Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
May-2025 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research developments in the neurovascular unit and the blood‑brain barrier (Review)

  • Authors:
    • Yating Gong
    • Muyao Wu
    • Yaqian Huang
    • Xiaoyi He
    • Jiaqi Yuan
    • Baoqi Dang
  • View Affiliations / Copyright

    Affiliations: Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China, Department of Neurosurgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
    Copyright: © Gong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 88
    |
    Published online on: March 18, 2025
       https://doi.org/10.3892/br.2025.1966
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The neurovascular unit (NVU) is composed of neurons, glial cells, brain microvascular endothelial cells (BMECs), pericytes, and the extracellular matrix. The NVU controls the permeability of the blood‑brain barrier (BBB) and protects the brain from harmful blood‑borne and endogenous and exogenous substances. Among these, neurons transmit signals, astrocytes provide nutrients, microglia regulate inflammation, and BMECs and pericytes strengthen barrier tightness and coverage. These cells, due to their physical structure, anatomical location, or physiological function, maintain the microenvironment required for normal brain function. In this review, the BBB structure and mechanisms are examined to obtain a better understanding of the factors that influence BBB permeability. The findings may aid in safeguarding the BBB and provide potential therapeutic targets for drugs affecting the central nervous system.
View Figures

Figure 1

Figure 2

View References

1 

Diaz-Garcia CM, Mongeon R, Lahmann C, Koveal D, Zucker H and Yellen G: Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab. 26:361–374.e4. 2017.PubMed/NCBI View Article : Google Scholar

2 

Roy CS and Sherrington CS: On the regulation of the blood-supply of the brain. J Physiol. 11:85–158.117. 1890.PubMed/NCBI View Article : Google Scholar

3 

Xue Q, Liu Y, Qi H, Ma Q, Xu L, Chen W, Chen G and Xu X: A novel brain neurovascular unit model with neurons, astrocytes and microvascular endothelial cells of rat. Int J Biol Sci. 9:174–189. 2013.PubMed/NCBI View Article : Google Scholar

4 

Harder DR, Zhang C and Gebremedhin D: Astrocytes function in matching blood flow to metabolic activity. News Physiol Sci. 17:27–31. 2002.PubMed/NCBI View Article : Google Scholar

5 

Simard M, Arcuino G, Takano T, Liu QS and Nedergaard M: Signaling at the gliovascular interface. J Neurosci. 23:9254–9262. 2003.PubMed/NCBI View Article : Google Scholar

6 

Reese TS and Karnovsky MJ: Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 34:207–217. 1967.PubMed/NCBI View Article : Google Scholar

7 

Yamamizu K, Iwasaki M, Takakubo H, Sakamoto T, Ikuno T, Miyoshi M, Kondo T, Nakao Y, Nakagawa M, Inoue H and Yamashita JK: In vitro modeling of blood-brain barrier with human iPSC-derived endothelial cells, pericytes, neurons, and astrocytes via notch signaling. Stem Cell Reports. 8:634–647. 2017.PubMed/NCBI View Article : Google Scholar

8 

Ehrlich P: Das sauerstoff-bedürfnis des organismus: Eine farbenanalytische studie. August Hirschwald, 1885.

9 

Saunders NR, Dreifuss JJ, Dziegielewska KM, Johansson PA, Habgood MD, Møllgård K and Bauer HC: The rights and wrongs of blood-brain barrier permeability studies: A walk through 100 years of history. Front Neurosci. 8(404)2014.PubMed/NCBI View Article : Google Scholar

10 

Patel R, Page S and Al-Ahmad AJ: Isogenic blood-brain barrier models based on patient-derived stem cells display inter-individual differences in cell maturation and functionality. J Neurochem. 142:74–88. 2017.PubMed/NCBI View Article : Google Scholar

11 

Salmina AB, Kharitonova EV, Gorina YV, Teplyashina EA, Malinovskaya NA, Khilazheva ED, Mosyagina AI, Morgun AV, Shuvaev AN, Salmin VV, et al: Blood-brain barrier and neurovascular unit in vitro models for studying mitochondria-driven molecular mechanisms of neurodegeneration. Int J Mol Sci. 22(4661)2021.PubMed/NCBI View Article : Google Scholar

12 

Salmina AB, Kuvacheva NV, Morgun AV, Komleva YK, Pozhilenkova EA, Lopatina OL, Gorina YV, Taranushenko TE and Petrova LL: Glycolysis-mediated control of blood-brain barrier development and function. Int J Biochem Cell Biol. 64:174–184. 2015.PubMed/NCBI View Article : Google Scholar

13 

Lv J, Hu W, Yang Z, Li T, Jiang S, Ma Z, Chen F and Yang Y: Focusing on claudin-5: A promising candidate in the regulation of BBB to treat ischemic stroke. Prog Neurobiol. 161:79–96. 2018.PubMed/NCBI View Article : Google Scholar

14 

Zhu J, Lin X, Chen C, Tan H, Gao Y, Li D and Chen G: WNK3 promotes neuronal survival after traumatic brain injury in rats. Neuroscience. 477:76–88. 2021.PubMed/NCBI View Article : Google Scholar

15 

Huang W, Li J, Geng X, Li S, Zou Y, Li Y, Jing C and Yu H: The reactive astrocytes after surgical brain injury potentiates the migration, invasion, and angiogenesis of C6 glioma. World Neurosurg. 168:e595–e606. 2022.PubMed/NCBI View Article : Google Scholar

16 

Wu D, Lai N, Deng R, Liang T, Pan P, Yuan G, Li X, Li H, Shen H, Wang Z and Chen G: Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway. Exp Neurol. 332(113386)2020.PubMed/NCBI View Article : Google Scholar

17 

Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan WL, Saint-Pierre M, Dury RJ, Alata W, St-Amour I, Mason SL, et al: Cerebrovascular and blood-brain barrier impairments in Huntington's disease: Potential implications for its pathophysiology. Ann Neurol. 78:160–177. 2015.PubMed/NCBI View Article : Google Scholar

18 

Mohi-Ud-Din R, Mir RH, Mir PA, Banday N, Shah AJ, Sawhney G, Bhat MM, Batiha GE and Pottoo FH: Dysfunction of ABC transporters at the surface of BBB: Potential implications in intractable epilepsy and applications of nanotechnology enabled drug delivery. Curr Drug Metab. 23:735–756. 2022.PubMed/NCBI View Article : Google Scholar

19 

Ferraro S, Klugah-Brown B, Tench CR, Bazinet V, Bore MC, Nigri A, Demichelis G, Bruzzone MG, Palermo S, Zhao W, et al: The central autonomic system revisited-convergent evidence for a regulatory role of the insular and midcingulate cortex from neuroimaging meta-analyses. Neurosci Biobehav Rev. 142(104915)2022.PubMed/NCBI View Article : Google Scholar

20 

Bittern J, Pogodalla N, Ohm H, Brüser L, Kottmeier R, Schirmeier S and Klämbt C: Neuron-glia interaction in the Drosophila nervous system. Dev Neurobiol. 81:438–452. 2021.PubMed/NCBI View Article : Google Scholar

21 

Rolls MM and Jegla TJ: Neuronal polarity: An evolutionary perspective. J Exp Biol. 218:572–580. 2015.PubMed/NCBI View Article : Google Scholar

22 

Muzio MR and Cascella M: Marco Cascella declares no relevant financial relationships with ineligible companies. In: Histology, Axon. StatPearls, Treasure Island, FL, 2024.

