
Research developments in the neurovascular unit and the blood‑brain barrier (Review)
- Authors:
- Yating Gong
- Muyao Wu
- Yaqian Huang
- Xiaoyi He
- Jiaqi Yuan
- Baoqi Dang
-
Affiliations: Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China, Department of Neurosurgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China - Published online on: March 18, 2025 https://doi.org/10.3892/br.2025.1966
- Article Number: 88
-
Copyright: © Gong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Diaz-Garcia CM, Mongeon R, Lahmann C, Koveal D, Zucker H and Yellen G: Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab. 26:361–374.e4. 2017.PubMed/NCBI View Article : Google Scholar | |
Roy CS and Sherrington CS: On the regulation of the blood-supply of the brain. J Physiol. 11:85–158.117. 1890.PubMed/NCBI View Article : Google Scholar | |
Xue Q, Liu Y, Qi H, Ma Q, Xu L, Chen W, Chen G and Xu X: A novel brain neurovascular unit model with neurons, astrocytes and microvascular endothelial cells of rat. Int J Biol Sci. 9:174–189. 2013.PubMed/NCBI View Article : Google Scholar | |
Harder DR, Zhang C and Gebremedhin D: Astrocytes function in matching blood flow to metabolic activity. News Physiol Sci. 17:27–31. 2002.PubMed/NCBI View Article : Google Scholar | |
Simard M, Arcuino G, Takano T, Liu QS and Nedergaard M: Signaling at the gliovascular interface. J Neurosci. 23:9254–9262. 2003.PubMed/NCBI View Article : Google Scholar | |
Reese TS and Karnovsky MJ: Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 34:207–217. 1967.PubMed/NCBI View Article : Google Scholar | |
Yamamizu K, Iwasaki M, Takakubo H, Sakamoto T, Ikuno T, Miyoshi M, Kondo T, Nakao Y, Nakagawa M, Inoue H and Yamashita JK: In vitro modeling of blood-brain barrier with human iPSC-derived endothelial cells, pericytes, neurons, and astrocytes via notch signaling. Stem Cell Reports. 8:634–647. 2017.PubMed/NCBI View Article : Google Scholar | |
Ehrlich P: Das sauerstoff-bedürfnis des organismus: Eine farbenanalytische studie. August Hirschwald, 1885. | |
Saunders NR, Dreifuss JJ, Dziegielewska KM, Johansson PA, Habgood MD, Møllgård K and Bauer HC: The rights and wrongs of blood-brain barrier permeability studies: A walk through 100 years of history. Front Neurosci. 8(404)2014.PubMed/NCBI View Article : Google Scholar | |
Patel R, Page S and Al-Ahmad AJ: Isogenic blood-brain barrier models based on patient-derived stem cells display inter-individual differences in cell maturation and functionality. J Neurochem. 142:74–88. 2017.PubMed/NCBI View Article : Google Scholar | |
Salmina AB, Kharitonova EV, Gorina YV, Teplyashina EA, Malinovskaya NA, Khilazheva ED, Mosyagina AI, Morgun AV, Shuvaev AN, Salmin VV, et al: Blood-brain barrier and neurovascular unit in vitro models for studying mitochondria-driven molecular mechanisms of neurodegeneration. Int J Mol Sci. 22(4661)2021.PubMed/NCBI View Article : Google Scholar | |
Salmina AB, Kuvacheva NV, Morgun AV, Komleva YK, Pozhilenkova EA, Lopatina OL, Gorina YV, Taranushenko TE and Petrova LL: Glycolysis-mediated control of blood-brain barrier development and function. Int J Biochem Cell Biol. 64:174–184. 2015.PubMed/NCBI View Article : Google Scholar | |
Lv J, Hu W, Yang Z, Li T, Jiang S, Ma Z, Chen F and Yang Y: Focusing on claudin-5: A promising candidate in the regulation of BBB to treat ischemic stroke. Prog Neurobiol. 161:79–96. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhu J, Lin X, Chen C, Tan H, Gao Y, Li D and Chen G: WNK3 promotes neuronal survival after traumatic brain injury in rats. Neuroscience. 477:76–88. 2021.PubMed/NCBI View Article : Google Scholar | |
Huang W, Li J, Geng X, Li S, Zou Y, Li Y, Jing C and Yu H: The reactive astrocytes after surgical brain injury potentiates the migration, invasion, and angiogenesis of C6 glioma. World Neurosurg. 168:e595–e606. 2022.PubMed/NCBI View Article : Google Scholar | |
Wu D, Lai N, Deng R, Liang T, Pan P, Yuan G, Li X, Li H, Shen H, Wang Z and Chen G: Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway. Exp Neurol. 332(113386)2020.PubMed/NCBI View Article : Google Scholar | |
Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan WL, Saint-Pierre M, Dury RJ, Alata W, St-Amour I, Mason SL, et al: Cerebrovascular and blood-brain barrier impairments in Huntington's disease: Potential implications for its pathophysiology. Ann Neurol. 78:160–177. 2015.PubMed/NCBI View Article : Google Scholar | |
Mohi-Ud-Din R, Mir RH, Mir PA, Banday N, Shah AJ, Sawhney G, Bhat MM, Batiha GE and Pottoo FH: Dysfunction of ABC transporters at the surface of BBB: Potential implications in intractable epilepsy and applications of nanotechnology enabled drug delivery. Curr Drug Metab. 23:735–756. 2022.PubMed/NCBI View Article : Google Scholar | |
Ferraro S, Klugah-Brown B, Tench CR, Bazinet V, Bore MC, Nigri A, Demichelis G, Bruzzone MG, Palermo S, Zhao W, et al: The central autonomic system revisited-convergent evidence for a regulatory role of the insular and midcingulate cortex from neuroimaging meta-analyses. Neurosci Biobehav Rev. 142(104915)2022.PubMed/NCBI View Article : Google Scholar | |
Bittern J, Pogodalla N, Ohm H, Brüser L, Kottmeier R, Schirmeier S and Klämbt C: Neuron-glia interaction in the Drosophila nervous system. Dev Neurobiol. 81:438–452. 2021.PubMed/NCBI View Article : Google Scholar | |
Rolls MM and Jegla TJ: Neuronal polarity: An evolutionary perspective. J Exp Biol. 218:572–580. 2015.PubMed/NCBI View Article : Google Scholar | |
Muzio MR and Cascella M: Marco Cascella declares no relevant financial relationships with ineligible companies. In: Histology, Axon. StatPearls, Treasure Island, FL, 2024. | |
Zhang D, Ruan J, Peng S, Li J, Hu X, Zhang Y, Zhang T, Ge Y, Zhu Z, Xiao X, et al: Synaptic-like transmission between neural axons and arteriolar smooth muscle cells drives cerebral neurovascular coupling. Nat Neurosci. 27:232–248. 2024.PubMed/NCBI View Article : Google Scholar | |
