|
1
|
Ryu H, Fuwad A, Yoon S, Jang H, Lee JC,
Kim SM and Jeon TJ: Biomimetic membranes with transmembrane
proteins: State-of-the-art in transmembrane protein applications.
Int J Mol Sci. 20(1437)2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Stillwell W: Chapter 6-membrane proteins.
In: An introduction to biological membranes (second edition).
Stillwell W (ed). Elsevier, pp89-110, 2016.
|
|
3
|
Marx S, Dal Maso T, Chen JW, Bury M,
Wouters J, Michiels C and Le Calvé B: Transmembrane (TMEM) protein
family members: Poorly characterized even if essential for the
metastatic process. Semin Cancer Biol. 60:96–106. 2020.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Xu D, Qu L, Hu J, Li G, Lv P, Ma D, Guo M
and Chen Y: Transmembrane protein 106A is silenced by promoter
region hypermethylation and suppresses gastric cancer growth by
inducing apoptosis. J Cell Mol Med. 18:1655–1666. 2014.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Segelcke D, Fischer HK, Hütte M,
Dennerlein S, Benseler F, Brose N, Pogatzki-Zahn EM and Schmidt M:
Tmem160 contributes to the establishment of discrete nerve
injury-induced pain behaviors in male mice. Cell Rep.
37(110152)2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Wrzesiński T, Szelag M, Cieślikowski WA,
Ida A, Giles R, Zodro E, Szumska J, Poźniak J, Kwias Z, Bluyssen HA
and Wesoly J: Expression of pre-selected TMEMs with predicted ER
localization as potential classifiers of ccRCC tumors. BMC Cancer.
15(518)2015.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Zhang Z, Luo S, Barbosa GO, Bai M,
Kornberg TB and Ma DK: The conserved transmembrane protein TMEM-39
coordinates with COPII to promote collagen secretion and regulate
ER stress response. PLoS Genet. 17(e1009317)2021.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Foulquier F, Amyere M, Jaeken J, Zeevaert
R, Schollen E, Race V, Bammens R, Morelle W, Rosnoblet C, Legrand
D, et al: TMEM165 deficiency causes a congenital disorder of
glycosylation. Am J Hum Genet. 91:15–26. 2012.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Jung YS, Jun S, Kim MJ, Lee SH, Suh HN,
Lien EM, Jung HY, Lee S, Zhang J, Yang JI, et al: TMEM9 promotes
intestinal tumorigenesis through vacuolar-ATPase-activated
Wnt/β-catenin signalling. Nat Cell Biol. 20:1421–1433.
2018.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Tropea TF, Mak J, Guo MH, Xie SX, Suh E,
Rick J, Siderowf A, Weintraub D, Grossman M, Irwin D, et al:
TMEM106B effect on cognition in Parkinson disease and
frontotemporal dementia. Ann Neurol. 85:801–811. 2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Wang P, Zhao W, Sun J, Tao T, Chen X,
Zheng YY, Zhang CH, Chen Z, Gao YQ, She F, et al: Inflammatory
mediators mediate airway smooth muscle contraction through a G
protein-coupled receptor-transmembrane protein
16A-voltage-dependent Ca2+ channel axis and contribute
to bronchial hyperresponsiveness in asthma. J Allergy Clin Immunol.
141:1259–1268.e11. 2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
van der Mark VA, Ghiboub M, Marsman C,
Zhao J, van Dijk R, Hiralall JK, Ho-Mok KS, Castricum Z, de Jonge
WJ, Oude Elferink RP and Paulusma CC: Phospholipid flippases
attenuate LPS-induced TLR4 signaling by mediating endocytic
retrieval of Toll-like receptor 4. Cell Mol Life Sci. 74:715–730.
2017.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Lemmon MA and Schlessinger J: Cell
signaling by receptor tyrosine kinases. Cell. 141:1117–1134.
