Koh
YH and Yoon K: Neprilysin facilitates adipogenesis through
potentiation of the phosphatidylinositol 3-kinase (PI3K) signaling
pathway. Mol Cell Biochem. 430:1–9. 2017.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Liu J, Quan L, Wang J, Zhang G, Cai L, Pan
Z, Liu S, Zhu C, Wu R, Wang L, et al: Knockdown of VEGF-B improves
HFD-induced insulin resistance by enhancing glucose uptake in
vascular endothelial cells via the PI3K/Akt pathway. Int J Biol
Macromol. 285(138279)2024.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Araiz C, Yan A, Bettedi L, Samuelson I,
Virtue S, McGavigan AK, Dani C, Vidal-Puig A and Foukas LC:
Enhanced β-adrenergic signalling underlies an age-dependent
beneficial metabolic effect of PI3K p110alpha inactivation in
adipose tissue. Nat Commun. 10(1546)2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Lanahan SM, Wymann MP and Lucas CL: The
role of PI3Kγ in the immune system: New insights and translational
implications. Nat Rev Immunol. 22:687–700. 2022.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Arasi MB, De Luca G, Chronopoulou L,
Pedini F, Petrucci E, Flego M, Stringaro A, Colone M, Pasquini L,
Spada M, et al: MiR126-targeted-nanoparticles combined with
PI3K/AKT inhibitor as a new strategy to overcome melanoma
resistance. Mol Ther. 32:152–167. 2024.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Hermida MA, Dinesh Kumar J and Leslie NR:
GSK3 and its interactions with the PI3K/AKT/mTOR signalling
network. Adv Biol Regul. 65:5–15. 2017.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Manning BD and Toker A: AKT/PKB Signaling:
Navigating the network. Cell. 169:381–405. 2017.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Carnero A, Blanco-Aparicio C, Renner O,
Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer,
therapeutic implications. Curr Cancer Drug Targets. 8:187–198.
2008.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Al-Hawary SIS, Ruzibakieva M, Gupta R,
Malviya J, Toama MA, Hjazi A, Alkhayyat MRR, Alsaab HO, Hadi A and
Alwaily ER: Detailed role of microRNA-mediated regulation of
PI3K/AKT axis in human tumors. Cell Biochem Funct.
42(e3904)2024.PubMed/NCBI View
Article : Google Scholar
|
|
15
|
Tai H, Cui XZ, He J, Lan ZM, Li SM, Li LB,
Yao SC, Jiang XL, Meng XS and Kuang JS: Renoprotective effect of
tanshinone IIA against kidney injury induced by
ischemia-reperfusion in obese rats. Aging (Albany NY).
14:8302–8320. 2022.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Tait SW and Green DR: Mitochondria and
cell death: Outer membrane permeabilization and beyond. Nat Rev Mol
Cell Biol. 11:621–632. 2010.PubMed/NCBI View
Article : Google Scholar
|
|
17
|
Obeng E: Apoptosis (programmed cell death)
and its signals-A review. Braz J Biol. 81:1133–1143.
2021.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Dakkak BE, Taneera J, El-Huneidi W,
Abu-Gharbieh E, Hamoudi R, Semreen MH, Soares NC, Abu-Rish EY,
Alkawareek MY, Alkilany AM, et al: Unlocking the therapeutic
potential of BCL-2 associated protein family: Exploring BCL-2
inhibitors in cancer therapy. Biomol Ther (Seoul). 32:267–280.
2024.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Zhang W, Wu H, Liao Y, Zhu C and Zou Z:
Caspase family in autoimmune diseases. Autoimmun Rev.
24(103714)2024.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Alkhouri N, Gornicka A, Berk MP, Thapaliya
S, Dixon LJ, Kashyap S, Schauer PR and Feldstein AE: Adipocyte
apoptosis, a link between obesity, insulin resistance, and hepatic
steatosis. J Biol Chem. 285:3428–3348. 2010.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Reis-Barbosa PH, Marinho TS, Matsuura C,
Aguila MB, de Carvalho JJ and Mandarim-de-Lacerda CA: The obesity
and nonalcoholic fatty liver disease mouse model revisited: Liver
oxidative stress, hepatocyte apoptosis, and proliferation. Acta
Histochem. 124(151937)2022.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li
Y and Peng Z: ROS-induced lipid peroxidation modulates cell death
outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis.