Qin D and Wang J, Le A, Wang TJ, Chen X and Wang J: Traumatic brain injury: Ultrastructural features in neuronal ferroptosis, glial cell activation and polarization, and blood-brain barrier breakdown. Cells. 10(1009)2021.PubMed/NCBI View Article : Google Scholar | |
Schirmeier S and Klämbt C: The Drosophila blood-brain barrier as interface between neurons and hemolymph. Mech Dev. 138:50–55. 2015.PubMed/NCBI View Article : Google Scholar | |
Miller F, Afonso PV, Gessain A and Ceccaldi PE: Blood-brain barrier and retroviral infections. Virulence. 3:222–229. 2012.PubMed/NCBI View Article : Google Scholar | |
Cataldi M: The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol. 11:276–297. 2013.PubMed/NCBI View Article : Google Scholar | |
Lauritzen M, Mathiesen C, Schaefer K and Thomsen KJ: Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. Neuroimage. 62:1040–1050. 2012.PubMed/NCBI View Article : Google Scholar | |
Cheng YT, Luna-Figueroa E, Woo J, Chen HC, Lee ZF, Harmanci AS and Deneen B: Inhibitory input directs astrocyte morphogenesis through glial GABA(B)R. Nature. 617:369–376. 2023.PubMed/NCBI View Article : Google Scholar | |
Ancatén-González C, Segura I, Alvarado-Sánchez R, Chávez AE and Latorre R: Ca2+- and voltage-activated K+ (BK) channels in the nervous system: One gene, a myriad of physiological functions. Int J Mol Sci. 24(3407)2023.PubMed/NCBI View Article : Google Scholar | |
Cohen S and Greenberg ME: Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu Rev Cell Dev Biol. 24:183–209. 2008.PubMed/NCBI View Article : Google Scholar | |
Sun J, Zheng Y, Chen Z and Wang Y: The role of Na+ -K+ -ATPase in the epileptic brain. CNS Neurosci Ther. 28:1294–1302. 2022.PubMed/NCBI View Article : Google Scholar | |
Jiang S, Fan F, Yang L, Chen K, Sun Z, Zhang Y, Cairang N, Wang X and Meng X: Salidroside attenuates high altitude hypobaric hypoxia-induced brain injury in mice via inhibiting NF-κB/NLRP3 pathway. Eur J Pharmacol. 925(175015)2022.PubMed/NCBI View Article : Google Scholar | |
Li B, Li N, Chen L, Ren S, Gao D, Geng H, Fu J, Zhou M and Xing C: Alleviating neuroinflammation through photothermal conjugated polymer nanoparticles by regulating reactive oxygen species and Ca2+ signaling. ACS Appl Mater Interfaces. 14:48416–48425. 2022.PubMed/NCBI View Article : Google Scholar | |
Reddiar SB, de Veer M, Paterson BM, Sepehrizadeh T, Wai DCC, Csoti A, Panyi G, Nicolazzo JA and Norton RS: A biodistribution study of the radiolabeled Kv1.3-blocking peptide DOTA-HsTX1[R14A] demonstrates brain uptake in a mouse model of neuroinflammation. Mol Pharm. 20:255–266. 2023.PubMed/NCBI View Article : Google Scholar | |
Carbajal-Contreras H, Murillo-de-Ozores AR, Magaña-Avila G, Marquez-Salinas A, Bourqui L, Tellez-Sutterlin M, Bahena-Lopez JP, Cortes-Arroyo E, Behn-Eschenburg SG, Lopez-Saavedra A, et al: Arginine vasopressin regulates the renal Na+-Cl- and Na+-K+-Cl- cotransporters through with-no-lysine kinase 4 and inhibitor 1 phosphorylation. Am J Physiol Renal Physiol. 326:F285–F299. 2024.PubMed/NCBI View Article : Google Scholar | |
Engelhardt B and Sorokin L: The blood-brain and the blood-cerebrospinal fluid barriers: Function and dysfunction. Semin Immunopathol. 31:497–511. 2009.PubMed/NCBI View Article : Google Scholar | |
Stokum JA, Gerzanich V and Simard JM: Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 36:513–538. 2016.PubMed/NCBI View Article : Google Scholar | |
Wiley CA, Bissel SJ, Lesniak A, Dixon CE, Franks J, Beer Stolz D, Sun M, Wang G, Switzer R, Kochanek PM and Murdoch G: Ultrastructure of diaschisis lesions after traumatic brain injury. J Neurotrauma. 33:1866–1882. 2016.PubMed/NCBI View Article : Google Scholar | |
Hosokawa M and Ueno M: Aging of blood-brain barrier and neuronal cells of eye and ear in SAM mice. Neurobiol Aging. 20:117–123. 1999.PubMed/NCBI View Article : Google Scholar | |
Gong Y, Wu M, Gao F, Shi M, Gu H, Gao R, Dang BQ and Chen G: Inhibition of the p-SPAK/p-NKCC1 signaling pathway protects the blood-brain barrier and reduces neuronal apoptosis in a rat model of surgical brain injury. Mol Med Rep. 24(717)2021.PubMed/NCBI View Article : Google Scholar | |
Gong Y, Wu M, Shen J, Tang J, Li J, Xu J, Dang B and Chen G: Inhibition of the NKCC1/NF-κB signaling pathway decreases inflammation and improves brain edema and nerve cell apoptosis in an SBI rat model. Front Mol Neurosci. 14(641993)2021.PubMed/NCBI View Article : Google Scholar | |
Wu MY, Gao F, Tang JF, Shen JC, Gao R, Dang BQ and Chen G: Possible mechanisms of the PERK pathway on neuronal apoptosis in a rat model of surgical brain injury. Am J Transl Res. 13:732–742. 2021.PubMed/NCBI | |
Shen J, Qian M, Wu M, Tang J, Gong Y, Li J, Ji J and Dang B: Rosiglitazone inhibits acyl-CoA synthetase long-chain family number 4 and improves secondary brain injury in a rat model of surgical brain injury. Clin Exp Pharmacol Physiol. 50:927–935. 2023.PubMed/NCBI View Article : Google Scholar | |
Wu M, Gao R, Dang B and Chen G: The blood component iron causes neuronal apoptosis following intracerebral hemorrhage via the PERK pathway. Front Neurol. 11(588548)2020.PubMed/NCBI View Article : Google Scholar | |
Wu M, Wang C, Gong Y, Huang Y, Jiang L, Zhang M, Gao R and Dang B: Potential mechanism of TMEM2/CD44 in endoplasmic reticulum stress-induced neuronal apoptosis in a rat model of traumatic brain injury. Int J Mol Med. 52(119)2023.PubMed/NCBI View Article : Google Scholar | |
Li J, Wu M, Gong Y, Tang J, Shen J, Xu L, Dang B and Chen G: Inhibition of LRRK2-Rab10 pathway improves secondary brain injury after surgical brain injury in rats. Front Surg. 8(749310)2022.PubMed/NCBI View Article : Google Scholar | |
Anthony IC, Ramage SN, Carnie FW, Simmonds P and Bell JE: Does drug abuse alter microglial phenotype and cell turnover in the context of advancing HIV infection? Neuropathol Appl Neurobiol. 31:325–338. 2005.PubMed/NCBI View Article : Google Scholar | |
Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D, Ono R, Kiyama H, et al: Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun. 10(5816)2019.PubMed/NCBI View Article : Google Scholar | |
Merlini M, Rafalski VA, Ma K, Kim KY, Bushong EA, Rios Coronado PE, Yan Z, Mendiola AS, Sozmen EG, Ryu JK, et al: Microglial Gi-dependent dynamics regulate brain network hyperexcitability. Nat Neurosci. 24:19–23. 2021.PubMed/NCBI View Article : Google Scholar | |
Wang J, Zhang C, Zhu J, Ding J, Chen Y and Han X: Blood-brain barrier disruption and inflammation reaction in mice after chronic exposure to Microcystin-LR. Sci Total Environ. 689:662–678. 2019.PubMed/NCBI View Article : Google Scholar | |
Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M and Yamashita T: Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci. 16:543–551. 2013.PubMed/NCBI View Article : Google Scholar | |
Corps KN, Roth TL and McGavern DB: Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 72:355–362. 2015.PubMed/NCBI View Article : Google Scholar | |
Ikegami A and Wake H: Microglial regulation of blood brain barrier, the neuro-immunological interface. Brain Nerve. 73:913–919. 2021.PubMed/NCBI View Article : Google Scholar : (In Japanese). | |
Planas AM: Role of immune cells migrating to the ischemic brain. Stroke. 49:2261–2267. 2018.PubMed/NCBI View Article : Google Scholar | |
Park GH, Noh H, Shao Z, Ni P, Qin Y, Liu D, Beaudreault CP, Park JS, Abani CP, Park JM, et al: Activated microglia cause metabolic disruptions in developmental cortical interneurons that persist in interneurons from individuals with schizophrenia. Nat Neurosci. 23:1352–1364. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang Z, Zhang Z, Lu H, Yang Q, Wu H and Wang J: Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol. 54:1874–1886. 2017.PubMed/NCBI View Article : Google Scholar | |
Roseborough AD, Zhu Y, Zhao L, Laviolette SR, Pasternak SH and Whitehead SN: Fibrinogen primes the microglial NLRP3 inflammasome and propagates pro-inflammatory signaling via extracellular vesicles: Implications for blood-brain barrier dysfunction. Neurobiol Dis. 177(106001)2023.PubMed/NCBI View Article : Google Scholar | |
Kant R, Halder SK, Fernández JA, Griffin JH and Milner R: Activated protein C attenuates experimental autoimmune encephalomyelitis progression by enhancing vascular integrity and suppressing microglial activation. Front Neurosci. 14(333)2020.PubMed/NCBI View Article : Google Scholar | |
Jolivel V, Bicker F, Binamé F, Ploen R, Keller S, Gollan R, Jurek B, Birkenstock J, Poisa-Beiro L, Bruttger J, et al: Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol. 129:279–295. 2015.PubMed/NCBI View Article : Google Scholar | |
Pan JJ, Qi L, Wang L, Liu C, Song Y, Mamtilahun M, Hu X, Li Y, Chen X, Khan H, et al: M2 microglial extracellular vesicles attenuated blood-brain barrier disruption via MiR-23a-5p in cerebral ischemic mice. Aging Dis. 15:1344–1356. 2024.PubMed/NCBI View Article : Google Scholar | |
Clarner T, Diederichs F, Berger K, Denecke B, Gan L, van der Valk P, Beyer C, Amor S and Kipp M: Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia. 60:1468–1480. 2012.PubMed/NCBI View Article : Google Scholar | |
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA and Stevens B: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 74:691–705. 2012.PubMed/NCBI View Article : Google Scholar | |
Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM and Ffrench-Constant C: M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 16:1211–1218. 2013.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Luo J and Li SY: Nano-curcumin simultaneously protects the blood-brain barrier and reduces M1 microglial activation during cerebral ischemia-reperfusion injury. ACS Appl Mater Interfaces. 11:3763–3770. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Zheng Y, Luo Y, Du Y, Zhang X and Fu J: Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/TLR4/NF-κB pathways in BV2 cells. Mol Immunol. 116:29–37. 2019.PubMed/NCBI View Article : Google Scholar | |
Demirdağ F, Yavuzer S, Cengiz M, Yavuzer H, Kara Z, Ayvacı A, Avcı S, Yürüyen M, Uzun H, Altıparmak MR, et al: The role of NF-κB, PPAR-α, and PPAR-γ in older adults with metabolic syndrome. Horm Metab Res. 55:733–740. 2023.PubMed/NCBI View Article : Google Scholar | |
Li YF, Ren X, Zhang L, Wang YH and Chen T: Microglial polarization in TBI: Signaling pathways and influencing pharmaceuticals. Front Aging Neurosci. 14(901117)2022.PubMed/NCBI View Article : Google Scholar | |
Takuathung MN, Potikanond S, Sookkhee S, Mungkornasawakul P, Jearanaikulvanich T, Chinda K, Wikan N and Nimlamool W: Anti-psoriatic and anti-inflammatory effects of Kaempferia parviflora in keratinocytes and macrophage cells. Biomed Pharmacother. 143(112229)2021.PubMed/NCBI View Article : Google Scholar | |
Ruan Z, Zhang D, Huang R, Sun W, Hou L, Zhao J and Wang Q: Microglial activation damages dopaminergic neurons through MMP-2/-9-mediated increase of blood-brain barrier permeability in a Parkinson's disease mouse model. Int J Mol Sci. 23(2793)2022.PubMed/NCBI View Article : Google Scholar | |
Guo Y, Dai W, Zheng Y, Qiao W, Chen W, Peng L, Zhou H, Zhao T, Liu H, Zheng F and Sun P: Mechanism and regulation of microglia polarization in intracerebral hemorrhage. Molecules. 27(7080)2022.PubMed/NCBI View Article : Google Scholar | |
Tian J, Liu Y, Wang Z, Zhang S, Yang Y, Zhu Y and Yang C: LncRNA Snhg8 attenuates microglial inflammation response and blood-brain barrier damage in ischemic stroke through regulating miR-425-5p mediated SIRT1/NF-κB signaling. J Biochem Mol Toxicol. 35(e22724)2021.PubMed/NCBI View Article : Google Scholar | |
Liao Y, Hu J, Guo C, Wen A, Wen L, Hou Q, Weng Y, Wang J, Ding Y and Yang J: Acteoside alleviates blood-brain barrier damage induced by ischemic stroke through inhibiting microglia HMGB1/TLR4/NLRP3 signaling. Biochem Pharmacol. 220(115968)2024.PubMed/NCBI View Article : Google Scholar | |