2010.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Yang J, Chen J, Del Carmen Vitery M,
Osei-Owusu J, Chu J, Yu H, Sun S and Qiu Z: PAC, an evolutionarily
conserved membrane protein, is a proton-activated chloride channel.
Science. 364:395–399. 2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Fu Q, Wu X, Lu Z, Chang Y, Jin Q, Jin T
and Zhang M: TMEM205 induces TAM/M2 polarization to promote
cisplatin resistance in gastric cancer. Gastric Cancer.
27:998–1015. 2024.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Guo Q, Shen S, Liao M, Lian P and Wang X:
NGX6 inhibits cell invasion and adhesion through suppression of
Wnt/beta-catenin signal pathway in colon cancer. Acta Biochim
Biophys Sin (Shanghai). 42:450–456. 2010.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Chen J, Wang D, Chen H, Gu J, Jiang X, Han
F, Cao J, Liu W and Liu J: TMEM196 inhibits lung cancer metastasis
by regulating the Wnt/β-catenin signaling pathway. J Cancer Res
Clin Oncol. 149:653–667. 2023.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Ng KT, Lo CM, Guo DY, Qi X, Li CX, Geng W,
Liu XB, Ling CC, Ma YY, Yeung WH, et al: Identification of
transmembrane protein 98 as a novel chemoresistance-conferring gene
in hepatocellular carcinoma. Mol Cancer Ther. 13:1285–1297.
2014.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Zhang X, He Y, Jiang Y, Bao Y, Chen Q, Xie
D, Yu H and Wang X: TMEM229A suppresses non-small cell lung cancer
progression via inactivating the ERK pathway. Oncol Rep.
46(176)2021.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Jun I, Park HS, Piao H, Han JW, An MJ, Yun
BG, Zhang X, Cha YH, Shin YK, Yook JI, et al: ANO9/TMEM16J promotes
tumourigenesis via EGFR and is a novel therapeutic target for
pancreatic cancer. Br J Cancer. 117:1798–1809. 2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Sui Y, Sun M, Wu F, Yang L, Di W, Zhang G,
Zhong L, Ma Z, Zheng J, Fang X and Ma T: Inhibition of TMEM16A
expression suppresses growth and invasion in human colorectal
cancer cells. PLoS One. 9(e115443)2014.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Deng L, Yang J, Chen H, Ma B, Pan K, Su C,
Xu F and Zhang J: Knockdown of TMEM16A suppressed MAPK and
inhibited cell proliferation and migration in hepatocellular
carcinoma. Onco Targets Ther. 9:325–333. 2016.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Bill A, Gutierrez A, Kulkarni S, Kemp C,
Bonenfant D, Voshol H, Duvvuri U and Gaither LA: ANO1/TMEM16A
interacts with EGFR and correlates with sensitivity to
EGFR-targeting therapy in head and neck cancer. Oncotarget.
6:9173–9188. 2015.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Duvvuri U, Shiwarski DJ, Xiao D, Bertrand
C, Huang X, Edinger RS, Rock JR, Harfe BD, Henson BJ, Kunzelmann K,
et al: TMEM16A induces MAPK and contributes directly to
tumorigenesis and cancer progression. Cancer Res. 72:3270–3281.
2012.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Britschgi A, Bill A, Brinkhaus H, Rothwell
C, Clay I, Duss S, Rebhan M, Raman P, Guy CT, Wetzel K, et al:
Calcium-activated chloride channel ANO1 promotes breast cancer
progression by activating EGFR and CAMK signaling. Proc Natl Acad
Sci USA. 110:E1026–E1034. 2013.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Liu F, Cao QH, Lu DJ, Luo B, Lu XF, Luo RC
and Wang XG: TMEM16A overexpression contributes to tumor invasion
and poor prognosis of human gastric cancer through TGF-β signaling.