23 

Zhang D, Ruan J, Peng S, Li J, Hu X, Zhang Y, Zhang T, Ge Y, Zhu Z, Xiao X, et al: Synaptic-like transmission between neural axons and arteriolar smooth muscle cells drives cerebral neurovascular coupling. Nat Neurosci. 27:232–248. 2024.PubMed/NCBI View Article : Google Scholar

24 

Qin D and Wang J, Le A, Wang TJ, Chen X and Wang J: Traumatic brain injury: Ultrastructural features in neuronal ferroptosis, glial cell activation and polarization, and blood-brain barrier breakdown. Cells. 10(1009)2021.PubMed/NCBI View Article : Google Scholar

25 

Schirmeier S and Klämbt C: The Drosophila blood-brain barrier as interface between neurons and hemolymph. Mech Dev. 138:50–55. 2015.PubMed/NCBI View Article : Google Scholar

26 

Miller F, Afonso PV, Gessain A and Ceccaldi PE: Blood-brain barrier and retroviral infections. Virulence. 3:222–229. 2012.PubMed/NCBI View Article : Google Scholar

27 

Cataldi M: The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol. 11:276–297. 2013.PubMed/NCBI View Article : Google Scholar

28 

Lauritzen M, Mathiesen C, Schaefer K and Thomsen KJ: Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. Neuroimage. 62:1040–1050. 2012.PubMed/NCBI View Article : Google Scholar

29 

Cheng YT, Luna-Figueroa E, Woo J, Chen HC, Lee ZF, Harmanci AS and Deneen B: Inhibitory input directs astrocyte morphogenesis through glial GABA(B)R. Nature. 617:369–376. 2023.PubMed/NCBI View Article : Google Scholar

30 

Ancatén-González C, Segura I, Alvarado-Sánchez R, Chávez AE and Latorre R: Ca2+- and voltage-activated K+ (BK) channels in the nervous system: One gene, a myriad of physiological functions. Int J Mol Sci. 24(3407)2023.PubMed/NCBI View Article : Google Scholar

31 

Cohen S and Greenberg ME: Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu Rev Cell Dev Biol. 24:183–209. 2008.PubMed/NCBI View Article : Google Scholar

32 

Sun J, Zheng Y, Chen Z and Wang Y: The role of Na+ -K+ -ATPase in the epileptic brain. CNS Neurosci Ther. 28:1294–1302. 2022.PubMed/NCBI View Article : Google Scholar

33 

Jiang S, Fan F, Yang L, Chen K, Sun Z, Zhang Y, Cairang N, Wang X and Meng X: Salidroside attenuates high altitude hypobaric hypoxia-induced brain injury in mice via inhibiting NF-κB/NLRP3 pathway. Eur J Pharmacol. 925(175015)2022.PubMed/NCBI View Article : Google Scholar

34 

Li B, Li N, Chen L, Ren S, Gao D, Geng H, Fu J, Zhou M and Xing C: Alleviating neuroinflammation through photothermal conjugated polymer nanoparticles by regulating reactive oxygen species and Ca2+ signaling. ACS Appl Mater Interfaces. 14:48416–48425. 2022.PubMed/NCBI View Article : Google Scholar

35 

Reddiar SB, de Veer M, Paterson BM, Sepehrizadeh T, Wai DCC, Csoti A, Panyi G, Nicolazzo JA and Norton RS: A biodistribution study of the radiolabeled Kv1.3-blocking peptide DOTA-HsTX1[R14A] demonstrates brain uptake in a mouse model of neuroinflammation. Mol Pharm. 20:255–266. 2023.PubMed/NCBI View Article : Google Scholar

36 

Carbajal-Contreras H, Murillo-de-Ozores AR, Magaña-Avila G, Marquez-Salinas A, Bourqui L, Tellez-Sutterlin M, Bahena-Lopez JP, Cortes-Arroyo E, Behn-Eschenburg SG, Lopez-Saavedra A, et al: Arginine vasopressin regulates the renal Na+-Cl- and Na+-K+-Cl- cotransporters through with-no-lysine kinase 4 and inhibitor 1 phosphorylation. Am J Physiol Renal Physiol. 326:F285–F299. 2024.PubMed/NCBI View Article : Google Scholar

37 

Engelhardt B and Sorokin L: The blood-brain and the blood-cerebrospinal fluid barriers: Function and dysfunction. Semin Immunopathol. 31:497–511. 2009.PubMed/NCBI View Article : Google Scholar

38 

Stokum JA, Gerzanich V and Simard JM: Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 36:513–538. 2016.PubMed/NCBI View Article : Google Scholar

39 

Wiley CA, Bissel SJ, Lesniak A, Dixon CE, Franks J, Beer Stolz D, Sun M, Wang G, Switzer R, Kochanek PM and Murdoch G: Ultrastructure of diaschisis lesions after traumatic brain injury. J Neurotrauma. 33:1866–1882. 2016.PubMed/NCBI View Article : Google Scholar

40 

Hosokawa M and Ueno M: Aging of blood-brain barrier and neuronal cells of eye and ear in SAM mice. Neurobiol Aging. 20:117–123. 1999.PubMed/NCBI View Article : Google Scholar

41 

Gong Y, Wu M, Gao F, Shi M, Gu H, Gao R, Dang BQ and Chen G: Inhibition of the p-SPAK/p-NKCC1 signaling pathway protects the blood-brain barrier and reduces neuronal apoptosis in a rat model of surgical brain injury. Mol Med Rep. 24(717)2021.PubMed/NCBI View Article : Google Scholar

42 

Gong Y, Wu M, Shen J, Tang J, Li J, Xu J, Dang B and Chen G: Inhibition of the NKCC1/NF-κB signaling pathway decreases inflammation and improves brain edema and nerve cell apoptosis in an SBI rat model. Front Mol Neurosci. 14(641993)2021.PubMed/NCBI View Article : Google Scholar

43 

Wu MY, Gao F, Tang JF, Shen JC, Gao R, Dang BQ and Chen G: Possible mechanisms of the PERK pathway on neuronal apoptosis in a rat model of surgical brain injury. Am J Transl Res. 13:732–742. 2021.PubMed/NCBI

44 

Shen J, Qian M, Wu M, Tang J, Gong Y, Li J, Ji J and Dang B: Rosiglitazone inhibits acyl-CoA synthetase long-chain family number 4 and improves secondary brain injury in a rat model of surgical brain injury. Clin Exp Pharmacol Physiol. 50:927–935. 2023.PubMed/NCBI View Article : Google Scholar

45 

Wu M, Gao R, Dang B and Chen G: The blood component iron causes neuronal apoptosis following intracerebral hemorrhage via the PERK pathway. Front Neurol. 11(588548)2020.PubMed/NCBI View Article : Google Scholar

46 

Wu M, Wang C, Gong Y, Huang Y, Jiang L, Zhang M, Gao R and Dang B: Potential mechanism of TMEM2/CD44 in endoplasmic reticulum stress-induced neuronal apoptosis in a rat model of traumatic brain injury. Int J Mol Med. 52(119)2023.PubMed/NCBI View Article : Google Scholar