Chen G, Hou Y, Li X, Pan R and Zhao D: Sepsis-induced acute lung injury in young rats is relieved by calycosin through inactivating the HMGB1/MyD88/NF-κB pathway and NLRP3 inflammasome. Int Immunopharmacol. 96(107623)2021.PubMed/NCBI View Article : Google Scholar | |
Yin N, Zhao Y, Liu C, Yang Y, Wang ZH, Yu W, Zhang K, Zhang Z, Liu J, Zhang Y and Shi J: Engineered nanoerythrocytes alleviate central nervous system inflammation by regulating the polarization of inflammatory microglia. Adv Mater. 34(e2201322)2022.PubMed/NCBI View Article : Google Scholar | |
Chang H, Ma J, Feng K, Feng N, Wang X, Sun J, Guo T, Wei Y, Xu Y, Wang H, et al: Elevated blood and cerebrospinal fluid biomarkers of microglial activation and blood-brain barrier disruption in anti-NMDA receptor encephalitis. J Neuroinflammation. 20(172)2023.PubMed/NCBI View Article : Google Scholar | |
Yan J, Zhang Y, Wang L, Li Z, Tang S, Wang Y, Gu N, Sun X and Li L: TREM2 activation alleviates neural damage via Akt/CREB/BDNF signalling after traumatic brain injury in mice. J Neuroinflammation. 19(289)2022.PubMed/NCBI View Article : Google Scholar | |
Shi M, Gong Y, Wu M, Gu H, Yu J, Gao F, Ren Z, Qian M, Dang B and Chen G: Downregulation of TREM2/NF-кB signaling may damage the blood-brain barrier and aggravate neuronal apoptosis in experimental rats with surgically injured brain. Brain Res Bull. 183:116–126. 2022.PubMed/NCBI View Article : Google Scholar | |
Sofroniew MV: Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci. 16:249–263. 2015.PubMed/NCBI View Article : Google Scholar | |
Cheng X, Wang J, Sun X, Shao L, Guo Z and Li Y: Morphological and functional alterations of astrocytes responding to traumatic brain injury. J Integr Neurosci. 18:203–215. 2019.PubMed/NCBI View Article : Google Scholar | |
Lauranzano E, Rasile M and Matteoli M: Integrating primary astrocytes in a microfluidic model of the blood-brain barrier. Methods Mol Biol. 2492:225–240. 2022.PubMed/NCBI View Article : Google Scholar | |
Yosef N, Xi Y and McCarty JH: Isolation and transcriptional characterization of mouse perivascular astrocytes. PLoS One. 15(e0240035)2020.PubMed/NCBI View Article : Google Scholar | |
Huang J, Ding J, Wang X, Gu C, He Y, Li Y, Fan H, Xie Q, Qi X, Wang Z and Qiu P: Transfer of neuron-derived α-synuclein to astrocytes induces neuroinflammation and blood-brain barrier damage after methamphetamine exposure: Involving the regulation of nuclear receptor-associated protein 1. Brain Behav Immun. 106:247–261. 2022.PubMed/NCBI View Article : Google Scholar | |
Abbott NJ, Rönnbäck L and Hansson E: Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 7:41–53. 2006.PubMed/NCBI View Article : Google Scholar | |
Weber CM, Moiz B, Zic SM, Alpizar Vargas V, Li A and Clyne AM: Induced pluripotent stem cell-derived cells model brain microvascular endothelial cell glucose metabolism. Fluids Barriers CNS. 19(98)2022.PubMed/NCBI View Article : Google Scholar | |
Wu Z, Parry M, Hou XY, Liu MH, Wang H, Cain R, Pei ZF, Chen YC, Guo ZY, Abhijeet S and Chen G: Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington's disease. Nat Commun. 11(1105)2020.PubMed/NCBI View Article : Google Scholar | |
Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J and Volterra A: CXCR4-activated astrocyte glutamate release via TNFalpha: Amplification by microglia triggers neurotoxicity. Nat Neurosci. 4:702–710. 2001.PubMed/NCBI View Article : Google Scholar | |
Nedergaard M, Ransom B and Goldman SA: New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci. 26:523–530. 2003.PubMed/NCBI View Article : Google Scholar | |
Simard M and Nedergaard M: The neurobiology of glia in the context of water and ion homeostasis. Neuroscience. 129:877–896. 2004.PubMed/NCBI View Article : Google Scholar | |
Karve IP, Taylor JM and Crack PJ: The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol. 173:692–702. 2016.PubMed/NCBI View Article : Google Scholar | |
Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, Harley SBR, Bartlett PF, Schroder WA, Yates AG, Anthony DC, et al: Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell. 180:833–846.e16. 2020.PubMed/NCBI View Article : Google Scholar | |
Lee H and Koh JY: Roles for H+ /K+ -ATPase and zinc transporter 3 in cAMP-mediated lysosomal acidification in bafilomycin A1-treated astrocytes. Glia. 69:1110–1125. 2021.PubMed/NCBI View Article : Google Scholar | |
Chen Y and Swanson RA: Astrocytes and brain injury. J Cereb Blood Flow Metab. 23:137–149. 2003.PubMed/NCBI View Article : Google Scholar | |
Burda JE and Sofroniew MV: Reactive gliosis and the multicellular response to CNS damage and disease. Neuron. 81:229–248. 2014.PubMed/NCBI View Article : Google Scholar | |
Lee EJ, Hung YC and Lee MY: Early alterations in cerebral hemodynamics, brain metabolism, and blood-brain barrier permeability in experimental intracerebral hemorrhage. J Neurosurg. 91:1013–1019. 1999.PubMed/NCBI View Article : Google Scholar | |
Lee EJ, Chio CC, Chang CH and Chen HH: Prognostic significance of altered cerebral blood flow velocity in acute head trauma. J Formos Med Assoc. 96:5–12. 1997.PubMed/NCBI | |
Lien CF, Mohanta SK, Frontczak-Baniewicz M, Swinny JD, Zablocka B and Górecki DC: Absence of glial α-dystrobrevin causes abnormalities of the blood-brain barrier and progressive brain edema. J Biol Chem. 287:41374–41385. 2012.PubMed/NCBI View Article : Google Scholar | |
Wolburg H, Noell S, Wolburg-Buchholz K, Mack A and Fallier-Becker P: Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist. 15:180–193. 2009.PubMed/NCBI View Article : Google Scholar | |
Kim I, Moon SO, Park SK, Chae SW and Koh GY: Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res. 89:477–479. 2001.PubMed/NCBI View Article : Google Scholar | |