Oncotarget. 6:11585–11599. 2015.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Liu J, Liu Y, Ren Y, Kang L and Zhang L:
Transmembrane protein with unknown function 16A overexpression
promotes glioma formation through the nuclear factor-κB signaling
pathway. Mol Med Rep. 9:1068–1074. 2014.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Jia L, Liu W, Guan L, Lu M and Wang K:
Inhibition of calcium-activated chloride channel ANO1/TMEM16A
suppresses tumor growth and invasion in human lung cancer. PLoS
One. 10(e0136584)2015.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Mazzone A, Eisenman ST, Strege PR, Yao Z,
Ordog T, Gibbons SJ and Farrugia G: Inhibition of cell
proliferation by a selective inhibitor of the Ca(2+)-activated
Cl(-) channel, Ano1. Biochem Biophys Res Commun. 427:248–253.
2012.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Cha JY, Wee J, Jung J, Jang Y, Lee B, Hong
GS, Chang BC, Choi YL, Shin YK, Min HY, et al: Anoctamin 1
(TMEM16A) is essential for testosterone-induced prostate
hyperplasia. Proc Natl Acad Sci USA. 112:9722–9727. 2015.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Shang L, Hao JJ, Zhao XK, He JZ, Shi ZZ,
Liu HJ, Wu LF, Jiang YY, Shi F, Yang H, et al: ANO1 protein as a
potential biomarker for esophageal cancer prognosis and
precancerous lesion development prediction. Oncotarget.
7:24374–24382. 2016.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Zhao Y, Song K, Zhang Y, Xu H, Zhang X,
Wang L, Fan C, Jiang G and Wang E: TMEM17 promotes malignant
progression of breast cancer via AKT/GSK3β signaling. Cancer Manag
Res. 10:2419–2428. 2018.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Wang S, Zhou Q, Yan S, Liu C, Li F, Feng D
and He M: TMEM17 promotes tumor progression in glioblastoma by
activating the PI3K/AKT pathway. Front Biosci (Landmark Ed).
29(285)2024.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Zhang X, Zhang Y, Miao Y, Zhou H, Jiang G
and Wang E: TMEM17 depresses invasion and metastasis in lung cancer
cells via ERK signaling pathway. Oncotarget. 8:70685–70694.
2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Flamant L, Roegiers E, Pierre M, Hayez A,
Sterpin C, De Backer O, Arnould T, Poumay Y and Michiels C: TMEM45A
is essential for hypoxia-induced chemoresistance in breast and
liver cancer cells. BMC Cancer. 12(391)2012.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Guo J, Chen L, Luo N, Yang W, Qu X and
Cheng Z: Inhibition of TMEM45A suppresses proliferation, induces
cell cycle arrest and reduces cell invasion in human ovarian cancer
cells. Oncol Rep. 33:3124–3130. 2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Shen K, Yu W, Yu Y, Liu X and Cui X:
Knockdown of TMEM45B inhibits cell proliferation and invasion in
gastric cancer. Biomed Pharmacother. 104:576–581. 2018.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Li Y, Guo W, Liu S, Zhang B, Yu BB, Yang
B, Kan SL and Feng SQ: Silencing transmembrane protein 45B
(TNEM45B) inhibits proliferation, invasion, and tumorigenesis in
osteosarcoma cells. Oncol Res. 25:1021–1026. 2017.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Zhang X, Yu X, Jiang G, Miao Y, Wang L,
Zhang Y, Liu Y, Fan C, Lin X, Dong Q, et al: Cytosolic TMEM88
promotes invasion and metastasis in lung cancer cells by binding
DVLS. Cancer Res. 75:4527–4537. 2015.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Yu X, Zhang X, Zhang Y, Jiang G, Mao X and
Jin F: Cytosolic TMEM88 promotes triple-negative breast cancer by
interacting with Dvl. Oncotarget. 6:25034–25045. 2015.PubMed/NCBI View Article : Google Scholar
|
|
41
|
de Leon M, Cardenas H, Vieth E, Emerson R,
Segar M, Liu Y, Nephew K and Matei D: Transmembrane protein 88
(TMEM88) promoter hypomethylation is associated with platinum
resistance in ovarian cancer. Gynecol Oncol. 142:539–547.