47 

Li J, Wu M, Gong Y, Tang J, Shen J, Xu L, Dang B and Chen G: Inhibition of LRRK2-Rab10 pathway improves secondary brain injury after surgical brain injury in rats. Front Surg. 8(749310)2022.PubMed/NCBI View Article : Google Scholar

48 

Anthony IC, Ramage SN, Carnie FW, Simmonds P and Bell JE: Does drug abuse alter microglial phenotype and cell turnover in the context of advancing HIV infection? Neuropathol Appl Neurobiol. 31:325–338. 2005.PubMed/NCBI View Article : Google Scholar

49 

Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D, Ono R, Kiyama H, et al: Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun. 10(5816)2019.PubMed/NCBI View Article : Google Scholar

50 

Merlini M, Rafalski VA, Ma K, Kim KY, Bushong EA, Rios Coronado PE, Yan Z, Mendiola AS, Sozmen EG, Ryu JK, et al: Microglial Gi-dependent dynamics regulate brain network hyperexcitability. Nat Neurosci. 24:19–23. 2021.PubMed/NCBI View Article : Google Scholar

51 

Wang J, Zhang C, Zhu J, Ding J, Chen Y and Han X: Blood-brain barrier disruption and inflammation reaction in mice after chronic exposure to Microcystin-LR. Sci Total Environ. 689:662–678. 2019.PubMed/NCBI View Article : Google Scholar

52 

Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M and Yamashita T: Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci. 16:543–551. 2013.PubMed/NCBI View Article : Google Scholar

53 

Corps KN, Roth TL and McGavern DB: Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 72:355–362. 2015.PubMed/NCBI View Article : Google Scholar

54 

Ikegami A and Wake H: Microglial regulation of blood brain barrier, the neuro-immunological interface. Brain Nerve. 73:913–919. 2021.PubMed/NCBI View Article : Google Scholar : (In Japanese).

55 

Planas AM: Role of immune cells migrating to the ischemic brain. Stroke. 49:2261–2267. 2018.PubMed/NCBI View Article : Google Scholar

56 

Park GH, Noh H, Shao Z, Ni P, Qin Y, Liu D, Beaudreault CP, Park JS, Abani CP, Park JM, et al: Activated microglia cause metabolic disruptions in developmental cortical interneurons that persist in interneurons from individuals with schizophrenia. Nat Neurosci. 23:1352–1364. 2020.PubMed/NCBI View Article : Google Scholar

57 

Zhang Z, Zhang Z, Lu H, Yang Q, Wu H and Wang J: Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol. 54:1874–1886. 2017.PubMed/NCBI View Article : Google Scholar

58 

Roseborough AD, Zhu Y, Zhao L, Laviolette SR, Pasternak SH and Whitehead SN: Fibrinogen primes the microglial NLRP3 inflammasome and propagates pro-inflammatory signaling via extracellular vesicles: Implications for blood-brain barrier dysfunction. Neurobiol Dis. 177(106001)2023.PubMed/NCBI View Article : Google Scholar

59 

Kant R, Halder SK, Fernández JA, Griffin JH and Milner R: Activated protein C attenuates experimental autoimmune encephalomyelitis progression by enhancing vascular integrity and suppressing microglial activation. Front Neurosci. 14(333)2020.PubMed/NCBI View Article : Google Scholar

60 

Jolivel V, Bicker F, Binamé F, Ploen R, Keller S, Gollan R, Jurek B, Birkenstock J, Poisa-Beiro L, Bruttger J, et al: Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol. 129:279–295. 2015.PubMed/NCBI View Article : Google Scholar

61 

Pan JJ, Qi L, Wang L, Liu C, Song Y, Mamtilahun M, Hu X, Li Y, Chen X, Khan H, et al: M2 microglial extracellular vesicles attenuated blood-brain barrier disruption via MiR-23a-5p in cerebral ischemic mice. Aging Dis. 15:1344–1356. 2024.PubMed/NCBI View Article : Google Scholar

62 

Clarner T, Diederichs F, Berger K, Denecke B, Gan L, van der Valk P, Beyer C, Amor S and Kipp M: Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia. 60:1468–1480. 2012.PubMed/NCBI View Article : Google Scholar

63 

Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA and Stevens B: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 74:691–705. 2012.PubMed/NCBI View Article : Google Scholar

64 

Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM and Ffrench-Constant C: M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 16:1211–1218. 2013.PubMed/NCBI View Article : Google Scholar

65 

Wang Y, Luo J and Li SY: Nano-curcumin simultaneously protects the blood-brain barrier and reduces M1 microglial activation during cerebral ischemia-reperfusion injury. ACS Appl Mater Interfaces. 11:3763–3770. 2019.PubMed/NCBI View Article : Google Scholar

66 

Zhang J, Zheng Y, Luo Y, Du Y, Zhang X and Fu J: Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/TLR4/NF-κB pathways in BV2 cells. Mol Immunol. 116:29–37. 2019.PubMed/NCBI View Article : Google Scholar

67 

Demirdağ F, Yavuzer S, Cengiz M, Yavuzer H, Kara Z, Ayvacı A, Avcı S, Yürüyen M, Uzun H, Altıparmak MR, et al: The role of NF-κB, PPAR-α, and PPAR-γ in older adults with metabolic syndrome. Horm Metab Res. 55:733–740. 2023.PubMed/NCBI View Article : Google Scholar

68 

Li YF, Ren X, Zhang L, Wang YH and Chen T: Microglial polarization in TBI: Signaling pathways and influencing pharmaceuticals. Front Aging Neurosci. 14(901117)2022.PubMed/NCBI View Article : Google Scholar

69 

Takuathung MN, Potikanond S, Sookkhee S, Mungkornasawakul P, Jearanaikulvanich T, Chinda K, Wikan N and Nimlamool W: Anti-psoriatic and anti-inflammatory effects of Kaempferia parviflora in keratinocytes and macrophage cells. Biomed Pharmacother. 143(112229)2021.PubMed/NCBI View Article : Google Scholar

70 

Ruan Z, Zhang D, Huang R, Sun W, Hou L, Zhao J and Wang Q: Microglial activation damages dopaminergic neurons through MMP-2/-9-mediated increase of blood-brain barrier permeability in a Parkinson's disease mouse model. Int J Mol Sci. 23(2793)2022.PubMed/NCBI View Article : Google Scholar

71 

Guo Y, Dai W, Zheng Y, Qiao W, Chen W, Peng L, Zhou H, Zhao T, Liu H, Zheng F and Sun P: Mechanism and regulation of microglia polarization in intracerebral hemorrhage. Molecules. 27(7080)2022.PubMed/NCBI View Article : Google Scholar

72 

Tian J, Liu Y, Wang Z, Zhang S, Yang Y, Zhu Y and Yang C: LncRNA Snhg8 attenuates microglial inflammation response and blood-brain barrier damage in ischemic stroke through regulating miR-425-5p mediated SIRT1/NF-κB signaling. J Biochem Mol Toxicol. 35(e22724)2021.PubMed/NCBI View Article : Google Scholar

73 

Liao Y, Hu J, Guo C, Wen A, Wen L, Hou Q, Weng Y, Wang J, Ding Y and Yang J: Acteoside alleviates blood-brain barrier damage induced by ischemic stroke through inhibiting microglia HMGB1/TLR4/NLRP3 signaling. Biochem Pharmacol. 220(115968)2024.PubMed/NCBI View Article : Google Scholar