Liu B and Neufeld AH: Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytes of the human glaucomatous optic nerve head. Glia. 30:178–186. 2000.PubMed/NCBI View Article : Google Scholar | |
Jiang L, Pan CL, Wang CY, Liu BQ, Han Y, Hu L, Liu L, Yang Y, Qu JW and Liu WT: Selective suppression of the JNK-MMP2/9 signal pathway by tetramethylpyrazine attenuates neuropathic pain in rats. J Neuroinflammation. 14(174)2017.PubMed/NCBI View Article : Google Scholar | |
Lu L, Hogan-Cann AD, Globa AK, Lu P, Nagy JI, Bamji SX and Anderson CM: Astrocytes drive cortical vasodilatory signaling by activating endothelial NMDA receptors. J Cereb Blood Flow Metab. 39:481–496. 2019.PubMed/NCBI View Article : Google Scholar | |
Mizee MR, Nijland PG, van der Pol SMA, Drexhage JAR, van Het Hof B, Mebius R, van der Valk P, van Horssen J, Reijerkerk A and de Vries HE: Astrocyte-derived retinoic acid: A novel regulator of blood-brain barrier function in multiple sclerosis. Acta Neuropathol. 128:691–703. 2014.PubMed/NCBI View Article : Google Scholar | |
Li Y, Xia Y, Wang Y, Mao L, Gao Y, He Q, Huang M, Chen S and Hu B: Sonic hedgehog (Shh) regulates the expression of angiogenic growth factors in oxygen-glucose-deprived astrocytes by mediating the nuclear receptor NR2F2. Mol Neurobiol. 47:967–975. 2013.PubMed/NCBI View Article : Google Scholar | |
Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, Feng Y, Gao Q and Chopp M: Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab. 27:1684–1691. 2007.PubMed/NCBI View Article : Google Scholar | |
Chen M, Ba H, Lu C, Dai J and Sun J: Glial cell line-derived neurotrophic factor (GDNF) promotes angiogenesis through the demethylation of the fibromodulin (FMOD) promoter in glioblastoma. Med Sci Monit. 24:6137–6143. 2018.PubMed/NCBI View Article : Google Scholar | |
Rodriguez-Perez AI, Borrajo A, Diaz-Ruiz C, Garrido-Gil P and Labandeira-Garcia JL: Crosstalk between insulin-like growth factor-1 and angiotensin-II in dopaminergic neurons and glial cells: Role in neuroinflammation and aging. Oncotarget. 7:30049–30067. 2016.PubMed/NCBI View Article : Google Scholar | |
Cao F, Jiang Y, Wu Y, Zhong J, Liu J, Qin X, Chen L, Vitek MP, Li F, Xu L and Sun X: Apolipoprotein E-mimetic COG1410 reduces acute vasogenic edema following traumatic brain injury. J Neurotrauma. 33:175–182. 2016.PubMed/NCBI View Article : Google Scholar | |
Leybaert L: Neurobarrier coupling in the brain: A partner of neurovascular and neurometabolic coupling? J Cereb Blood Flow Metab. 25:2–16. 2005.PubMed/NCBI View Article : Google Scholar | |
Chen Z, Kelly JR, Morales JE, Sun RC, De A, Burkin DJ and McCarty JH: The alpha7 integrin subunit in astrocytes promotes endothelial blood-brain barrier integrity. Development. 150(dev201356)2023.PubMed/NCBI View Article : Google Scholar | |
Mayer U, Saher GFässler R, Bornemann A, Echtermeyer F, von der Mark H, Miosge N, Pöschl E and von der Mark K: Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat Genet. 17:318–323. 1997.PubMed/NCBI View Article : Google Scholar | |
Mielenz D, Hapke S, Pöschl E, von Der Mark H and von Der Mark K: The integrin alpha 7 cytoplasmic domain regulates cell migration, lamellipodia formation, and p130CAS/Crk coupling. J Biol Chem. 276:13417–13426. 2001.PubMed/NCBI View Article : Google Scholar | |
Kim H, Leng K, Park J, Sorets AG, Kim S, Shostak A, Embalabala RJ, Mlouk K, Katdare KA, Rose IVL, et al: Reactive astrocytes transduce inflammation in a blood-brain barrier model through a TNF-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin. Nat Commun. 13(6581)2022.PubMed/NCBI View Article : Google Scholar | |
Lee LL, Aung HH, Wilson DW, Anderson SE, Rutledge JC and Rutkowsky JM: Triglyceride-rich lipoprotein lipolysis products increase blood-brain barrier transfer coefficient and induce astrocyte lipid droplets and cell stress. Am J Physiol Cell Physiol. 312:C500–C516. 2017.PubMed/NCBI View Article : Google Scholar | |
Malik VA, Zajicek F, Mittmann LA, Klaus J, Unterseer S, Rajkumar S, Pütz B, Deussing JM, Neumann ID, Rupprecht R and Di Benedetto B: GDF15 promotes simultaneous astrocyte remodeling and tight junction strengthening at the blood-brain barrier. J Neurosci Res. 98:1433–1456. 2020.PubMed/NCBI View Article : Google Scholar | |
Shimizu F, Sano Y, Tominaga O, Maeda T, Abe MA and Kanda T: Advanced glycation end-products disrupt the blood-brain barrier by stimulating the release of transforming growth factor-β by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro. Neurobiol Aging. 34:1902–1912. 2013.PubMed/NCBI View Article : Google Scholar | |
Senatorov VV Jr, Friedman AR, Milikovsky DZ, Ofer J, Saar-Ashkenazy R, Charbash A, Jahan N, Chin G, Mihaly E, Lin JM, et al: Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci Transl Med. 11(eaaw8283)2019.PubMed/NCBI View Article : Google Scholar | |
Guo Y, Dong L, Gong A, Zhang J, Jing L, Ding T, Li PA and Zhang JZ: Damage to the blood-brain barrier and activation of neuroinflammation by focal cerebral ischemia under hyperglycemic condition. Int J Mol Med. 48(142)2021.PubMed/NCBI View Article : Google Scholar | |
Wang QS, Ding HG, Chen SL, Liu XQ, Deng YY, Jiang WQ, Li Y, Huang LQ, Han YL, Wen MY, et al: Hypertonic saline mediates the NLRP3/IL-1β signaling axis in microglia to alleviate ischemic blood-brain barrier permeability by downregulating astrocyte-derived VEGF in rats. CNS Neurosci Ther. 26:1045–1057. 2020.PubMed/NCBI View Article : Google Scholar | |
You L, Yu PP, Dong T, Guo W, Chang S, Zheng B, Ci Y, Wang F, Yu P, Gao G and Chang YZ: Astrocyte-derived hepcidin controls iron traffic at the blood-brain-barrier via regulating ferroportin 1 of microvascular endothelial cells. Cell Death Dis. 13(667)2022.PubMed/NCBI View Article : Google Scholar | |
Pasti L, Volterra A, Pozzan T and Carmignoto G: Intracellular calcium oscillations in astrocytes: A highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci. 17:7817–7830. 1997.PubMed/NCBI View Article : Google Scholar | |