2016.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Cheng Z, Guo J, Chen L, Luo N, Yang W and
Qu X: Overexpression of TMEM158 contributes to ovarian
carcinogenesis. J Exp Clin Cancer Res. 34(75)2015.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Fu Y, Yao N, Ding D, Zhang X, Liu H, Ma L,
Shi W, Zhu C and Tang L: TMEM158 promotes pancreatic cancer
aggressiveness by activation of TGFβ1 and PI3K/AKT signaling
pathway. J Cell Physiol. 235:2761–2775. 2020.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Xu XY, Zhang LJ, Yu YQ, Zhang XT, Huang
WJ, Nie XC and Song GQ: Down-regulated MAC30 expression inhibits
proliferation and mobility of human gastric cancer cells. Cell
Physiol Biochem. 33:1359–1368. 2014.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Zhu H, Su Z, Ning J, Zhou L, Tan L, Sayed
S, Song J, Wang Z, Li H, Sun Q, et al: Transmembrane protein 97
exhibits oncogenic properties via enhancing LRP6-mediated Wnt
signaling in breast cancer. Cell Death Dis. 12(912)2021.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Mao D, Zhang X, Wang Z, Xu G and Zhang Y:
TMEM97 is transcriptionally activated by YY1 and promotes
colorectal cancer progression via the GSK-3β/β-catenin signaling
pathway. Hum Cell. 35:1535–1546. 2022.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Xu Y, Tang Y, Xu Q and He W: TMEM97
knockdown inhibits 5-fluorouracil resistance by regulating
epithelial-mesenchymal transition and ABC transporter expression
via inactivating the Akt/mTOR pathway in 5-fluorouracil-resistant
colorectal cancer cells. Chem Biol Drug Des.
103(e14490)2024.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Liu WB, Han F, Huang YS, Chen HQ, Chen JP,
Wang DD, Jiang X, Yin L, Cao J and Liu JY: TMEM196 hypermethylation
as a novel diagnostic and prognostic biomarker for lung cancer. Mol
Carcinog. 58:474–487. 2019.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Liu WB, Han F, Jiang X, Chen HQ, Zhao H,
Liu Y, Li YH, Huang C, Cao J and Liu JY: TMEM196 acts as a novel
functional tumour suppressor inactivated by DNA methylation and is
a potential prognostic biomarker in lung cancer. Oncotarget.
6:21225–21239. 2015.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Liu D, Wang K, Su D, Huang Y, Shang L,
Zhao Y, Huang J and Pang Y: TMEM16A regulates pulmonary arterial
smooth muscle cells proliferation via p38MAPK/ERK pathway in high
pulmonary blood flow-induced pulmonary arterial hypertension. J
Vasc Res. 58:27–37. 2020.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
|
51
|
Shang L, Wang K, Liu D, Qin S, Huang J,
Zhao Y and Pang Y: TMEM16A regulates the cell cycle of pulmonary
artery smooth muscle cells in high-flow-induced pulmonary arterial
hypertension rat model. Exp Ther Med. 19:3275–3281. 2020.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Zheng H, Li X, Zeng X, Huang C, Ma M, Lv
X, Zhang Y, Sun L, Wang G, Du Y and Guan Y: TMEM16A inhibits
angiotensin II-induced basilar artery smooth muscle cell migration
in a WNK1-dependent manner. Acta Pharm Sin B. 11:3994–4007.
2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Lv XF, Zhang YJ, Liu X, Zheng HQ, Liu CZ,
Zeng XL, Li XY, Lin XC, Lin CX, Ma MM, et al: TMEM16A ameliorates
vascular remodeling by suppressing autophagy via inhibiting
Bcl-2-p62 complex formation. Theranostics. 10:3980–3993.
