1
|
Koo S, Kim M, Cho HM and Kim I: Maternal
high-fructose intake during pregnancy and lactation induces
metabolic syndrome in adult offspring. Nutr Res Pract. 15:160–172.
2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Yamazaki M, Yamada H, Munetsuna E,
Ishikawa H, Mizuno G, Mukuda T, Mouri A, Nabeshima T, Saito K,
Suzuki K, et al: Excess maternal fructose consumption impairs
hippocampal function in offspring via epigenetic modification of
BDNF promoter. FASEB J. 32:2549–2562. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Liu S, Zhang H, Yan B, Zhao H, Wang Y, Gao
T and Liang H: Maternal high-fructose consumption provokes
placental oxidative stress resulting in asymmetrical fetal growth
restriction in rats. J Clin Biochem Nutr. 69:68–76. 2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Spagnuolo MS, Iossa S and Cigliano L:
Sweet but bitter: Focus on fructose impact on brain function in
rodent models. Nutrients. 13(1)2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Yamazaki M, Yamada H, Munetsuna E, Ando Y,
Kageyama I, Sadamoto N, Nouchi Y, Teshigawara A, Mizuno G, Ishikawa
H, et al: Interaction between prenatal and postnatal exposure to
high-fructose corn syrup increases gene expression of Tnfa in
hippocampus of offspring. J Nutr Sci Vitaminol (Tokyo). 69:237–242.
2023.PubMed/NCBI View Article : Google Scholar
|
6
|
Wu CW, Hung CY, Hirase H, Tain YL, Lee WC,
Chan JYH, Fu MH, Chen LW, Liu WC, Liang CK, et al: Pioglitazone
reversed the fructose-programmed astrocytic glycolysis and
oxidative phosphorylation of female rat offspring. Am J Physiol
Endocrinol Metab. 316:E622–E634. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Lê KA and Tappy L: Metabolic effects of
fructose. Curr Opin Clin Nutr Metab Care. 9:469–475.
2006.PubMed/NCBI View Article : Google Scholar
|
8
|
Mizuno G, Munetsuna E, Yamada H, Yamazaki
M, Ando Y, Hattori Y, Kageyama I, Teshigawara A, Nouchi Y, Fujii R,
et al: Maternal fructose consumption downregulates hippocampal
catalase expression via DNA methylation in rat offspring. Nutr Res.
92:40–48. 2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Smith EVL, Dyson RM, Weth FR, Berry MJ and
Gray C: Maternal fructose intake, programmed mitochondrial function
and predisposition to adult disease. Int J Mol Sci.
23(12215)2022.PubMed/NCBI View Article : Google Scholar
|
10
|
Bokor S, Csölle I, Felső R, Vass RA, Ertl
T and Molnár D: Dietary nutrients during gestation cause obesity
and related metabolic changes by altering DNA methylation in the
offspring. Front Endocrinol (Lausanne). 15(1287255)2024.PubMed/NCBI View Article : Google Scholar
|
11
|
Kearns ML and Reynolds CM: The impact of
non-nutritive sweeteners on fertility, maternal and child health
outcomes: A review of human and animal studies. Proc Nutr Soc.
83:280–292. 2024.PubMed/NCBI View Article : Google Scholar
|
12
|
Gillespie KM, White MJ, Kemps E, Moore H,
Dymond A and Bartlett SE: The impact of free and added sugars on
cognitive function: A systematic review and meta-analysis.
Nutrients. 16(75)2024.PubMed/NCBI View Article : Google Scholar
|
13
|
Li JM, Yu R, Zhang LP, Wen SY, Wang SJ,
Zhang XY, Xu Q and Kong LD: Dietary fructose-induced gut dysbiosis
promotes mouse hippocampal neuroinflammation: A benefit of
short-chain fatty acids. Microbiome. 7(98)2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Chao YM, Wu KLH, Tsai PC, Tain YL, Leu S,
Lee WC and Chan JYH: Anomalous AMPK-regulated angiotensin
AT1R expression and SIRT1-mediated mitochondrial
biogenesis at RVLM in hypertension programming of offspring to
maternal high fructose exposure. J Biomed Sci.
27(68)2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Mortensen OH, Larsen LH, Ørstrup LK,
Hansen LH, Grunnet N and Quistorff B: Developmental programming by
high fructose decreases phosphorylation efficiency in aging
offspring brain mitochondria, correlating with enhanced UCP5
expression. J Cereb Blood Flow Metab. 34:1205–1211. 2014.PubMed/NCBI View Article : Google Scholar
|
16
|
Liu WC, Wu CW, Fu MH, Tain YL, Liang CK,
Hung CY, Chen IC, Lee YC, Wu CY and Wu KLH: Maternal high
fructose-induced hippocampal neuroinflammation in the adult female
offspring via PPARγ-NF-κB signaling. J Nutr Biochem.