Huber JD, Egleton RD and Davis TP: Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 24:719–725. 2001.PubMed/NCBI View Article : Google Scholar | |
Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC and Nedergaard M: Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA. 95:15735–15740. 1998.PubMed/NCBI View Article : Google Scholar | |
Sneyd J, Charles AC and Sanderson MJ: A model for the propagation of intercellular calcium waves. Am J Physiol. 266:C293–C302. 1994.PubMed/NCBI View Article : Google Scholar | |
Chapouly C, Tadesse Argaw A, Horng S, Castro K, Zhang J, Asp L, Loo H, Laitman BM, Mariani JN, Straus Farber R, et al: Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions. Brain. 138:1548–1567. 2015.PubMed/NCBI View Article : Google Scholar | |
Chu H, Yang X, Huang C, Gao Z, Tang Y and Dong Q: Apelin-13 protects against ischemic blood-brain barrier damage through the effects of aquaporin-4. Cerebrovasc Dis. 44:10–25. 2017.PubMed/NCBI View Article : Google Scholar | |
Jackson RJ, Meltzer JC, Nguyen H, Commins C, Bennett RE, Hudry E and Hyman BT: APOE4 derived from astrocytes leads to blood-brain barrier impairment. Brain. 145:3582–3593. 2022.PubMed/NCBI View Article : Google Scholar | |
Qin X, Wang J, Chen S, Liu G, Wu C, Lv Q, He X, Bai X, Huang W and Liao H: Astrocytic p75NTR expression provoked by ischemic stroke exacerbates the blood-brain barrier disruption. Glia. 70:892–912. 2022.PubMed/NCBI View Article : Google Scholar | |
Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ and Kim KW: SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med. 9:900–906. 2003.PubMed/NCBI View Article : Google Scholar | |
Takarada-Iemata M, Yoshikawa A, Ta HM, Okitani N, Nishiuchi T, Aida Y, Kamide T, Hattori T, Ishii H, Tamatani T, et al: N-myc downstream-regulated gene 2 protects blood-brain barrier integrity following cerebral ischemia. Glia. 66:1432–1446. 2018.PubMed/NCBI View Article : Google Scholar | |
Tian W, Sawyer A, Kocaoglu FB and Kyriakides TR: Astrocyte-derived thrombospondin-2 is critical for the repair of the blood-brain barrier. Am J Pathol. 179:860–868. 2011.PubMed/NCBI View Article : Google Scholar | |
Jayakumar AR, Tong XY, Ruiz-Cordero R, Bregy A, Bethea JR, Bramlett HM and Norenberg MD: Activation of NF-κB mediates astrocyte swelling and brain edema in traumatic brain injury. J Neurotrauma. 31:1249–1257. 2014.PubMed/NCBI View Article : Google Scholar | |
Wu M, Gong Y, Jiang L, Zhang M, Gu H, Shen H and Dang B: VEGF regulates the blood-brain barrier through MMP-9 in a rat model of traumatic brain injury. Exp Ther Med. 24(728)2022.PubMed/NCBI View Article : Google Scholar | |
Wu MY, Gao F, Yang XM, Qin X, Chen GZ, Li D, Dang BQ and Chen G: Matrix metalloproteinase-9 regulates the blood brain barrier via the hedgehog pathway in a rat model of traumatic brain injury. Brain Res. 1727(146553)2020.PubMed/NCBI View Article : Google Scholar | |
Persidsky Y, Ramirez SH, Haorah J and Kanmogne GD: Blood-brain barrier: Structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 1:223–236. 2006.PubMed/NCBI View Article : Google Scholar | |
Kassan M, Kwon Y, Munkhsaikhan U, Sahyoun AM, Ishrat T, Galán M, Gonzalez AA, Abidi AH, Kassan A and Ait-Aissa K: Protective role of short-chain fatty acids against Ang-II-induced mitochondrial dysfunction in brain endothelial cells: A potential role of heme oxygenase 2. Antioxidants (Basel). 12(160)2023.PubMed/NCBI View Article : Google Scholar | |
Wang YI, Abaci HE and Shuler ML: Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng. 114:184–194. 2017.PubMed/NCBI View Article : Google Scholar | |
Min XL, Zou H, Yan J, Lyu Q, He X and Shang FF: Stress conditions induced circRNAs profile of extracellular vesicles in brain microvascular endothelial cells. Metab Brain Dis. 37:1977–1987. 2022.PubMed/NCBI View Article : Google Scholar | |
Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K and Caruso F: Overcoming the blood-brain barrier: The role of nanomaterials in treating neurological diseases. Adv Mater. 30(e1801362)2018.PubMed/NCBI View Article : Google Scholar | |
Grammas P, Martinez J and Miller B: Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. Expert Rev Mol Med. 13(e19)2011.PubMed/NCBI View Article : Google Scholar | |
Oldendorf WH, Cornford ME and Brown WJ: The large apparent work capability of the blood-brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol. 1:409–417. 1977.PubMed/NCBI View Article : Google Scholar | |
Grutzendler J and Nedergaard M: Cellular control of brain capillary blood flow: In vivo imaging veritas. Trends Neurosci. 42:528–536. 2019.PubMed/NCBI View Article : Google Scholar | |
Raut S, Patel R and Al-Ahmad AJ: Presence of a mutation in PSEN1 or PSEN2 gene is associated with an impaired brain endothelial cell phenotype in vitro. Fluids Barriers CNS. 18(3)2021.PubMed/NCBI View Article : Google Scholar | |
Lisk C, McCord J, Bose S, Sullivan T, Loomis Z, Nozik-Grayck E, Schroeder T, Hamilton K and Irwin DC: Nrf2 activation: A potential strategy for the prevention of acute mountain sickness. Free Radic Biol Med. 63:264–273. 2013.PubMed/NCBI View Article : Google Scholar | |
Nicolicht-Amorim P, Delgado-Garcia LM, Nakamura TKE, Courbassier NR, Mosini AC and Porcionatto MA: Simple and efficient protocol to isolate and culture brain microvascular endothelial cells from newborn mice. Front Cell Neurosci. 16(949412)2022.PubMed/NCBI View Article : Google Scholar | |
Sawada N: Tight junction-related human diseases. Pathol Int. 63:1–12. 2013.PubMed/NCBI View Article : Google Scholar | |
González-Mariscal L, Posadas Y, Miranda J, Uc PY, Ortega-Olvera JM and Hernández S: Strategies that target tight junctions for enhanced drug delivery. Curr Pharm Des. 22:5313–5346. 2016.PubMed/NCBI View Article : Google Scholar | |
Keaney J and Campbell M: The dynamic blood-brain barrier. FEBS J. 282:4067–4079. 2015.PubMed/NCBI View Article : Google Scholar | |