74 

Chen G, Hou Y, Li X, Pan R and Zhao D: Sepsis-induced acute lung injury in young rats is relieved by calycosin through inactivating the HMGB1/MyD88/NF-κB pathway and NLRP3 inflammasome. Int Immunopharmacol. 96(107623)2021.PubMed/NCBI View Article : Google Scholar

75 

Yin N, Zhao Y, Liu C, Yang Y, Wang ZH, Yu W, Zhang K, Zhang Z, Liu J, Zhang Y and Shi J: Engineered nanoerythrocytes alleviate central nervous system inflammation by regulating the polarization of inflammatory microglia. Adv Mater. 34(e2201322)2022.PubMed/NCBI View Article : Google Scholar

76 

Chang H, Ma J, Feng K, Feng N, Wang X, Sun J, Guo T, Wei Y, Xu Y, Wang H, et al: Elevated blood and cerebrospinal fluid biomarkers of microglial activation and blood-brain barrier disruption in anti-NMDA receptor encephalitis. J Neuroinflammation. 20(172)2023.PubMed/NCBI View Article : Google Scholar

77 

Yan J, Zhang Y, Wang L, Li Z, Tang S, Wang Y, Gu N, Sun X and Li L: TREM2 activation alleviates neural damage via Akt/CREB/BDNF signalling after traumatic brain injury in mice. J Neuroinflammation. 19(289)2022.PubMed/NCBI View Article : Google Scholar

78 

Shi M, Gong Y, Wu M, Gu H, Yu J, Gao F, Ren Z, Qian M, Dang B and Chen G: Downregulation of TREM2/NF-кB signaling may damage the blood-brain barrier and aggravate neuronal apoptosis in experimental rats with surgically injured brain. Brain Res Bull. 183:116–126. 2022.PubMed/NCBI View Article : Google Scholar

79 

Sofroniew MV: Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci. 16:249–263. 2015.PubMed/NCBI View Article : Google Scholar

80 

Cheng X, Wang J, Sun X, Shao L, Guo Z and Li Y: Morphological and functional alterations of astrocytes responding to traumatic brain injury. J Integr Neurosci. 18:203–215. 2019.PubMed/NCBI View Article : Google Scholar

81 

Lauranzano E, Rasile M and Matteoli M: Integrating primary astrocytes in a microfluidic model of the blood-brain barrier. Methods Mol Biol. 2492:225–240. 2022.PubMed/NCBI View Article : Google Scholar

82 

Yosef N, Xi Y and McCarty JH: Isolation and transcriptional characterization of mouse perivascular astrocytes. PLoS One. 15(e0240035)2020.PubMed/NCBI View Article : Google Scholar

83 

Huang J, Ding J, Wang X, Gu C, He Y, Li Y, Fan H, Xie Q, Qi X, Wang Z and Qiu P: Transfer of neuron-derived α-synuclein to astrocytes induces neuroinflammation and blood-brain barrier damage after methamphetamine exposure: Involving the regulation of nuclear receptor-associated protein 1. Brain Behav Immun. 106:247–261. 2022.PubMed/NCBI View Article : Google Scholar

84 

Abbott NJ, Rönnbäck L and Hansson E: Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 7:41–53. 2006.PubMed/NCBI View Article : Google Scholar

85 

Weber CM, Moiz B, Zic SM, Alpizar Vargas V, Li A and Clyne AM: Induced pluripotent stem cell-derived cells model brain microvascular endothelial cell glucose metabolism. Fluids Barriers CNS. 19(98)2022.PubMed/NCBI View Article : Google Scholar

86 

Wu Z, Parry M, Hou XY, Liu MH, Wang H, Cain R, Pei ZF, Chen YC, Guo ZY, Abhijeet S and Chen G: Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington's disease. Nat Commun. 11(1105)2020.PubMed/NCBI View Article : Google Scholar

87 

Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J and Volterra A: CXCR4-activated astrocyte glutamate release via TNFalpha: Amplification by microglia triggers neurotoxicity. Nat Neurosci. 4:702–710. 2001.PubMed/NCBI View Article : Google Scholar

88 

Nedergaard M, Ransom B and Goldman SA: New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci. 26:523–530. 2003.PubMed/NCBI View Article : Google Scholar

89 

Simard M and Nedergaard M: The neurobiology of glia in the context of water and ion homeostasis. Neuroscience. 129:877–896. 2004.PubMed/NCBI View Article : Google Scholar

90 

Karve IP, Taylor JM and Crack PJ: The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol. 173:692–702. 2016.PubMed/NCBI View Article : Google Scholar

91 

Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, Harley SBR, Bartlett PF, Schroder WA, Yates AG, Anthony DC, et al: Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell. 180:833–846.e16. 2020.PubMed/NCBI View Article : Google Scholar

92 

Lee H and Koh JY: Roles for H+ /K+ -ATPase and zinc transporter 3 in cAMP-mediated lysosomal acidification in bafilomycin A1-treated astrocytes. Glia. 69:1110–1125. 2021.PubMed/NCBI View Article : Google Scholar

93 

Chen Y and Swanson RA: Astrocytes and brain injury. J Cereb Blood Flow Metab. 23:137–149. 2003.PubMed/NCBI View Article : Google Scholar

94 

Burda JE and Sofroniew MV: Reactive gliosis and the multicellular response to CNS damage and disease. Neuron. 81:229–248. 2014.PubMed/NCBI View Article : Google Scholar

95 

Lee EJ, Hung YC and Lee MY: Early alterations in cerebral hemodynamics, brain metabolism, and blood-brain barrier permeability in experimental intracerebral hemorrhage. J Neurosurg. 91:1013–1019. 1999.PubMed/NCBI View Article : Google Scholar

96 

Lee EJ, Chio CC, Chang CH and Chen HH: Prognostic significance of altered cerebral blood flow velocity in acute head trauma. J Formos Med Assoc. 96:5–12. 1997.PubMed/NCBI

97 

Lien CF, Mohanta SK, Frontczak-Baniewicz M, Swinny JD, Zablocka B and Górecki DC: Absence of glial α-dystrobrevin causes abnormalities of the blood-brain barrier and progressive brain edema. J Biol Chem. 287:41374–41385. 2012.PubMed/NCBI View Article : Google Scholar

98 

Wolburg H, Noell S, Wolburg-Buchholz K, Mack A and Fallier-Becker P: Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist. 15:180–193. 2009.PubMed/NCBI View Article : Google Scholar

99 

Kim I, Moon SO, Park SK, Chae SW and Koh GY: Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res. 89:477–479. 2001.PubMed/NCBI View Article : Google Scholar

100 

Liu B and Neufeld AH: Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytes of the human glaucomatous optic nerve head. Glia. 30:178–186. 2000.PubMed/NCBI View Article : Google Scholar

101 

Jiang L, Pan CL, Wang CY, Liu BQ, Han Y, Hu L, Liu L, Yang Y, Qu JW and Liu WT: Selective suppression of the JNK-MMP2/9 signal pathway by tetramethylpyrazine attenuates neuropathic pain in rats. J Neuroinflammation. 14(174)2017.PubMed/NCBI View Article : Google Scholar

