|
1
|
Zamani M, Alizadeh-Tabari S, Ajmera V, Singh S, Murad MH and Loomba R: Global prevalence of advanced liver fibrosis and cirrhosis in the general population: A systematic review and meta-analysis. Clin Gastroenterol Hepatol: S1542-3565(24)00790-0, 2024 (Epub ahead of print).
|
|
2
|
Friedman SL: Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 88:125–172. 2008.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Higashi T, Friedman SL and Hoshida Y: Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 121:27–42. 2017.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Budanov AV and Karin M: p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 134:451–460. 2008.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Budanov AV, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H, Gorodin S, Fishman A, Chajut A, Einat P, et al: Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene. 21:6017–6031. 2002.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Essler S, Dehne N and Brune B: Role of sestrin2 in peroxide signaling in macrophages. FEBS Lett. 583:3531–3535. 2009.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Seo K, Ki SH and Shin SM: Sestrin2-AMPK activation protects mitochondrial function against glucose deprivation-induced cytotoxicity. Cell Signal. 27:1533–1543. 2015.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Rajanala SH, Ringquist R and Cryns VL: Methionine restriction activates the integrated stress response in triple-negative breast cancer cells by a GCN2- and PERK-independent mechanism. Am J Cancer Res. 9:1766–1775. 2019.PubMed/NCBI
|
|
9
|
Sun W, Wang Y, Zheng Y and Quan N: The emerging role of sestrin2 in cell metabolism, and cardiovascular and age-related diseases. Aging Dis. 11:154–163. 2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Kim HJ, Joe Y, Kim SK, Park SU, Park J, Chen Y, Kim J, Ryu J, Cho GJ, Surh YJ, et al: Carbon monoxide protects against hepatic steatosis in mice by inducing sestrin-2 via the PERK-eIF2α-ATF4 pathway. Free Radic Biol Med. 110:81–91. 2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Yang JH, Kim KM, Cho SS, Shin SM, Ka SO, Na CS, Park BH, Jegal KH, Kim JK, Ku SK, et al: Inhibitory effect of sestrin 2 on hepatic stellate cell activation and liver fibrosis. Antioxid Redox Signal. 31:243–259. 2019.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Kuwahata M, Kubota H, Kanouchi H, Ito S, Ogawa A, Kobayashi Y and Kido Y: Supplementation with branched-chain amino acids attenuates hepatic apoptosis in rats with chronic liver disease. Nutr Res. 32:522–529. 2012.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Khedr NF and Khedr EG: Branched chain amino acids supplementation modulates TGF-β1/Smad signaling pathway and interleukins in CCl4-induced liver fibrosis. Fundam Clin Pharmacol. 31:534–545. 2017.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Cha JH, Bae SH, Kim HL, Park NR, Choi ES, Jung ES, Choi JY and Yoon SK: Branched-chain amino acids ameliorate fibrosis and suppress tumor growth in a rat model of hepatocellular carcinoma with liver cirrhosis. PLoS One. 8(e77899)2013.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Shrestha N, Chand L, Han MK, Lee SO, Kim CY and Jeong YJ: Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes. Food Chem Toxicol. 93:129–137. 2016.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Lee HL, Lee J, Cha JH, Cho S, Sung PS, Hur W, Yoon SK and Bae SH: Anti-fibrotic effects of branched-chain amino acids on hepatic stellate cells. Korean J Intern Med. 37:53–62. 2022.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Blackstock CD, Higashi Y, Sukhanov S, Shai SY, Stefanovic B, Tabony AM, Yoshida T and Delafontaine P: Insulin-like growth factor-1 increases synthesis of collagen type I via induction of the mRNA-binding protein LARP6 expression and binding to the 5' stem-loop of COL1a1 and COL1a2 mRNA. J Biol Chem. 289:7264–7274. 2014.