Kumar R, Sharma A and Tiwari RK: Can we predict blood brain barrier permeability of ligands using computational approaches? Interdiscip Sci. 5:95–101. 2013.PubMed/NCBI View Article : Google Scholar | |
Saxena D, Sharma A, Siddiqui MH and Kumar R: Blood brain barrier permeability prediction using machine learning techniques: An update. Curr Pharm Biotechnol. 20:1163–1171. 2019.PubMed/NCBI View Article : Google Scholar | |
Song D, Jiang X, Liu Y, Sun Y, Cao S and Zhang Z: Asiaticoside attenuates cell growth inhibition and apoptosis induced by Aβ1-42 via inhibiting the TLR4/NF-κB signaling pathway in human brain microvascular endothelial cells. Front Pharmacol. 9(28)2018.PubMed/NCBI View Article : Google Scholar | |
Uraoka M, Ikeda K, Kurimoto-Nakano R, Nakagawa Y, Koide M, Akakabe Y, Kitamura Y, Ueyama T, Matoba S, Yamada H, et al: Loss of bcl-2 during the senescence exacerbates the impaired angiogenic functions in endothelial cells by deteriorating the mitochondrial redox state. Hypertension. 58:254–263. 2011.PubMed/NCBI View Article : Google Scholar | |
Rajeev V, Fann DY, Dinh QN, Kim HA, De Silva TM, Lai MKP, Chen CL, Drummond GR, Sobey CG and Arumugam TV: Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics. 12:1639–1658. 2022.PubMed/NCBI View Article : Google Scholar | |
Sweeney MD, Sagare AP and Zlokovic BV: Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 14:133–150. 2018.PubMed/NCBI View Article : Google Scholar | |
Bernard-Patrzynski F, Lécuyer MA, Puscas I, Boukhatem I, Charabati M, Bourbonnière L, Ramassamy C, Leclair G, Prat A and Roullin VG: Isolation of endothelial cells, pericytes and astrocytes from mouse brain. PLoS One. 14(e0226302)2019.PubMed/NCBI View Article : Google Scholar | |
Vajtr D, Benada O, Kukacka J, Průša R, Houstava L, Ťoupalík P and Kizek R: Correlation of ultrastructural changes of endothelial cells and astrocytes occurring during blood brain barrier damage after traumatic brain injury with biochemical markers of BBB leakage and inflammatory response. Physiol Res. 58:263–268. 2009.PubMed/NCBI View Article : Google Scholar | |
Yao X, Uchida K, Papadopoulos MC, Zador Z, Manley GT and Verkman AS: Mildly reduced brain swelling and improved neurological outcome in aquaporin-4 knockout mice following controlled cortical impact brain injury. J Neurotrauma. 32:1458–1464. 2015.PubMed/NCBI View Article : Google Scholar | |
Abbott NJ: Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat. 200:629–638. 2002.PubMed/NCBI View Article : Google Scholar | |
Liu H, Wei JY, Li Y, Ban M, Sun Q, Wang HJ, Zhao D, Tong PG, Wang L, Wang KJ, et al: Endothelial depletion of Atg7 triggers astrocyte-microvascular disassociation at blood-brain barrier. J Cell Biol. 222(e202103098)2023.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Wu J, Wang J, He L, Lai H, Zhang T, Wang X and Li W: Mitochondrial oxidative stress in brain microvascular endothelial cells: Triggering blood-brain barrier disruption. Mitochondrion. 69:71–82. 2023.PubMed/NCBI View Article : Google Scholar | |
Sun P, Zhang K, Hassan SH, Zhang X, Tang X, Pu H, Stetler RA, Chen J and Yin KJ: Endothelium-targeted deletion of microRNA-15a/16-1 promotes poststroke angiogenesis and improves long-term neurological recovery. Circ Res. 126:1040–1057. 2020.PubMed/NCBI View Article : Google Scholar | |
Ren C, Li N, Li S, Han R, Huang Q, Hu J, Jin K and Ji X: Limb ischemic conditioning improved cognitive deficits via eNOS-dependent augmentation of angiogenesis after chronic cerebral hypoperfusion in rats. Aging Dis. 9:869–879. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhu HY, Hong FF and Yang SL: The roles of nitric oxide synthase/nitric oxide pathway in the pathology of vascular dementia and related therapeutic approaches. Int J Mol Sci. 22(4540)2021.PubMed/NCBI View Article : Google Scholar | |
Ungvari Z, Tarantini S, Kiss T, Wren JD, Giles CB, Griffin CT, Murfee WL, Pacher P and Csiszar A: Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol. 15:555–565. 2018.PubMed/NCBI View Article : Google Scholar | |
Hübner K, Cabochette P, Diéguez-Hurtado R, Wiesner C, Wakayama Y, Grassme KS, Hubert M, Guenther S, Belting HG, Affolter M, et al: Wnt/β-catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling. Nat Commun. 9(4860)2018.PubMed/NCBI View Article : Google Scholar | |
Swaminathan B, Youn SW, Naiche LA, Du J, Villa SR, Metz JB, Feng H, Zhang C, Kopan R, Sims PA and Kitajewski JK: Endothelial Notch signaling directly regulates the small GTPase RND1 to facilitate Notch suppression of endothelial migration. Sci Rep. 12(1655)2022.PubMed/NCBI View Article : Google Scholar | |
Zhu T, Xie WJ, Wang L, Jin XB, Meng XB, Sun GB and Sun XB: Notoginsenoside R1 activates the NAMPT-NAD+-SIRT1 cascade to promote postischemic angiogenesis by modulating Notch signaling. Biomed Pharmacother. 140(111693)2021.PubMed/NCBI View Article : Google Scholar | |
Ma C, Zhou J, Xu X, Wang L, Qin S, Hu C, Nie L and Tu Y: The construction of a radiation-induced brain injury model and preliminary study on the effect of human recombinant endostatin in treating radiation-induced brain injury. Med Sci Monit. 25:9392–9401. 2019.PubMed/NCBI View Article : Google Scholar | |
Deng Z, Zhou L, Wang Y, Liao S, Huang Y, Shan Y, Tan S, Zeng Q, Peng L, Huang H and Lu Z: Astrocyte-derived VEGF increases cerebral microvascular permeability under high salt conditions. Aging (Albany NY). 12:11781–11793. 2020.PubMed/NCBI View Article : Google Scholar | |
Lee WH, Warrington JP, Sonntag WE and Lee YW: Irradiation alters MMP-2/TIMP-2 system and collagen type IV degradation in brain. Int J Radiat Oncol Biol Phys. 82:1559–1566. 2012.PubMed/NCBI View Article : Google Scholar | |
Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, Lazic D, Tsai PS, Zhao Z, Zhou Y, et al: Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci. 20:406–416. 2017.PubMed/NCBI View Article : Google Scholar | |