Arch Toxicol. 97:1439–1451. 2023.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Qian S, Wei Z, Yang W, Huang J, Yang Y and
Wang J: The role of BCL-2 family proteins in regulating apoptosis
and cancer therapy. Front Oncol. 12(985363)2022.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Cai Y, Liu P, Xu Y, Xia Y, Peng X, Zhao H
and Chen Q: Biomarkers of obesity-mediated insulin resistance:
Focus on microRNAs. Diabetol Metab Syndr. 15(167)2023.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Kaur H, Singh A, Kaur K, Kumar A, Attri S,
Rashid F, Singh S, Bedi N, Tuli HS, Haque S, et al:
4-methylthiobutyl isothiocyanate synergize the antiproliferative
and pro-apoptotic effects of paclitaxel in human breast cancer
cells. Biotechnol Genet Eng Rev. 40:3780–3804. 2024.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Li FJ, Abudureyimu M, Zhang ZH, Tao J,
Ceylan AF, Lin J, Yu W, Reiter RJ, Ashrafizadeh M, Guo J and Ren J:
Inhibition of ER stress using tauroursodeoxycholic acid rescues
obesity-evoked cardiac remodeling and contractile anomalies through
regulation of ferroptosis. Chem Biol Interact.
398(111104)2024.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Good AL and Stoffers DA: Stress-induced
translational regulation mediated by RNA binding proteins: Key
links to β-cell failure in diabetes. Diabetes. 69:499–507.
2020.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Hirosumi J, Tuncman G, Chang L, Görgün CZ,
Uysal KT, Maeda K, Karin M and Hotamisligil GS: A central role for
JNK in obesity and insulin resistance. Nature. 420:333–336.
2002.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Barberio MD, Nadler EP, Sevilla S, Lu R,
Harmon B and Hubal MJ: Comparison of visceral adipose tissue DNA
methylation and gene expression profiles in female adolescents with
obesity. Diabetol Metab Syndr. 11(98)2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Huang F, Zhu P, Wang J, Chen J and Lin W:
Postnatal overfeeding induces hepatic microRNA-221 expression and
impairs the PI3K/AKT pathway in adult male rats. Pediatr Res.
89:143–149. 2021.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Lemieux SM and Hadden MK: Targeting the
fibroblast growth factor receptors for the treatment of cancer.
Anticancer Agents Med Chem. 13:748–761. 2013.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Liu F, Zhou H, Li X, Zhou L, Yu C, Zhang
H, Bu D and Liang X: GPCR-BSD: A database of binding sites of human
G-protein coupled receptors under diverse states. BMC
Bioinformatics. 25(343)2024.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Liu H, Guan H, Tan X, Jiang Y, Li F,
Sun-Waterhouse D and Li D: Enhanced alleviation of insulin
resistance via the IRS-1/Akt/FOXO1 pathway by combining quercetin
and EGCG and involving miR-27a-3p and miR-96-5p. Free Radic Biol
Med. 181:105–117. 2022.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Rebollo-Hernanz M, Zhang Q, Aguilera Y,
Martín-Cabrejas MA and Gonzalez de Mejia E: Phenolic compounds from
coffee by-products modulate adipogenesis-related inflammation,
mitochondrial dysfunction, and insulin resistance in adipocytes,
via insulin/PI3K/AKT signaling pathways. Food Chem Toxicol.
132(110672)2019.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Liu Y, Qiu Y, Chen Q, Han X, Cai M and Hao
L: Puerarin suppresses the hepatic gluconeogenesis via activation
of PI3K/Akt signaling pathway in diabetic rats and HepG(2) cells.
Biomed Pharmacother. 137(111325)2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Gong P, Xiao X, Wang S, Shi F, Liu N, Chen
X, Yang W, Wang L and Chen F: Hypoglycemic effect of astragaloside
IV via modulating gut microbiota and regulating AMPK/SIRT1 and
PI3K/AKT pathway. J Ethnopharmacol. 281(114558)2021.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Dai S, Hong Y, Xu J, Lin Y, Si Q and Gu X:
Ginsenoside Rb2 promotes glucose metabolism and attenuates fat
accumulation via AKT-dependent mechanisms. Biomed Pharmacother.
100:93–100. 2018.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Bort A, Sánchez BG, Mateos-Gómez PA,
Díaz-Laviada I and Rodríguez-Henche N: Capsaicin targets
lipogenesis in HepG2 cells through AMPK activation, AKT inhibition
and PPARs regulation. Int J Mol Sci. 20(1660)2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Dou Y, Huang R, Li Q, Liu Y, Li Y, Chen H,
Ai G, Xie J, Zeng H, Chen J, et al: Oxyberberine, an absorbed
metabolite of berberine, possess superior hypoglycemic effect via
regulating the PI3K/Akt and Nrf2 signaling pathways. Biomed
Pharmacother. 137(111312)2021.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Lv W, Wang X, Xu Q and Lu W: Mechanisms
and characteristics of sulfonylureas and glinides. Curr Top Med
Chem. 20:37–56. 2020.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Hanker AB, Kaklamani V and Arteaga CL:
Challenges for the clinical development of PI3K inhibitors:
Strategies to improve their impact in solid tumors. Cancer Discov.