2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Ma MM, Gao M, Guo KM, Wang M, Li XY, Zeng
XL, Sun L, Lv XF, Du YH, Wang GL, et al: TMEM16A contributes to
endothelial dysfunction by facilitating Nox2 NADPH oxidase-derived
reactive oxygen species generation in hypertension. Hypertension.
69:892–901. 2017.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Cil O, Chen X, Askew Page HR, Baldwin SN,
Jordan MC, Myat Thwe P, Anderson MO, Haggie PM, Greenwood IA, Roos
KP and Verkman AS: A small molecule inhibitor of the chloride
channel TMEM16A blocks vascular smooth muscle contraction and
lowers blood pressure in spontaneously hypertensive rats. Kidney
Int. 100:311–320. 2021.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Li Y, Cho H, Wang F, Canela-Xandri O, Luo
C, Rawlik K, Archacki S, Xu C, Tenesa A, Chen Q and Wang QK:
Statistical and functional studies identify epistasis of
cardiovascular risk genomic variants from genome-wide association
studies. J Am Heart Assoc. 9(e014146)2020.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Li M, Zhu H, Hu X, Gao F, Hu X, Cui Y, Wei
X, Xie C, Lv G, Zhao Y and Gao Y: TMEM98, a novel secretory
protein, promotes endothelial cell adhesion as well as vascular
smooth muscle cell proliferation and migration. Can J Physiol
Pharmacol. 99:536–548. 2021.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Chen XZ, Li XM, Xu SJ, Hu S, Wang T, Li
RF, Liu CY, Xue JQ, Zhou LY, Wang YH, et al: TMEM11 regulates
cardiomyocyte proliferation and cardiac repair via METTL1-mediated
m7G methylation of ATF5 mRNA. Cell Death Differ.
30:1786–1798. 2023.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Ding J, Matsumiya T, Miki Y, Hayakari R,
Shiba Y, Kawaguchi S, Seya K and Imaizumi T: ER export signals
mediate plasma membrane localization of transmembrane protein
TMEM72. FEBS J. 290:2636–2657. 2023.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Dobashi S, Katagiri T, Hirota E, Ashida S,
Daigo Y, Shuin T, Fujioka T, Miki T and Nakamura Y: Involvement of
TMEM22 overexpression in the growth of renal cell carcinoma cells.
Oncol Rep. 21:305–312. 2009.PubMed/NCBI
|
|
61
|
Thibodeau BJ, Fulton M, Fortier LE, Geddes
TJ, Pruetz BL, Ahmed S, Banes-Berceli A, Zhang PL, Wilson GD and
Hafron J: Characterization of clear cell renal cell carcinoma by
gene expression profiling. Urol Oncol. 34:168.e1–e9.
2016.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Jiang H, Chen H, Wan P, Liang M and Chen
N: Upregulation of TMEM45A promoted the progression of clear cell
renal cell carcinoma in vitro. J Inflamm Res. 14:6421–6430.
2021.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Schmit K, Chen JW, Ayama-Canden S,
Fransolet M, Finet L, Demazy C, D'Hondt L, Graux C and Michiels C:
Characterization of the role of TMEM45A in cancer cell sensitivity
to cisplatin. Cell Death Dis. 10(919)2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Wang P, Sun B, Hao D, Zhang X, Shi T and
Ma D: Human TMEM174 that is highly expressed in kidney tissue
activates AP-1 and promotes cell proliferation. Biochem Biophys Res
Commun. 394:993–999. 2010.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Zhang X, Hu F, Meng L, Gou L and Luo M:
Analysis of TMEM174 gene expression in various renal cancer types
by RNA in situ hybridization. Oncol Lett. 8:1693–1696.
2014.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Wu C, Xu J, Wang H, Zhang J, Zhong J, Zou
X, Chen Y, Yang G, Zhong Y, Lai D, et al: TMEM106a is a novel tumor
suppressor in human renal cancer. Kidney Blood Press Res.
