|
1
|
Drenkard E and Ausubel FM: Pseudomonas
biofilm formation and antibiotic resistance are linked to
phenotypic variation. Nature. 416:740–743. 2002.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Behzadi P, Gajdács M, Pallós P, Ónodi B,
Stájer A, Matusovits D, Kárpáti K, Burián K, Battah B, Ferrari M,
et al: Relationship between biofilm-formation, phenotypic virulence
factors and antibiotic resistance in environmental Pseudomonas
aeruginosa. Pathogens. 11(1015)2022.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Chen C, Liao X, Jiang H, Zhu H, Yue L, Li
S, Fang B and Liu Y: Characteristics of Escherichia coli biofilm
production, genetic typing, drug resistance pattern and gene
expression under aminoglycoside pressures. Environ Toxicol
Pharmacol. 30:5–10. 2010.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Sanderson AR, Leid JG and Hunsaker D:
Bacterial biofilms on the sinus mucosa of human subjects with
chronic rhinosinusitis. Laryngoscope. 116:1121–1126.
2006.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Mohammed RQ and Abdullah PB: Infection
with acute otitis media caused by Pseudomonas aeruginosa
(MDR) and Staphylococcus aureus (MRSA). Biochem Cell Arch.
20:905–908. 2020.
|
|
6
|
Bendouah Z, Barbeau J, Hamad WA and
Desrosiers M: Biofilm formation by Staphylococcus aureus and
Pseudomonas aeruginosa is associated with an unfavorable
evolution after surgery for chronic sinusitis and nasal polyposis.
Otolaryngol Head Neck Surg. 134:991–996. 2006.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Carradori S, Di Giacomo N, Lobefalo M,
Luisi G, Campestre C and Sisto F: Biofilm and quorum sensing
inhibitors: The road so far. Expert Opin Ther Pat. 30:917–930.
2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Wang Y, Bian Z and Wang Y: Biofilm
formation and inhibition mediated by bacterial quorum sensing. Appl
Microbiol Biotechnol. 106:6365–6381. 2022.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Zhou L, Zhang Y, Ge Y, Zhu X and Pan J:
Regulatory mechanisms and promising applications of quorum
sensing-inhibiting agents in control of bacterial biofilm
formation. Front Microbiol. 11(589640)2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Ridyard KE and Overhage J: The potential
of human peptide LL-37 as an antimicrobial and anti-biofilm agent.
Antibiotics (Basel). 10(650)2021.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Martínez M, Polizzotto A, Flores N,
Semorile L and Maffía PC: Antibacterial, anti-biofilm and in vivo
activities of the antimicrobial peptides P5 and P6.2. Microb
Pathog. 139(103886)2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Paes Leme RC and da Silva RB:
Antimicrobial activity of non-steroidal anti-inflammatory drugs on
biofilm: Current evidence and potential for drug repurposing. Front
Microbiol. 12(707629)2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Schelz Z, Muddather HF and Zupkó I:
Repositioning of HMG-CoA reductase inhibitors as adjuvants in the
modulation of efflux pump-mediated bacterial and tumor resistance.
Antibiotics (Basel). 12(1468)2023.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kumar A, Alam A, Grover S, Pandey S,
Tripathi D, Kumari M, Rani M, Singh A, Akhter Y, Ehtesham NZ and
Hasnain SE: Peptidyl-prolyl isomerase-B is involved in
Mycobacterium tuberculosis biofilm formation and a generic target
for drug repurposing-based intervention. NPJ Biofilms Microbiomes.
5(3)2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Sauer K, Stoodley P, Goeres DM,
Hall-Stoodley L, Burmølle M, Stewart PS and Bjarnsholt T: The
biofilm life cycle: Expanding the conceptual model of biofilm
formation. Nat Rev Microbiol. 20:608–620. 2022.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Irie Y, Borlee BR, O'Connor JR, Hill PJ,
Harwood CS, Wozniak DJ and Parsek MR: Self-produced
exopolysaccharide is a signal that stimulates biofilm formation in
Pseudomonas aeruginosa. Proc Natl Acad Sci USA.
109:20632–20636. 2012.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Parastan R, Kargar M, Solhjoo K and
Kafilzadeh F: Staphylococcus aureus biofilms: Structures,
antibiotic resistance, inhibition, and vaccines. Gene Rep.