81(108378)2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Chao YM, Tain YL, Lee WC, Wu KLH, Yu HR
and Chan JYH: Protection by -biotics against hypertension
programmed by maternal high fructose diet: Rectification of
dysregulated expression of short-chain fatty acid receptors in the
hypothalamic paraventricular nucleus of adult offspring. Nutrients.
14(4306)2022.PubMed/NCBI View Article : Google Scholar
|
18
|
Magenis ML, Damiani AP, De Marcos PS, De
Pieri E, De Souza E, Vilela TC and De Andrade VM: Fructose
consumption during pregnancy and lactation causes DNA damage and
biochemical changes in female mice. Mutagenesis. 35:179–187.
2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Yamada H, Munetsuna E, Yamazaki M, Mizuno
G, Sadamoto N, Ando Y, Fujii R, Shiogama K, Ishikawa H, Suzuki K,
et al: Maternal fructose-induced oxidative stress occurs via Tfam
and Ucp5 epigenetic regulation in offspring hippocampi. FASEB J.
33:11431–11442. 2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Wu HW, Ren LF, Zhou X and Han DW: A
high-fructose diet induces hippocampal insulin resistance and
exacerbates memory deficits in male sprague-dawley rats. Nutr
Neurosci. 18:323–328. 2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Jiménez-Maldonado A, Ying Z, Byun HR and
Gomez-Pinilla F: Short-term fructose ingestion affects the brain
independently from establishment of metabolic syndrome. Biochim
Biophys Acta Mol Basis Dis. 1864:24–33. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Bukhari SHF, Clark OE and Williamson LL:
Maternal high fructose diet and neonatal immune challenge alter
offspring anxiety-like behavior and inflammation across the
lifespan. Life Sci. 197:114–121. 2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Jones N, Blagih J, Zani F, Rees A, Hill
DG, Jenkins BJ, Bull CJ, Moreira D, Bantan AIM, Cronin JG, et al:
Fructose reprogrammes glutamine-dependent oxidative metabolism to
support LPS-induced inflammation. Nat Commun.
12(1209)2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Kinshella MLW, Omar S, Scherbinsky K,
Vidler M, Magee LA, von Dadelszen P, Moore SE and Elango R: PRECISE
Conceptual Framework Working Group. Maternal nutritional risk
factors for pre-eclampsia incidence: Findings from a narrative
scoping review. Reprod Health. 19(188)2022.PubMed/NCBI View Article : Google Scholar
|
25
|
Wang J, Fröhlich H, Torres FB, Silva RL,
Poschet G, Agarwal A and Rappold GA: Mitochondrial dysfunction and
oxidative stress contribute to cognitive and motor impairment in
FOXP1 syndrome. Proc Natl Acad Sci USA.
119(e2112852119)2022.PubMed/NCBI View Article : Google Scholar
|
26
|
Vickers MH, Clayton ZE, Yap C and Sloboda
DM: Maternal fructose intake during pregnancy and lactation alters
placental growth and leads to sex-specific changes in fetal and
neonatal endocrine function. Endocrinology. 152:1378–1387.
2011.PubMed/NCBI View Article : Google Scholar
|
27
|
Clayton ZE, Vickers MH, Bernal A, Yap C
and Sloboda DM: Early life exposure to fructose alters maternal,
fetal and neonatal hepatic gene expression and leads to
sex-dependent changes in lipid metabolism in rat offspring. PLoS
One. 10(e0141962)2015.PubMed/NCBI View Article : Google Scholar
|
28
|
Kisioglu B and Nergiz-Unal R: Potential
effect of maternal dietary sucrose or fructose syrup on CD36,
leptin, and ghrelin-mediated fetal programming of obesity. Nutr
Neurosci. 23:210–220. 2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Koski KG, Lanoue S and Young SN:
Restriction of maternal dietary carbohydrate decreases fetal brain
indoles and glycogen in rats. J Nutr. 123:42–51. 1993.PubMed/NCBI View Article : Google Scholar
|
30
|
Munetsuna E, Yamada H, Yamazaki M, Ando Y,
Mizuno G, Ota T, Hattori Y, Sadamoto N, Suzuki K, Ishikawa H, et
al: Maternal fructose intake disturbs ovarian estradiol synthesis
in rats. Life Sci. 202:117–123. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Zou Y, Guo Q, Chang Y, Zhong Y, Cheng L
and Wei W: Alternative splicing affects synapses in the hippocampus
of offspring after maternal fructose exposure during gestation and
lactation. Chem Biol Interact. 379(110518)2023.PubMed/NCBI View Article : Google Scholar
|
32
|
Zou Y, Guo Q, Chang Y, Zhong Y, Cheng L
and Wei W: Effects of maternal high-fructose diet on long
non-coding RNAs and anxiety-like behaviors in offspring. Int J Mol
Sci. 24(4460)2023.PubMed/NCBI View Article : Google Scholar
|
33
|
Wu KLH, Liu WC, Wu CW, Fu MH, Huang HM,
Tain YL, Liang CK, Hung CY, Chen IC, Hung P, et al: Butyrate
reduction and HDAC4 increase underlie maternal high
fructose-induced metabolic dysfunction in hippocampal astrocytes in
female rats. J Nutr Biochem. 126(109571)2024.PubMed/NCBI View Article : Google Scholar
|
34
|
Chao YM, Tain YL, Leu S, Wu KL, Lee WC and
Chan JY: Developmental programming of the metabolic syndrome:
Next-gener-ation sequencing analysis of transcriptome expression in
a rat model of maternal high fructose intake. Sheng Li Xue Bao.