102 

Lu L, Hogan-Cann AD, Globa AK, Lu P, Nagy JI, Bamji SX and Anderson CM: Astrocytes drive cortical vasodilatory signaling by activating endothelial NMDA receptors. J Cereb Blood Flow Metab. 39:481–496. 2019.PubMed/NCBI View Article : Google Scholar

103 

Mizee MR, Nijland PG, van der Pol SMA, Drexhage JAR, van Het Hof B, Mebius R, van der Valk P, van Horssen J, Reijerkerk A and de Vries HE: Astrocyte-derived retinoic acid: A novel regulator of blood-brain barrier function in multiple sclerosis. Acta Neuropathol. 128:691–703. 2014.PubMed/NCBI View Article : Google Scholar

104 

Li Y, Xia Y, Wang Y, Mao L, Gao Y, He Q, Huang M, Chen S and Hu B: Sonic hedgehog (Shh) regulates the expression of angiogenic growth factors in oxygen-glucose-deprived astrocytes by mediating the nuclear receptor NR2F2. Mol Neurobiol. 47:967–975. 2013.PubMed/NCBI View Article : Google Scholar

105 

Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, Feng Y, Gao Q and Chopp M: Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab. 27:1684–1691. 2007.PubMed/NCBI View Article : Google Scholar

106 

Chen M, Ba H, Lu C, Dai J and Sun J: Glial cell line-derived neurotrophic factor (GDNF) promotes angiogenesis through the demethylation of the fibromodulin (FMOD) promoter in glioblastoma. Med Sci Monit. 24:6137–6143. 2018.PubMed/NCBI View Article : Google Scholar

107 

Rodriguez-Perez AI, Borrajo A, Diaz-Ruiz C, Garrido-Gil P and Labandeira-Garcia JL: Crosstalk between insulin-like growth factor-1 and angiotensin-II in dopaminergic neurons and glial cells: Role in neuroinflammation and aging. Oncotarget. 7:30049–30067. 2016.PubMed/NCBI View Article : Google Scholar

108 

Cao F, Jiang Y, Wu Y, Zhong J, Liu J, Qin X, Chen L, Vitek MP, Li F, Xu L and Sun X: Apolipoprotein E-mimetic COG1410 reduces acute vasogenic edema following traumatic brain injury. J Neurotrauma. 33:175–182. 2016.PubMed/NCBI View Article : Google Scholar

109 

Leybaert L: Neurobarrier coupling in the brain: A partner of neurovascular and neurometabolic coupling? J Cereb Blood Flow Metab. 25:2–16. 2005.PubMed/NCBI View Article : Google Scholar

110 

Chen Z, Kelly JR, Morales JE, Sun RC, De A, Burkin DJ and McCarty JH: The alpha7 integrin subunit in astrocytes promotes endothelial blood-brain barrier integrity. Development. 150(dev201356)2023.PubMed/NCBI View Article : Google Scholar

111 

Mayer U, Saher GFässler R, Bornemann A, Echtermeyer F, von der Mark H, Miosge N, Pöschl E and von der Mark K: Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat Genet. 17:318–323. 1997.PubMed/NCBI View Article : Google Scholar

112 

Mielenz D, Hapke S, Pöschl E, von Der Mark H and von Der Mark K: The integrin alpha 7 cytoplasmic domain regulates cell migration, lamellipodia formation, and p130CAS/Crk coupling. J Biol Chem. 276:13417–13426. 2001.PubMed/NCBI View Article : Google Scholar

113 

Kim H, Leng K, Park J, Sorets AG, Kim S, Shostak A, Embalabala RJ, Mlouk K, Katdare KA, Rose IVL, et al: Reactive astrocytes transduce inflammation in a blood-brain barrier model through a TNF-STAT3 signaling axis and secretion of alpha 1-antichymotrypsin. Nat Commun. 13(6581)2022.PubMed/NCBI View Article : Google Scholar

114 

Lee LL, Aung HH, Wilson DW, Anderson SE, Rutledge JC and Rutkowsky JM: Triglyceride-rich lipoprotein lipolysis products increase blood-brain barrier transfer coefficient and induce astrocyte lipid droplets and cell stress. Am J Physiol Cell Physiol. 312:C500–C516. 2017.PubMed/NCBI View Article : Google Scholar

115 

Malik VA, Zajicek F, Mittmann LA, Klaus J, Unterseer S, Rajkumar S, Pütz B, Deussing JM, Neumann ID, Rupprecht R and Di Benedetto B: GDF15 promotes simultaneous astrocyte remodeling and tight junction strengthening at the blood-brain barrier. J Neurosci Res. 98:1433–1456. 2020.PubMed/NCBI View Article : Google Scholar

116 

Shimizu F, Sano Y, Tominaga O, Maeda T, Abe MA and Kanda T: Advanced glycation end-products disrupt the blood-brain barrier by stimulating the release of transforming growth factor-β by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro. Neurobiol Aging. 34:1902–1912. 2013.PubMed/NCBI View Article : Google Scholar

117 

Senatorov VV Jr, Friedman AR, Milikovsky DZ, Ofer J, Saar-Ashkenazy R, Charbash A, Jahan N, Chin G, Mihaly E, Lin JM, et al: Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci Transl Med. 11(eaaw8283)2019.PubMed/NCBI View Article : Google Scholar

118 

Guo Y, Dong L, Gong A, Zhang J, Jing L, Ding T, Li PA and Zhang JZ: Damage to the blood-brain barrier and activation of neuroinflammation by focal cerebral ischemia under hyperglycemic condition. Int J Mol Med. 48(142)2021.PubMed/NCBI View Article : Google Scholar

119 

Wang QS, Ding HG, Chen SL, Liu XQ, Deng YY, Jiang WQ, Li Y, Huang LQ, Han YL, Wen MY, et al: Hypertonic saline mediates the NLRP3/IL-1β signaling axis in microglia to alleviate ischemic blood-brain barrier permeability by downregulating astrocyte-derived VEGF in rats. CNS Neurosci Ther. 26:1045–1057. 2020.PubMed/NCBI View Article : Google Scholar

120 

You L, Yu PP, Dong T, Guo W, Chang S, Zheng B, Ci Y, Wang F, Yu P, Gao G and Chang YZ: Astrocyte-derived hepcidin controls iron traffic at the blood-brain-barrier via regulating ferroportin 1 of microvascular endothelial cells. Cell Death Dis. 13(667)2022.PubMed/NCBI View Article : Google Scholar

121 

Pasti L, Volterra A, Pozzan T and Carmignoto G: Intracellular calcium oscillations in astrocytes: A highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci. 17:7817–7830. 1997.PubMed/NCBI View Article : Google Scholar

122 

Huber JD, Egleton RD and Davis TP: Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 24:719–725. 2001.PubMed/NCBI View Article : Google Scholar

123 

Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC and Nedergaard M: Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA. 95:15735–15740. 1998.PubMed/NCBI View Article : Google Scholar

124 

Sneyd J, Charles AC and Sanderson MJ: A model for the propagation of intercellular calcium waves. Am J Physiol. 266:C293–C302. 1994.PubMed/NCBI View Article : Google Scholar

125 

Chapouly C, Tadesse Argaw A, Horng S, Castro K, Zhang J, Asp L, Loo H, Laitman BM, Mariani JN, Straus Farber R, et al: Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions. Brain. 138:1548–1567. 2015.PubMed/NCBI View Article : Google Scholar