20(100739)2020.
|
|
18
|
Galli J, Calò L, Ardito F, Imperiali M,
Bassotti E, Fadda G and Paludetti G: Biofilm formation by
Haemophilus influenzae isolated from adeno-tonsil tissue
samples, and its role in recurrent adenotonsillitis. Acta
Otorhinolaryngol Ital. 27:134–138. 2007.PubMed/NCBI
|
|
19
|
Davenport EK, Call DR and Beyenal H:
Differential protection from tobramycin by extracellular polymeric
substances from Acinetobacter baumannii and
Staphylococcus aureus biofilms. Antimicrob Agents Chemother.
58:4755–4761. 2014.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Serra DO, Klauck G and Hengge R: Vertical
stratification of matrix production is essential for physical
integrity and architecture of macrocolony biofilms of Escherichia
coli. Environ Microbiol. 17:5073–5088. 2015.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Parsek MR and Greenberg EP:
Acyl-homoserine lactone quorum sensing in gram-negative bacteria: A
signaling mechanism involved in associations with higher organisms.
Proc Natl Acad Sci USA. 97:8789–8793. 2000.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Singh GB, Malhotra S, Yadav SC, Kaur R,
Kwatra D and Kumar S: The role of biofilms in chronic otitis
media-active squamosal disease: An evaluative study. Otol Neurotol.
42:e1279–e1285. 2021.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Dar D, Dar N, Cai L and Newman DK: Spatial
transcriptomics of planktonic and sessile bacterial populations at
single-cell resolution. Science. 373(eabi4882)2021.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Cornforth DM, Dees JL, Ibberson CB, Huse
HK, Mathiesen IH, Kirketerp-Møller K, Wolcott RD, Rumbaugh KP,
Bjarnsholt T and Whiteley M: Pseudomonas aeruginosa
transcriptome during human infection. Proc Natl Acad Sci USA.
115:E5125–E5134. 2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Dal Co A, Van Vliet S and Ackermann M:
Emergent microscale gradients give rise to metabolic cross-feeding
and antibiotic tolerance in clonal bacterial populations. Philos
Trans R Soc Lond B Biol Sci. 374(20190080)2019.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Boase S, Foreman A, Cleland E, Tan L,
Melton-Kreft R, Pant H, Hu FZ, Ehrlich GD and Wormald PJ: The
microbiome of chronic rhinosinusitis: Culture, molecular
diagnostics and biofilm detection. BMC Infect Dis.
13(210)2013.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Kostić M, Ivanov M, Babić SS, Tepavčević
Z, Radanović O, Soković M and Ćirić A: Analysis of tonsil tissues
from patients diagnosed with chronic tonsillitis-microbiological
profile, biofilm-forming capacity and histology. Antibiotics
(Basel). 11(1747)2022.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Lee MR, Pawlowski KS, Luong A, Furze AD
and Roland PS: Biofilm presence in humans with chronic suppurative
otitis media. Otolaryngol Head Neck Surg. 141:567–571.
2009.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Hoa M, Syamal M, Schaeffer MA, Sachdeva L,
Berk R and Coticchia J: Biofilms and chronic otitis media: An
initial exploration into the role of biofilms in the pathogenesis
of chronic otitis media. Am J Otolaryngol. 31:241–245.
2010.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Karthikeyan P and Nirmal Coumare V:
Incidence and presentation of fungal sinusitis in patient diagnosed
with chronic rhinosinusitis. Indian J Otolaryngol Head Neck Surg.
62:381–385. 2010.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Bahethi R, Talmor G, Choudhry H, Lemdani
M, Singh P, Patel R and Hsueh W: Chronic invasive fungal
rhinosinusitis and granulomatous invasive fungal sinusitis: A
systematic review of symptomatology and outcomes. Am J Otolaryngol.
45(104064)2024.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Yang SW, Luo CM and Cheng TC: Fungal
abscess of anterior nasal septum complicating maxillary sinus
fungal ball rhinosinusitis caused by Aspergillus flavus:
Case report and review of literature. J Fungi (Basel).