9:482–491. 2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Cao Y, Wen H, Leng C and Feng S: MiR-29a
mediates the apoptotic effects of TNF-α on endothelial cells
through inhibiting PI3K/AKT/BCL-2 axis. J Biochem Mol Toxicol.
38(e23598)2024.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Jaiswal N, Gavin M, Loro E, Sostre-Colón
J, Roberson PA, Uehara K, Rivera-Fuentes N, Neinast M, Arany Z,
Kimball SR, et al: AKT controls protein synthesis and oxidative
metabolism via combined mTORC1 and FOXO1 signalling to govern
muscle physiology. J Cachexia Sarcopenia Muscle. 13:495–514.
2022.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Xu F, Cui WQ, Wei Y, Cui J, Qiu J, Hu LL,
Gong WY, Dong JC and Liu BJ: Astragaloside IV inhibits lung cancer
progression and metastasis by modulating macrophage polarization
through AMPK signaling. J Exp Clin Cancer Res.
37(207)2018.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Feng Y, Ren Y, Zhang X, Yang S, Jiao Q, Li
Q and Jiang W: Metabolites of traditional Chinese medicine
targeting PI3K/AKT signaling pathway for hypoglycemic effect in
type 2 diabetes. Front Pharmacol. 15(1373711)2024.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Zhan L, Wang X, Zhang Y, Zhu G, Ding Y,
Chen X, Jiang W and Wu S: Benazepril hydrochloride protects against
doxorubicin cardiotoxicity by regulating the PI3K/Akt pathway. Exp
Ther Med. 22(1082)2021.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Zhao ZQ, Yu ZY, Li J and Ouyang XN:
Gefitinib induces lung cancer cell autophagy and apoptosis via
blockade of the PI3K/AKT/mTOR pathway. Oncol Lett. 12:63–68.
2016.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Wang Z, Luo G and Qiu Z: Akt inhibitor
MK-2206 reduces pancreatic cancer cell viability and increases the
efficacy of gemcitabine. Oncol Lett. 19:1999–2004. 2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Chiaramonte A, Testi S, Pelosini C,
Micheli C, Falaschi A, Ceccarini G, Santini F and Scarpato R:
Oxidative and DNA damage in obese patients undergoing bariatric
surgery: A one-year follow-up study. Mutat Res.
827(111827)2023.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Alcalá M, Calderon-Dominguez M, Bustos E,
Ramos P, Casals N, Serra D, Viana M and Herrero L: Increased
inflammation, oxidative stress and mitochondrial respiration in
brown adipose tissue from obese mice. Sci Rep.
7(16082)2017.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Yuzefovych LV, Musiyenko SI, Wilson GL and
Rachek LI: Mitochondrial DNA damage and dysfunction, and oxidative
stress are associated with endoplasmic reticulum stress, protein
degradation and apoptosis in high fat diet-induced insulin
resistance mice. PLoS One. 8(e54059)2013.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Bhatia K, Tiwari S, Gupta VK, Sapariya NM
and Upadhyay SK: An in vitro model of adipose tissue-associated
macrophages. J Biosci. 49(79)2024.PubMed/NCBI
|
|
53
|
Kirichenko TV, Markina YV, Bogatyreva AI,
Tolstik TV, Varaeva YR and Starodubova AV: The role of adipokines
in inflammatory mechanisms of obesity. Int J Mol Sci.
23(14982)2022.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Fernandes-da-Silva A, Miranda CS,
Santana-Oliveira DA, Oliveira-Cordeiro B, Rangel-Azevedo C,
Silva-Veiga FM, Martins FF and Souza-Mello V: Endoplasmic reticulum
stress as the basis of obesity and metabolic diseases: Focus on
adipose tissue, liver, and pancreas. Eur J Nutr. 60:2949–2960.
2021.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Li Y, Guo Y, Tang J, Jiang J and Chen Z:
New insights into the roles of CHOP-induced apoptosis in ER stress.
Acta Biochim Biophys Sin (Shanghai). 46:629–640. 2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Yilmaz E: Endoplasmic reticulum stress and
obesity. Adv Exp Med Biol. 960:261–276. 2017.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Ma XM, Geng K, Law BY, Wang P, Pu YL, Chen
Q, Xu HW, Tan XZ, Jiang ZZ and Xu Y: Lipotoxicity-induced mtDNA
release promotes diabetic cardiomyopathy by activating the
cGAS-STING pathway in obesity-related diabetes. Cell Biol Toxicol.