126 

Chu H, Yang X, Huang C, Gao Z, Tang Y and Dong Q: Apelin-13 protects against ischemic blood-brain barrier damage through the effects of aquaporin-4. Cerebrovasc Dis. 44:10–25. 2017.PubMed/NCBI View Article : Google Scholar

127 

Jackson RJ, Meltzer JC, Nguyen H, Commins C, Bennett RE, Hudry E and Hyman BT: APOE4 derived from astrocytes leads to blood-brain barrier impairment. Brain. 145:3582–3593. 2022.PubMed/NCBI View Article : Google Scholar

128 

Qin X, Wang J, Chen S, Liu G, Wu C, Lv Q, He X, Bai X, Huang W and Liao H: Astrocytic p75NTR expression provoked by ischemic stroke exacerbates the blood-brain barrier disruption. Glia. 70:892–912. 2022.PubMed/NCBI View Article : Google Scholar

129 

Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ and Kim KW: SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med. 9:900–906. 2003.PubMed/NCBI View Article : Google Scholar

130 

Takarada-Iemata M, Yoshikawa A, Ta HM, Okitani N, Nishiuchi T, Aida Y, Kamide T, Hattori T, Ishii H, Tamatani T, et al: N-myc downstream-regulated gene 2 protects blood-brain barrier integrity following cerebral ischemia. Glia. 66:1432–1446. 2018.PubMed/NCBI View Article : Google Scholar

131 

Tian W, Sawyer A, Kocaoglu FB and Kyriakides TR: Astrocyte-derived thrombospondin-2 is critical for the repair of the blood-brain barrier. Am J Pathol. 179:860–868. 2011.PubMed/NCBI View Article : Google Scholar

132 

Jayakumar AR, Tong XY, Ruiz-Cordero R, Bregy A, Bethea JR, Bramlett HM and Norenberg MD: Activation of NF-κB mediates astrocyte swelling and brain edema in traumatic brain injury. J Neurotrauma. 31:1249–1257. 2014.PubMed/NCBI View Article : Google Scholar

133 

Wu M, Gong Y, Jiang L, Zhang M, Gu H, Shen H and Dang B: VEGF regulates the blood-brain barrier through MMP-9 in a rat model of traumatic brain injury. Exp Ther Med. 24(728)2022.PubMed/NCBI View Article : Google Scholar

134 

Wu MY, Gao F, Yang XM, Qin X, Chen GZ, Li D, Dang BQ and Chen G: Matrix metalloproteinase-9 regulates the blood brain barrier via the hedgehog pathway in a rat model of traumatic brain injury. Brain Res. 1727(146553)2020.PubMed/NCBI View Article : Google Scholar

135 

Persidsky Y, Ramirez SH, Haorah J and Kanmogne GD: Blood-brain barrier: Structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 1:223–236. 2006.PubMed/NCBI View Article : Google Scholar

136 

Kassan M, Kwon Y, Munkhsaikhan U, Sahyoun AM, Ishrat T, Galán M, Gonzalez AA, Abidi AH, Kassan A and Ait-Aissa K: Protective role of short-chain fatty acids against Ang-II-induced mitochondrial dysfunction in brain endothelial cells: A potential role of heme oxygenase 2. Antioxidants (Basel). 12(160)2023.PubMed/NCBI View Article : Google Scholar

137 

Wang YI, Abaci HE and Shuler ML: Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng. 114:184–194. 2017.PubMed/NCBI View Article : Google Scholar

138 

Min XL, Zou H, Yan J, Lyu Q, He X and Shang FF: Stress conditions induced circRNAs profile of extracellular vesicles in brain microvascular endothelial cells. Metab Brain Dis. 37:1977–1987. 2022.PubMed/NCBI View Article : Google Scholar

139 

Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K and Caruso F: Overcoming the blood-brain barrier: The role of nanomaterials in treating neurological diseases. Adv Mater. 30(e1801362)2018.PubMed/NCBI View Article : Google Scholar

140 

Grammas P, Martinez J and Miller B: Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. Expert Rev Mol Med. 13(e19)2011.PubMed/NCBI View Article : Google Scholar

141 

Oldendorf WH, Cornford ME and Brown WJ: The large apparent work capability of the blood-brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol. 1:409–417. 1977.PubMed/NCBI View Article : Google Scholar

142 

Grutzendler J and Nedergaard M: Cellular control of brain capillary blood flow: In vivo imaging veritas. Trends Neurosci. 42:528–536. 2019.PubMed/NCBI View Article : Google Scholar

143 

Raut S, Patel R and Al-Ahmad AJ: Presence of a mutation in PSEN1 or PSEN2 gene is associated with an impaired brain endothelial cell phenotype in vitro. Fluids Barriers CNS. 18(3)2021.PubMed/NCBI View Article : Google Scholar

144 

Lisk C, McCord J, Bose S, Sullivan T, Loomis Z, Nozik-Grayck E, Schroeder T, Hamilton K and Irwin DC: Nrf2 activation: A potential strategy for the prevention of acute mountain sickness. Free Radic Biol Med. 63:264–273. 2013.PubMed/NCBI View Article : Google Scholar

145 

Nicolicht-Amorim P, Delgado-Garcia LM, Nakamura TKE, Courbassier NR, Mosini AC and Porcionatto MA: Simple and efficient protocol to isolate and culture brain microvascular endothelial cells from newborn mice. Front Cell Neurosci. 16(949412)2022.PubMed/NCBI View Article : Google Scholar

146 

Sawada N: Tight junction-related human diseases. Pathol Int. 63:1–12. 2013.PubMed/NCBI View Article : Google Scholar

147 

González-Mariscal L, Posadas Y, Miranda J, Uc PY, Ortega-Olvera JM and Hernández S: Strategies that target tight junctions for enhanced drug delivery. Curr Pharm Des. 22:5313–5346. 2016.PubMed/NCBI View Article : Google Scholar

148 

Keaney J and Campbell M: The dynamic blood-brain barrier. FEBS J. 282:4067–4079. 2015.PubMed/NCBI View Article : Google Scholar

149 

Kumar R, Sharma A and Tiwari RK: Can we predict blood brain barrier permeability of ligands using computational approaches? Interdiscip Sci. 5:95–101. 2013.PubMed/NCBI View Article : Google Scholar

150 

Saxena D, Sharma A, Siddiqui MH and Kumar R: Blood brain barrier permeability prediction using machine learning techniques: An update. Curr Pharm Biotechnol. 20:1163–1171. 2019.PubMed/NCBI View Article : Google Scholar

151 

Song D, Jiang X, Liu Y, Sun Y, Cao S and Zhang Z: Asiaticoside attenuates cell growth inhibition and apoptosis induced by Aβ1-42 via inhibiting the TLR4/NF-κB signaling pathway in human brain microvascular endothelial cells. Front Pharmacol. 9(28)2018.PubMed/NCBI View Article : Google Scholar

152 

Uraoka M, Ikeda K, Kurimoto-Nakano R, Nakagawa Y, Koide M, Akakabe Y, Kitamura Y, Ueyama T, Matoba S, Yamada H, et al: Loss of bcl-2 during the senescence exacerbates the impaired angiogenic functions in endothelial cells by deteriorating the mitochondrial redox state. Hypertension. 58:254–263. 2011.PubMed/NCBI View Article : Google Scholar