10(497)2024.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Leszczyńska J, Stryjewska-Makuch G,
Lisowska G, Kolebacz B and Michalak-Kolarz M: Fungal sinusitis
among patients with chronic rhinosinusitis who underwent endoscopic
sinus surgery. Otolaryngol Pol. 72:35–41. 2018.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Marom T, Habashi N, Cohen R and Tamir SO:
Role of biofilms in post-tympanostomy tube otorrhea. Ear Nose
Throat J. 99 (1 Suppl):22S–29S. 2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Manasherob R, Mooney JA, Lowenberg DW,
Bollyky PL and Amanatullah DF: Tolerant small-colony variants form
prior to resistance within a Staphylococcus aureus biofilm
based on antibiotic selective pressure. Clin Orthop Relat Res.
479:1471–1481. 2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Habashi N, Marom T, Steinberg D, Zacks B
and Tamir SO: Biofilm distribution on tympanostomy tubes: An ex
vivo descriptive study. Int J Pediatr Otorhinolaryngol.
138(110350)2020.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Mah TF, Pitts B, Pellock B, Walker GC,
Stewart PS and O'Toole GA: A genetic basis for Pseudomonas
aeruginosa biofilm antibiotic resistance. Nature. 426:306–310.
2003.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Kvist M, Hancock V and Klemm P:
Inactivation of efflux pumps abolishes bacterial biofilm formation.
Appl Environ Microbiol. 74:7376–7382. 2008.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Tang M, Wei X, Wan X, Ding Z, Ding Y and
Liu J: The role and relationship with efflux pump of biofilm
formation in Klebsiella pneumoniae. Microb Pathog.
147(104244)2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Powell LC, Abdulkarim M, Stokniene J, Yang
QE, Walsh TR, Hill KE, Gumbleton M and Thomas DW: Quantifying the
effects of antibiotic treatment on the extracellular polymer
network of antimicrobial resistant and sensitive biofilms using
multiple particle tracking. NPJ Biofilms Microbiomes.
7(13)2021.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Kosztołowicz T and Metzler R: Diffusion of
antibiotics through a biofilm in the presence of diffusion and
absorption barriers. Phys Rev E. 102(032408)2020.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Tuon FF, Dantas LR, Suss PH and Tasca
Ribeiro VST: Pathogenesis of the Pseudomonas aeruginosa
biofilm: A review. Pathogens. 11(300)2022.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Denton O, Wan Y, Beattie L, Jack T,
McGoldrick P, McAllister H, Mullan C, Douglas CM and Shu W:
Understanding the role of biofilms in acute recurrent tonsillitis
through 3D bioprinting of a novel gelatin-PEGDA hydrogel.
Bioengineering (Basel). 11(202)2024.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Huang Y, Qin F, Li S, Yin J, Hu L, Zheng
S, He L, Xia H, Liu J and Hu W: The mechanisms of biofilm
antibiotic resistance in chronic rhinosinusitis: A review. Medicine
(Baltimore). 101(e32168)2022.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Abu Bakar M, McKimm J, Haque SZ, Majumder
MAA and Haque M: Chronic tonsillitis and biofilms: A brief overview
of treatment modalities. J Inflam Res. 11:329–337. 2018.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Schilder AGM, Chonmaitree T, Cripps AW,
Rosenfeld RM, Casselbrant ML, Haggard MP and Venekamp RP: Otitis
media. Nat Rev Dis Primers. 2(16063)2016.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Duff AF, Jurcisek JA, Kurbatfinski N,
Chiang T, Goodman SD, Bakaletz LO and Bailey MT: Oral and middle
ear delivery of otitis media standard of care antibiotics, but not
biofilm-targeted antibodies, alter chinchilla nasopharyngeal and
fecal microbiomes. NPJ Biofilms Microbiomes. 10(10)2024.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Niedzielski A, Chmielik LP and Stankiewicz
T: The formation of biofilm and bacteriology in otitis media with
effusion in children: A prospective cross-sectional study. Int J
Environ Res Public Health. 18(3555)2021.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Abdelhady W, Bayer AS, Seidl K, Moormeier
DE, Bayles KW, Cheung AL, Yeaman MR and Xiong YQ: Impact of
vancomycin on sarA-mediated biofilm formation: Role in persistent
endovascular infections due to methicillin-resistant
Staphylococcus aureus. J Infect Dis. 209:1231–1240.