Kur J, Newman EA and Chan-Ling T: Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res. 31:377–406. 2012.PubMed/NCBI View Article : Google Scholar | |
Mae MA, He L, Nordling S, Vazquez-Liebanas E, Nahar K, Jung B, Li X, Tan BC, Chin Foo J, Cazenave-Gassiot A, et al: Single-cell analysis of blood-brain barrier response to pericyte loss. Circ Res. 128:e46–e62. 2021.PubMed/NCBI View Article : Google Scholar | |
Prager O, Kamintsky L, Hasam-Henderson LA, Schoknecht K, Wuntke V, Papageorgiou I, Swolinsky J, Muoio V, Bar-Klein G, Vazana U, et al: Seizure-induced microvascular injury is associated with impaired neurovascular coupling and blood-brain barrier dysfunction. Epilepsia. 60:322–336. 2019.PubMed/NCBI View Article : Google Scholar | |
Stefanska A, Kenyon C, Christian HC, Buckley C, Shaw I, Mullins JJ and Péault B: Human kidney pericytes produce renin. Kidney Int. 90:1251–1261. 2016.PubMed/NCBI View Article : Google Scholar | |
Korte N, James G, You H, Hirunpattarasilp C, Christie I, Sethi H and Attwell D: Noradrenaline released from locus coeruleus axons contracts cerebral capillary pericytes via α2 adrenergic receptors. J Cereb Blood Flow Metab. 43:1142–1152. 2023.PubMed/NCBI View Article : Google Scholar | |
Huang H: Pericyte-endothelial interactions in the retinal microvasculature. Int J Mol Sci. 21(7413)2020.PubMed/NCBI View Article : Google Scholar | |
Dehouck MP, Tachikawa M, Hoshi Y, Omori K, Maurage CA, Strecker G, Dehouck L, Boucau MC, Uchida Y, Gosselet F, et al: Quantitative targeted absolute proteomics for better characterization of an in vitro human blood-brain barrier model derived from hematopoietic stem cells. Cells. 11(3963)2022.PubMed/NCBI View Article : Google Scholar | |
Winkler EA, Sengillo JD, Bell RD, Wang J and Zlokovic BV: Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability. J Cereb Blood Flow Metab. 32:1841–1852. 2012.PubMed/NCBI View Article : Google Scholar | |
Armulik A, Genové G and Betsholtz C: Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 21:193–215. 2011.PubMed/NCBI View Article : Google Scholar | |
Figueira I, Galego S, Custódio-Santos T, Vicente R, Molnár K, Haskó J, Malhó R, Videira M, Wilhelm I, Krizbai I and Brito MA: Picturing breast cancer brain metastasis development to unravel molecular players and cellular crosstalk. Cancers (Basel). 13(910)2021.PubMed/NCBI View Article : Google Scholar | |
Alarcon-Martinez L, Villafranca-Baughman D, Quintero H, Kacerovsky JB, Dotigny F, Murai KK, Prat A, Drapeau P and Di Polo A: Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature. 585:91–95. 2020.PubMed/NCBI View Article : Google Scholar | |
Lechertier T, Reynolds LE, Kim H, Pedrosa AR, Gómez-Escudero J, Muñoz-Félix JM, Batista S, Dukinfield M, Demircioglu F, Wong PP, et al: Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 11(2810)2020.PubMed/NCBI View Article : Google Scholar | |
Wu Y, Fu J, Huang Y, Duan R, Zhang W, Wang C, Wang S, Hu X, Zhao H, Wang L, et al: Biology and function of pericytes in the vascular microcirculation. Animal Model Exp Med. 6:337–345. 2023.PubMed/NCBI View Article : Google Scholar | |
Daneman R, Zhou L, Kebede AA and Barres BA: Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 468:562–566. 2010.PubMed/NCBI View Article : Google Scholar | |
Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R and Zlokovic BV: Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 68:409–427. 2010.PubMed/NCBI View Article : Google Scholar | |
Abramsson A, Kurup S, Busse M, Yamada S, Lindblom P, Schallmeiner E, Stenzel D, Sauvaget D, Ledin J, Ringvall M, et al: Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev. 21:316–331. 2007.PubMed/NCBI View Article : Google Scholar | |
Weidenfeller C, Svendsen CN and Shusta EV: Differentiating embryonic neural progenitor cells induce blood-brain barrier properties. J Neurochem. 101:555–565. 2007.PubMed/NCBI View Article : Google Scholar | |
Huang Y, Chen S, Luo Y and Han Z: Crosstalk between inflammation and the BBB in stroke. Curr Neuropharmacol. 18:1227–1236. 2020.PubMed/NCBI View Article : Google Scholar | |
Thurgur H and Pinteaux E: Microglia in the neurovascular unit: Blood-brain barrier-microglia interactions after central nervous system disorders. Neuroscience. 405:55–67. 2019.PubMed/NCBI View Article : Google Scholar | |
Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, et al: Pericytes regulate the blood-brain barrier. Nature. 468:557–561. 2010.PubMed/NCBI View Article : Google Scholar | |
Hellström M, Kalén M, Lindahl P, Abramsson A and Betsholtz C: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 126:3047–3055. 1999.PubMed/NCBI View Article : Google Scholar | |
Li J, Li M, Ge Y, Chen J, Ma J, Wang C, Sun M, Wang L, Yao S and Yao C: β-amyloid protein induces mitophagy-dependent ferroptosis through the CD36/PINK/PARKIN pathway leading to blood-brain barrier destruction in Alzheimer's disease. Cell Biosci. 12(69)2022.PubMed/NCBI View Article : Google Scholar | |
Ma Q, Zhao Z, Sagare AP, Wu Y, Wang M, Owens NC, Verghese PB, Herz J, Holtzman DM and Zlokovic BV: Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Mol Neurodegener. 13(57)2018.PubMed/NCBI View Article : Google Scholar | |
Bongarzone S, Savickas V, Luzi F and Gee AD: Targeting the receptor for advanced glycation endproducts (RAGE): A medicinal chemistry perspective. J Med Chem. 60:7213–7232. 2017.PubMed/NCBI View Article : Google Scholar | |
Bell-Temin H, Culver-Cochran AE, Chaput D, Carlson CM, Kuehl M, Burkhardt BR, Bickford PC, Liu B and Stevens SM Jr: Novel molecular insights into classical and alternative activation states of microglia as revealed by stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics. Mol Cell Proteomics. 14:3173–3184. 2015.PubMed/NCBI View Article : Google Scholar | |
Becerra-Calixto A and Cardona-Gómez GP: The role of astrocytes in neuroprotection after brain stroke: Potential in cell therapy. Front Mol Neurosci. 10(88)2017.PubMed/NCBI View Article : Google Scholar |