68:557–567. 2016.PubMed/NCBI
|
35
|
Zou Y, Guo Q, Chang Y, Jia L, Zhai L, Bai
Y, Sun Q and Wei W: Learning and memory impairment and
transcriptomic profile in hippocampus of offspring after maternal
fructose exposure during gestation and lactation. Food Chem
Toxicol. 169(113394)2022.PubMed/NCBI View Article : Google Scholar
|
36
|
Mukai Y, Ozaki H, Serita Y and Sato S:
Maternal fructose intake during pregnancy modulates hepatic and
hypothalamic AMP-activated protein kinase signalling in a
sex-specific manner in offspring. Clin Exp Pharmacol Physiol.
41:331–337. 2014.PubMed/NCBI View Article : Google Scholar
|
37
|
Ohashi K, Ando Y, Munetsuna E, Yamada H,
Yamazaki M, Nagura A, Taromaru N, Ishikawa H, Suzuki K and
Teradaira R: Maternal fructose consumption alters messenger RNA
expression of hippocampal StAR, PBR, P450(11β), 11β-HSD, and
17β-HSD in rat offspring. Nutr Res. 35:259–264. 2015.PubMed/NCBI View Article : Google Scholar
|
38
|
Mizuno G, Munetsuna E, Yamada H, Ando Y,
Yamazaki M, Murase Y, Kondo K, Ishikawa H, Teradaira R, Suzuki K
and Ohashi K: Fructose intake during gestation and lactation
differentially affects the expression of hippocampal
neurosteroidogenic enzymes in rat offspring. Endocr Res. 42:71–77.
2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Wu KL, Wu CW, Tain YL, Huang LT, Chao YM,
Hung CY, Wu JC, Chen SR, Tsai PC and Chan JY: Environmental
stimulation rescues maternal high fructose intake-impaired learning
and memory in female offspring: Its correlation with redistribution
of histone deacetylase 4. Neurobiol Learn Mem. 130:105–117.
2016.PubMed/NCBI View Article : Google Scholar
|
40
|
Crichton GE, Elias MF and Torres RV:
Sugar-sweetened soft drinks are associated with poorer cognitive
function in individuals with type 2 diabetes: The maine-syracuse
longitudinal study. Br J Nutr. 115:1397–1405. 2016.PubMed/NCBI View Article : Google Scholar
|
41
|
Ye X, Gao X, Scott T and Tucker KL:
Habitual sugar intake and cognitive function among middle-aged and
older Puerto Ricans without diabetes. Br J Nutr. 106:1423–1432.
2011.PubMed/NCBI View Article : Google Scholar
|
42
|
Saad AF, Alshehri W, Lei J, Kechichian TB,
Gamble P, Alhejaily N, Shabi Y, Saade GR, Costantine MM and Burd I:
Maternal fructose consumption disrupts brain development of
offspring in a murine model of autism spectrum disorder. Am J
Perinatol. 33:1357–1364. 2016.PubMed/NCBI View Article : Google Scholar
|
43
|
Erbas O, Erdogan MA, Khalilnezhad A,
Gürkan FT, Yiğittürk G, Meral A and Taskiran D: Neurobehavioral
effects of long-term maternal fructose intake in rat offspring. Int
J Dev Neurosci. 69:68–79. 2018.PubMed/NCBI View Article : Google Scholar
|
44
|
Rivell A and Mattson MP: Intergenerational
metabolic syndrome and neuronal network hyperexcitability in
autism. Trends Neurosci. 42:709–726. 2019.PubMed/NCBI View Article : Google Scholar
|