153 

Rajeev V, Fann DY, Dinh QN, Kim HA, De Silva TM, Lai MKP, Chen CL, Drummond GR, Sobey CG and Arumugam TV: Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics. 12:1639–1658. 2022.PubMed/NCBI View Article : Google Scholar

154 

Sweeney MD, Sagare AP and Zlokovic BV: Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 14:133–150. 2018.PubMed/NCBI View Article : Google Scholar

155 

Bernard-Patrzynski F, Lécuyer MA, Puscas I, Boukhatem I, Charabati M, Bourbonnière L, Ramassamy C, Leclair G, Prat A and Roullin VG: Isolation of endothelial cells, pericytes and astrocytes from mouse brain. PLoS One. 14(e0226302)2019.PubMed/NCBI View Article : Google Scholar

156 

Vajtr D, Benada O, Kukacka J, Průša R, Houstava L, Ťoupalík P and Kizek R: Correlation of ultrastructural changes of endothelial cells and astrocytes occurring during blood brain barrier damage after traumatic brain injury with biochemical markers of BBB leakage and inflammatory response. Physiol Res. 58:263–268. 2009.PubMed/NCBI View Article : Google Scholar

157 

Yao X, Uchida K, Papadopoulos MC, Zador Z, Manley GT and Verkman AS: Mildly reduced brain swelling and improved neurological outcome in aquaporin-4 knockout mice following controlled cortical impact brain injury. J Neurotrauma. 32:1458–1464. 2015.PubMed/NCBI View Article : Google Scholar

158 

Abbott NJ: Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat. 200:629–638. 2002.PubMed/NCBI View Article : Google Scholar

159 

Liu H, Wei JY, Li Y, Ban M, Sun Q, Wang HJ, Zhao D, Tong PG, Wang L, Wang KJ, et al: Endothelial depletion of Atg7 triggers astrocyte-microvascular disassociation at blood-brain barrier. J Cell Biol. 222(e202103098)2023.PubMed/NCBI View Article : Google Scholar

160 

Wang Y, Wu J, Wang J, He L, Lai H, Zhang T, Wang X and Li W: Mitochondrial oxidative stress in brain microvascular endothelial cells: Triggering blood-brain barrier disruption. Mitochondrion. 69:71–82. 2023.PubMed/NCBI View Article : Google Scholar

161 

Sun P, Zhang K, Hassan SH, Zhang X, Tang X, Pu H, Stetler RA, Chen J and Yin KJ: Endothelium-targeted deletion of microRNA-15a/16-1 promotes poststroke angiogenesis and improves long-term neurological recovery. Circ Res. 126:1040–1057. 2020.PubMed/NCBI View Article : Google Scholar

162 

Ren C, Li N, Li S, Han R, Huang Q, Hu J, Jin K and Ji X: Limb ischemic conditioning improved cognitive deficits via eNOS-dependent augmentation of angiogenesis after chronic cerebral hypoperfusion in rats. Aging Dis. 9:869–879. 2018.PubMed/NCBI View Article : Google Scholar

163 

Zhu HY, Hong FF and Yang SL: The roles of nitric oxide synthase/nitric oxide pathway in the pathology of vascular dementia and related therapeutic approaches. Int J Mol Sci. 22(4540)2021.PubMed/NCBI View Article : Google Scholar

164 

Ungvari Z, Tarantini S, Kiss T, Wren JD, Giles CB, Griffin CT, Murfee WL, Pacher P and Csiszar A: Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol. 15:555–565. 2018.PubMed/NCBI View Article : Google Scholar

165 

Hübner K, Cabochette P, Diéguez-Hurtado R, Wiesner C, Wakayama Y, Grassme KS, Hubert M, Guenther S, Belting HG, Affolter M, et al: Wnt/β-catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling. Nat Commun. 9(4860)2018.PubMed/NCBI View Article : Google Scholar

166 

Swaminathan B, Youn SW, Naiche LA, Du J, Villa SR, Metz JB, Feng H, Zhang C, Kopan R, Sims PA and Kitajewski JK: Endothelial Notch signaling directly regulates the small GTPase RND1 to facilitate Notch suppression of endothelial migration. Sci Rep. 12(1655)2022.PubMed/NCBI View Article : Google Scholar

167 

Zhu T, Xie WJ, Wang L, Jin XB, Meng XB, Sun GB and Sun XB: Notoginsenoside R1 activates the NAMPT-NAD+-SIRT1 cascade to promote postischemic angiogenesis by modulating Notch signaling. Biomed Pharmacother. 140(111693)2021.PubMed/NCBI View Article : Google Scholar

168 

Ma C, Zhou J, Xu X, Wang L, Qin S, Hu C, Nie L and Tu Y: The construction of a radiation-induced brain injury model and preliminary study on the effect of human recombinant endostatin in treating radiation-induced brain injury. Med Sci Monit. 25:9392–9401. 2019.PubMed/NCBI View Article : Google Scholar

169 

Deng Z, Zhou L, Wang Y, Liao S, Huang Y, Shan Y, Tan S, Zeng Q, Peng L, Huang H and Lu Z: Astrocyte-derived VEGF increases cerebral microvascular permeability under high salt conditions. Aging (Albany NY). 12:11781–11793. 2020.PubMed/NCBI View Article : Google Scholar

170 

Lee WH, Warrington JP, Sonntag WE and Lee YW: Irradiation alters MMP-2/TIMP-2 system and collagen type IV degradation in brain. Int J Radiat Oncol Biol Phys. 82:1559–1566. 2012.PubMed/NCBI View Article : Google Scholar

171 

Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, Lazic D, Tsai PS, Zhao Z, Zhou Y, et al: Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci. 20:406–416. 2017.PubMed/NCBI View Article : Google Scholar

172 

Kur J, Newman EA and Chan-Ling T: Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res. 31:377–406. 2012.PubMed/NCBI View Article : Google Scholar

173 

Mae MA, He L, Nordling S, Vazquez-Liebanas E, Nahar K, Jung B, Li X, Tan BC, Chin Foo J, Cazenave-Gassiot A, et al: Single-cell analysis of blood-brain barrier response to pericyte loss. Circ Res. 128:e46–e62. 2021.PubMed/NCBI View Article : Google Scholar

174 

Prager O, Kamintsky L, Hasam-Henderson LA, Schoknecht K, Wuntke V, Papageorgiou I, Swolinsky J, Muoio V, Bar-Klein G, Vazana U, et al: Seizure-induced microvascular injury is associated with impaired neurovascular coupling and blood-brain barrier dysfunction. Epilepsia. 60:322–336. 2019.PubMed/NCBI View Article : Google Scholar

175 

Stefanska A, Kenyon C, Christian HC, Buckley C, Shaw I, Mullins JJ and Péault B: Human kidney pericytes produce renin. Kidney Int. 90:1251–1261. 2016.PubMed/NCBI View Article : Google Scholar

176 

Korte N, James G, You H, Hirunpattarasilp C, Christie I, Sethi H and Attwell D: Noradrenaline released from locus coeruleus axons contracts cerebral capillary pericytes via α2 adrenergic receptors. J Cereb Blood Flow Metab. 43:1142–1152. 2023.PubMed/NCBI View Article : Google Scholar