42:853–864. 2017.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Dawe HR, Smith UM, Cullinane AR, Gerrelli
D, Cox P, Badano JL, Blair-Reid S, Sriram N, Katsanis N,
Attie-Bitach T, et al: The meckel-gruber syndrome proteins MKS1 and
meckelin interact and are required for primary cilium formation.
Hum Mol Genet. 16:173–186. 2007.PubMed/NCBI View Article : Google Scholar
|
|
68
|
McConnachie DJ, Stow JL and Mallett AJ:
Ciliopathies and the kidney: A review. Am J Kidney Dis. 77:410–419.
2021.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Yoder BK, Hou X and Guay-Woodford LM: The
polycystic kidney disease proteins, polycystin-1, polycystin-2,
polaris, and cystin, are co-localized in renal cilia. J Am Soc
Nephrol. 13:2508–2516. 2002.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Otto EA, Tory K, Attanasio M, Zhou W,
Chaki M, Paruchuri Y, Wise EL, Wolf MT, Utsch B, Becker C, et al:
Hypomorphic mutations in meckelin (MKS3/TMEM67) cause
nephronophthisis with liver fibrosis (NPHP11). J Med Genet.
46:663–670. 2009.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Hu HY, Zhang J, Qiu W, Liang C, Li CX, Wei
TY, Feng ZK, Guo Q, Yang K and Liu ZG: Comprehensive strategy
improves the genetic diagnosis of different polycystic kidney
diseases. J Cell Mol Med. 25:6318–6332. 2021.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
|
72
|
Du E, Li H, Jin S, Hu X, Qiu M and Han R:
Evidence that TMEM67 causes polycystic kidney disease through
activation of JNK/ERK-dependent pathways. Cell Biol Int.
37:694–702. 2013.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Zhu P, Qiu Q, Harris PC, Xu X and Lin X:
mtor haploinsufficiency ameliorates renal cysts and cilia
abnormality in adult zebrafish tmem67 mutants. J Am Soc Nephrol.
32:822–836. 2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Lambacher NJ, Bruel AL, van Dam TJP,
Szymańska K, Slaats GG, Kuhns S, McManus GJ, Kennedy JE, Gaff K, Wu
KM, et al: TMEM107 recruits ciliopathy proteins to subdomains of
the ciliary transition zone and causes Joubert syndrome. Nat Cell
Biol. 18:122–131. 2016.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Zhao X, Yan X, Liu Y, Zhang P and Ni X:
Co-expression of mouse TMEM63A, TMEM63B and TMEM63C confers
hyperosmolarity activated ion currents in HEK293 cells. Cell
Biochem Funct. 34:238–241. 2016.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Schulz A, Müller NV, van de Lest NA,
Eisenreich A, Schmidbauer M, Barysenka A, Purfürst B, Sporbert A,
Lorenzen T, Meyer AM, et al: Analysis of the genomic architecture
of a complex trait locus in hypertensive rat models links Tmem63c
to kidney damage. Elife. 8(e42068)2019.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Orphal M, Gillespie A, Böhme K, Subrova J,
Eisenreich A and Kreutz R: TMEM63C, a potential novel target for
albuminuria development, is regulated by MicroRNA-564 and
transforming growth factor beta in human renal cells. Kidney Blood
Press Res. 45:850–862. 2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Eisenreich A, Orphal M, Böhme K and Kreutz
R: Tmem63c is a potential pro-survival factor in angiotensin
II-treated human podocytes. Life Sci. 258(118175)2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Faria D, Rock JR, Romao AM, Schweda F,
Bandulik S, Witzgall R, Schlatter E, Heitzmann D, Pavenstädt H,
Herrmann E, et al: The calcium-activated chloride channel Anoctamin
1 contributes to the regulation of renal function. Kidney Int.