39:277–299. 2023.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Kusminski CM, Shetty S, Orci L, Unger RH
and Scherer PE: Diabetes and apoptosis: Lipotoxicity. Apoptosis.
14:1484–1495. 2009.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Green DR: The death receptor pathway of
apoptosis. Cold Spring Harb Perspect Biol.
14(a041053)2022.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Huang TL, Jiang WJ, Zhou Z, Shi TF, Yu M,
Yu M, Si JQ, Wang YP and Li L: Quercetin attenuates
cisplatin-induced mitochondrial apoptosis via PI3K/Akt mediated
inhibition of oxidative stress in pericytes and improves the blood
labyrinth barrier permeability. Chem Biol Interact.
393(110939)2024.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Tang P, Tang Y, Liu Y, He B, Shen X, Zhang
ZJ, Qin DL and Tian J:
Quercetin-3-O-α-L-arabinopyranosyl-(1→2)-β-D-glucopyranoside
isolated from eucommia ulmoides leaf relieves insulin resistance in
HepG2 cells via the IRS-1/PI3K/Akt/GSK-3β pathway. Biol Pharm Bull.
46:219–229. 2023.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Zhu M, Zhou X and Zhao J: Quercetin
prevents alcohol-induced liver injury through targeting of
PI3K/Akt/nuclear factor-κB and STAT3 signaling pathway. Exp Ther
Med. 14:6169–6175. 2017.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Imran M, Rauf A, Shah ZA, Saeed F, Imran
A, Arshad MU, Ahmad B, Bawazeer S, Atif M, Peters DG and Mubarak
MS: Chemo-preventive and therapeutic effect of the dietary
flavonoid kaempferol: A comprehensive review. Phytother Res.
33:263–275. 2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Yao YX, Yu YJ, Dai S, Zhang CY, Xue XY,
Zhou ML, Yao CH and Li YX: Kaempferol efficacy in metabolic
diseases: Molecular mechanisms of action in diabetes mellitus,
obesity, non-alcoholic fatty liver disease, steatohepatitis, and
atherosclerosis. Biomed Pharmacother. 175(116694)2024.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Mao J, Li M, Wang X, Wang B, Luo P, Wang G
and Guo X: Exploring the mechanism of Pueraria lobata (Willd.) Ohwi
in the regulation of obesity. J Ethnopharmacol.
335(118703)2024.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Guo X, Yin T, Chen D, Xu S, Ye R and Zhang
Y: Astragaloside IV regulates insulin resistance and inflammatory
response of adipocytes via modulating MIR-21/PTEN/PI3K/AKT
signaling. Endocr Metab Immune Disord Drug Targets. 23:1538–1547.
2023.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Wu D, Jia H, Zhang Z and Li S: Capsaicin
suppresses breast cancer cell viability by regulating the
CDK8/PI3K/Akt/Wnt/β-catenin signaling pathway. Mol Med Rep.
22:4868–4876. 2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Zhang N, Liu X, Zhuang L, Liu X, Zhao H,
Shan Y, Liu Z, Li F, Wang Y and Fang J: Berberine decreases insulin
resistance in a PCOS rats by improving GLUT4: Dual regulation of
the PI3K/AKT and MAPK pathways. Regul Toxicol Pharmacol.
110(104544)2020.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Zhang XY, Yu L, Wang K, Wang M, Li P,
Zheng ZG and Yang H: The combination of berberine and
isoliquiritigenin synergistically improved adipose inflammation and
obesity-induced insulin resistance. Phytother Res. 38:3839–3855.
2024.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Qin C, Liu S, Zhou S, Xia X, Hu J, Yu Y
and Ma D: Tanshinone IIA promotes vascular normalization and boosts
Sorafenib's anti-hepatoma activity via modulating the PI3K-AKT
pathway. Front Pharmacol. 14(1189532)2023.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Kim Y, Rouse M, González-Mariscal I, Egan
JM and O'Connell JF: Dietary curcumin enhances insulin clearance in
diet-induced obese mice via regulation of hepatic PI3K-AKT axis and
IDE, and preservation of islet integrity. Nutr Metab (Lond).
16(48)2019.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Zoi V, Kyritsis AP, Galani V, Lazari D,
Sioka C, Voulgaris S and Alexiou GA: The role of curcumin in
cancer: A Focus on the PI3K/Akt Pathway. Cancers (Basel).
16(1554)2024.PubMed/NCBI View Article : Google Scholar
|