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Daou N, Viader A, Cokol M, Nitzel A, Chakravarthy MV, Afeyan R, Tramontin T, Marukian S and Hamill MJ: A novel, multitargeted endogenous metabolic modulator composition impacts metabolism, inflammation, and fibrosis in nonalcoholic steatohepatitis-relevant primary human cell models. Sci Rep. 11(11861)2021.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Zou CG, Gao SY, Zhao YS, Li SD, Cao XZ, Zhang Y and Zhang KQ: Homocysteine enhances cell proliferation in hepatic myofibroblastic stellate cells. J Mol Med (Berl). 87:75–84. 2009.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Pérez de Obanos MP, López-Zabalza MJ, Arriazu E, Modol T, Prieto J, Herraiz MT and Iraburu MJ: Reactive oxygen species (ROS) mediate the effects of leucine on translation regulation and type I collagen production in hepatic stellate cells. Biochim Biophys Acta. 1773:1681–1688. 2007.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Sawa R, Ohnishi A, Ohno M, Nagata M, Wake I and Okimura Y: Specific amino acids regulate sestrin2 mRNA and protein levels in an ATF4-dependent manner in C2C12 myocytes. Biochim Biophys Acta Gen Subj. 1866(130174)2022.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Sekiguchi H, Hemmi N, Maki T, Ozawa A, Kadowaki E, Kamiie J, Yamamoto M, Arishima K and Sakaue M: Culture on a fragmin/protamine-coated plate suppresses the collagen type IαI and TGF-β1 mRNA expression of rat hepatic stellate RI-T cells. J Vet Med Sci. 75:553–559. 2013.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Inami M, Fukushima A, Ueno T, Yamada T, Tsunemi A, Matsumoto Y, Fukuda N, Soma M and Moriyama M: Reduction of dimethylnitrosamine-induced liver fibrosis by the novel gene regulator pi polyamide targeting transforming growth factor β1 gene. Biol Pharm Bull. 38:1836–1842. 2015.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Théret N, Lehti K, Musso O and Clément B: MMP2 activation by collagen I and concanavalin A in cultured human hepatic stellate cells. Hepatology. 30:462–468. 1999.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Herningtyas EH, Okimura Y, Handayaningsih AE, Yamamoto D, Maki T, Iida K, Takahashi Y, Kaji H and Chihara K: Branched-chain amino acids and arginine suppress MaFbx/atrogin-1 mRNA expression via mTOR pathway in C2C12 cell line. Biochim Biophys Acta. 1780:1115–1120. 2008.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Lu C, Jiang Y, Xu W and Bao X: Sestrin2: Multifaceted functions, molecular basis, and its implications in liver diseases. Cell Death Dis. 14(160)2023.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Deng Y, Hu M, Huang S and Fu N: Molecular mechanism and therapeutic significance of essential amino acids in metabolically associated fatty liver disease. J Nutr Biochem. 126(109581)2024.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Li H, Ning S, Ghandi M, Kryukov GV, Gopal S, Deik A, Souza A, Pierce K, Keskula P, Hernandez D, et al: The landscape of cancer cell line metabolism. Nat Med. 25:850–860. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
D'Aniello C, Fico A, Casalino L, Guardiola O, Di Napoli G, Cermola F, De Cesare D, Tatè R, Cobellis G, Patriarca EJ and Minchiotti G: A novel autoregulatory loop between the Gcn2-Atf4 pathway and l-Proline metabolism controls stem cell identity. Cell Death Differ. 22:1094–1105. 2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Izaki S, Goto H and Yokota S: Increased chemosensitivity and elevated reactive oxygen species are mediated by glutathione reduction in glutamine deprived neuroblastoma cells. J Cancer Res Clin Oncol. 134:761–768. 2008.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Chisari AN, Sancho P, Caja L, Bertran E and Fabregat I: Lack of amino acids in mouse hepatocytes in culture induces the selection of preneoplastic cells. Cell Signal. 24:325–332. 2012.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Hu YB, Ye XT, Zhou QQ and Fu RQ: Sestrin 2 attenuates rat hepatic stellate cell (HSC) activation and liver fibrosis via an mTOR/AMPK-dependent mechanism. Cell Physiol Biochem. 51:2111–2122. 2018.PubMed/NCBI View Article : Google Scholar
|