85:1369–1381. 2014.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Miyazaki-Anzai S, Keenan AL, Blaine J and
Miyazaki M: Targeted disruption of a proximal tubule-specific
TMEM174 gene in mice causes hyperphosphatemia and vascular
calcification. J Am Soc Nephrol. 33:1477–1486. 2022.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Liu W, Peng L, Tian W, Li Y, Zhang P, Sun
K, Yang Y, Li X, Li G and Zhu X: Loss of phosphatidylserine
flippase β-subunit Tmem30a in podocytes leads to albuminuria and
glomerulosclerosis. Dis Model Mech. 14(dmm048777)2021.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Lee JY, Harney DJ, Teo JD, Kwok JB,
Sutherland GT, Larance M and Don AS: The major TMEM106B dementia
risk allele affects TMEM106B protein levels, fibril formation, and
myelin lipid homeostasis in the ageing human hippocampus. Mol
Neurodegener. 18(63)2023.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Hu Y, Sun JY, Zhang Y, Zhang H, Gao S,
Wang T, Han Z, Wang L, Sun BL and Liu G: rs1990622 variant
associates with Alzheimer's disease and regulates TMEM106B
expression in human brain tissues. BMC Med. 19(11)2021.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Li Z, Farias FHG, Dube U, Del-Aguila JL,
Mihindukulasuriya KA, Fernandez MV, Ibanez L, Budde JP, Wang F,
Lake AM, et al: The TMEM106B FTLD-protective variant, rs1990621, is
also associated with increased neuronal proportion. Acta
Neuropathol. 139:45–61. 2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Perneel J, Neumann M, Heeman B, Cheung S,
Van den Broeck M, Wynants S, Baker M, Vicente CT, Faura J,
Rademakers R and Mackenzie IRA: Accumulation of TMEM106B C-terminal
fragments in neurodegenerative disease and aging. Acta Neuropathol.
145:285–302. 2023.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Zhao Y, Zhang K, Pan H, Wang Y, Zhou X,
Xiang Y, Xu Q, Sun Q, Tan J, Yan X, et al: Genetic analysis of six
transmembrane protein family genes in Parkinson's disease in a
large chinese cohort. Front Aging Neurosci.
14(889057)2022.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Cai X, Huang W, Liu X, Wang L and Jiang Y:
Association of novel polymorphisms in TMEM39A gene with systemic
lupus erythematosus in a Chinese Han population. BMC Med Genet.
18(43)2017.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Lessard CJ, Adrianto I, Ice JA, Wiley GB,
Kelly JA, Glenn SB, Adler AJ, Li H, Rasmussen A, Williams AH, et
al: Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as
susceptibility loci for systemic lupus erythematosus in a
large-scale multiracial replication study. Am J Hum Genet.
90:648–660. 2012.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Tian J, Sun L, Wan L, Zou H, Chen J and
Liu F: TMEM44 as a novel prognostic marker for kidney renal clear
cell carcinoma is associated with tumor invasion, migration and
immune infiltration. Biochem Genet. 62:1200–1215. 2024.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Zhang TM, Liao L, Yang SY, Huang MY, Zhang
YL, Deng L, Hu SY, Yang F, Zhang FL, Shao ZM and Li DQ:
TOLLIP-mediated autophagic degradation pathway links the
VCP-TMEM63A-DERL1 signaling axis to triple-negative breast cancer
progression. Autophagy. 19:805–821. 2023.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Li K, Guo Y, Wang Y, Zhu R, Chen W, Cheng
T, Zhang X, Jia Y, Liu T, Zhang W, et al: Drosophila TMEM63 and
mouse TMEM63A are lysosomal mechanosensory ion channels. Nat Cell
Biol. 26:393–403. 2024.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Duan J, Qian Y, Fu X, Chen M, Liu K, Liu
H, Yang J, Liu C and Chang Y: TMEM106C contributes to the malignant
characteristics and poor prognosis of hepatocellular carcinoma.
Aging (Albany NY). 13:5585–5606. 2021.PubMed/NCBI View Article : Google Scholar
|