177 

Huang H: Pericyte-endothelial interactions in the retinal microvasculature. Int J Mol Sci. 21(7413)2020.PubMed/NCBI View Article : Google Scholar

178 

Dehouck MP, Tachikawa M, Hoshi Y, Omori K, Maurage CA, Strecker G, Dehouck L, Boucau MC, Uchida Y, Gosselet F, et al: Quantitative targeted absolute proteomics for better characterization of an in vitro human blood-brain barrier model derived from hematopoietic stem cells. Cells. 11(3963)2022.PubMed/NCBI View Article : Google Scholar

179 

Winkler EA, Sengillo JD, Bell RD, Wang J and Zlokovic BV: Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability. J Cereb Blood Flow Metab. 32:1841–1852. 2012.PubMed/NCBI View Article : Google Scholar

180 

Armulik A, Genové G and Betsholtz C: Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 21:193–215. 2011.PubMed/NCBI View Article : Google Scholar

181 

Figueira I, Galego S, Custódio-Santos T, Vicente R, Molnár K, Haskó J, Malhó R, Videira M, Wilhelm I, Krizbai I and Brito MA: Picturing breast cancer brain metastasis development to unravel molecular players and cellular crosstalk. Cancers (Basel). 13(910)2021.PubMed/NCBI View Article : Google Scholar

182 

Alarcon-Martinez L, Villafranca-Baughman D, Quintero H, Kacerovsky JB, Dotigny F, Murai KK, Prat A, Drapeau P and Di Polo A: Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature. 585:91–95. 2020.PubMed/NCBI View Article : Google Scholar

183 

Lechertier T, Reynolds LE, Kim H, Pedrosa AR, Gómez-Escudero J, Muñoz-Félix JM, Batista S, Dukinfield M, Demircioglu F, Wong PP, et al: Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 11(2810)2020.PubMed/NCBI View Article : Google Scholar

184 

Wu Y, Fu J, Huang Y, Duan R, Zhang W, Wang C, Wang S, Hu X, Zhao H, Wang L, et al: Biology and function of pericytes in the vascular microcirculation. Animal Model Exp Med. 6:337–345. 2023.PubMed/NCBI View Article : Google Scholar

185 

Daneman R, Zhou L, Kebede AA and Barres BA: Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 468:562–566. 2010.PubMed/NCBI View Article : Google Scholar

186 

Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R and Zlokovic BV: Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 68:409–427. 2010.PubMed/NCBI View Article : Google Scholar

187 

Abramsson A, Kurup S, Busse M, Yamada S, Lindblom P, Schallmeiner E, Stenzel D, Sauvaget D, Ledin J, Ringvall M, et al: Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev. 21:316–331. 2007.PubMed/NCBI View Article : Google Scholar

188 

Weidenfeller C, Svendsen CN and Shusta EV: Differentiating embryonic neural progenitor cells induce blood-brain barrier properties. J Neurochem. 101:555–565. 2007.PubMed/NCBI View Article : Google Scholar

189 

Huang Y, Chen S, Luo Y and Han Z: Crosstalk between inflammation and the BBB in stroke. Curr Neuropharmacol. 18:1227–1236. 2020.PubMed/NCBI View Article : Google Scholar

190 

Thurgur H and Pinteaux E: Microglia in the neurovascular unit: Blood-brain barrier-microglia interactions after central nervous system disorders. Neuroscience. 405:55–67. 2019.PubMed/NCBI View Article : Google Scholar

191 

Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, et al: Pericytes regulate the blood-brain barrier. Nature. 468:557–561. 2010.PubMed/NCBI View Article : Google Scholar

192 

Hellström M, Kalén M, Lindahl P, Abramsson A and Betsholtz C: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 126:3047–3055. 1999.PubMed/NCBI View Article : Google Scholar

193 

Li J, Li M, Ge Y, Chen J, Ma J, Wang C, Sun M, Wang L, Yao S and Yao C: β-amyloid protein induces mitophagy-dependent ferroptosis through the CD36/PINK/PARKIN pathway leading to blood-brain barrier destruction in Alzheimer's disease. Cell Biosci. 12(69)2022.PubMed/NCBI View Article : Google Scholar

194 

Ma Q, Zhao Z, Sagare AP, Wu Y, Wang M, Owens NC, Verghese PB, Herz J, Holtzman DM and Zlokovic BV: Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Mol Neurodegener. 13(57)2018.PubMed/NCBI View Article : Google Scholar

195 

Bongarzone S, Savickas V, Luzi F and Gee AD: Targeting the receptor for advanced glycation endproducts (RAGE): A medicinal chemistry perspective. J Med Chem. 60:7213–7232. 2017.PubMed/NCBI View Article : Google Scholar

196 

Bell-Temin H, Culver-Cochran AE, Chaput D, Carlson CM, Kuehl M, Burkhardt BR, Bickford PC, Liu B and Stevens SM Jr: Novel molecular insights into classical and alternative activation states of microglia as revealed by stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics. Mol Cell Proteomics. 14:3173–3184. 2015.PubMed/NCBI View Article : Google Scholar

197 

Becerra-Calixto A and Cardona-Gómez GP: The role of astrocytes in neuroprotection after brain stroke: Potential in cell therapy. Front Mol Neurosci. 10(88)2017.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gong Y, Wu M, Huang Y, He X, Yuan J and Dang B: Research developments in the neurovascular unit and the blood‑brain barrier (Review). Biomed Rep 22: 88, 2025.
APA
Gong, Y., Wu, M., Huang, Y., He, X., Yuan, J., & Dang, B. (2025). Research developments in the neurovascular unit and the blood‑brain barrier (Review). Biomedical Reports, 22, 88. https://doi.org/10.3892/br.2025.1966
MLA
Gong, Y., Wu, M., Huang, Y., He, X., Yuan, J., Dang, B."Research developments in the neurovascular unit and the blood‑brain barrier (Review)". Biomedical Reports 22.5 (2025): 88.
Chicago
Gong, Y., Wu, M., Huang, Y., He, X., Yuan, J., Dang, B."Research developments in the neurovascular unit and the blood‑brain barrier (Review)". Biomedical Reports 22, no. 5 (2025): 88. https://doi.org/10.3892/br.2025.1966
Copy and paste a formatted citation
x
Spandidos Publications style
Gong Y, Wu M, Huang Y, He X, Yuan J and Dang B: Research developments in the neurovascular unit and the blood‑brain barrier (Review). Biomed Rep 22: 88, 2025.
APA
Gong, Y., Wu, M., Huang, Y., He, X., Yuan, J., & Dang, B. (2025). Research developments in the neurovascular unit and the blood‑brain barrier (Review). Biomedical Reports, 22, 88. https://doi.org/10.3892/br.2025.1966
MLA
Gong, Y., Wu, M., Huang, Y., He, X., Yuan, J., Dang, B."Research developments in the neurovascular unit and the blood‑brain barrier (Review)". Biomedical Reports 22.5 (2025): 88.
Chicago
Gong, Y., Wu, M., Huang, Y., He, X., Yuan, J., Dang, B."Research developments in the neurovascular unit and the blood‑brain barrier (Review)". Biomedical Reports 22, no. 5 (2025): 88. https://doi.org/10.3892/br.2025.1966
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team