2014.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Rose WE and Poppens PT: Impact of biofilm
on the in vitro activity of vancomycin alone and in combination
with tigecycline and rifampicin against Staphylococcus
aureus. J Antimicrob Chemother. 63:485–488. 2009.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Cho OH, Bae IG, Moon SM, Park SY, Kwak YG,
Kim BN, Yu SN, Jeon MH, Kim T, Choo EJ, et al: Therapeutic outcome
of spinal implant infections caused by Staphylococcus
aureus: A retrospective observational study. Medicine
(Baltimore). 97(e12629)2018.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Herrmann G, Yang L, Wu H, Song Z, Wang H,
Høiby N, Ulrich M, Molin S, Riethmüller J and Döring G:
Colistin-tobramycin combinations are superior to monotherapy
concerning the killing of biofilm Pseudomonas aeruginosa. J
Infect Dis. 202:1585–1592. 2010.PubMed/NCBI View
Article : Google Scholar
|
|
53
|
Giamarellou H, Zissis NP, Tagari G and
Bouzos J: In vitro synergistic activities of aminoglycosides and
new beta-lactams against multiresistant Pseudomonas
aeruginosa. Antimicrob Agents Chemother. 25:534–536.
1984.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Giamarellou H: Aminoglycosides plus
beta-lactams against gram-negative organisms. Evaluation of in
vitro synergy and chemical interactions. Am J Med. 80:126–137.
1986.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Olson ME, Slater SR, Rupp ME and Fey PD:
Rifampicin enhances activity of daptomycin and vancomycin against
both a polysaccharide intercellular adhesin (PIA)-dependent and
-independent Staphylococcus epidermidis biofilm. J
Antimicrob Chemother. 65:2164–2171. 2010.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Zimmerli W and Sendi P: Role of rifampin
against staphylococcal biofilm infections in vitro, in animal
models, and in orthopedic-device-related infections. Antimicrob
Agents Chemother. 63:e01746–18. 2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Niska JA, Shahbazian JH, Ramos RI, Francis
KP, Bernthal NM and Miller LS: Vancomycin-rifampin combination
therapy has enhanced efficacy against an experimental
Staphylococcus aureus prosthetic joint infection. Antimicrob
Agents Chemother. 57:5080–5086. 2013.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Ferreira Chacon JM, Hato de Almeida E, de
Lourdes Simões R, Lazzarin C, Ozório V, Alves BC, Mello de Andréa
ML, Santiago Biernat M and Biernat JC: Randomized study of
minocycline and edetic acid as a locking solution for central line
(port-a-cath) in children with cancer. Chemotherapy. 57:285–291.
2011.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Vermeulen H, van Hattem JM, Storm-Versloot
MN and Ubbink DT: Topical silver for treating infected wounds.
Cochrane Database Syst Rev: CD005486, 2007.
|
|
60
|
Jiang Y, Zhang Q, Wang H, Välimäki M, Zhou
Q, Dai W and Guo J: Effectiveness of silver and iodine dressings on
wound healing: A systematic review and meta-analysis. BMJ Open.
14(e077902)2024.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Tateda K, Comte R, Pechere JC, Köhler T,
Yamaguchi K and Van Delden C: Azithromycin inhibits quorum sensing
in Pseudomonas aeruginosa. Antimicrob Agents Chemother.
45:1930–1933. 2001.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Hoffmann N, Lee B, Hentzer M, Rasmussen
TB, Song Z, Johansen HK, Givskov M and Høiby N: Azithromycin blocks
quorum sensing and alginate polymer formation and increases the
sensitivity to serum and stationary-growth-phase killing of
Pseudomonas aeruginosa and attenuates chronic P.
aeruginosa lung infection in Cftr(-/-) mice. Antimicrob Agents
Chemother. 51:3677–3687. 2007.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Gupta S, Aruna C, Nagaraj S, Dias M and
Muralidharan S: In vitro activity of tigecycline against
multidrug-resistant gram-negative blood culture isolates from
critically ill patients. J Antimicrob Chemother. 67:1293–1295.
2012.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Kostoulias X, Fu Y, Morris FC, Yu C, Qu Y,
Chang CC, Blakeway L, Landersdorfer CB, Abbott IJ, Wang L, et al:
Ceftolozane/tazobactam disrupts Pseudomonas aeruginosa
biofilms under static and dynamic conditions. J Antimicrob
Chemother. 80:372–380. 2025.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Miller MB and Bassler BL: Quorum sensing
in bacteria. Annu Rev Microbiol. 55:165–199. 2001.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Köhler T, Perron GG, Buckling A and van
Delden C: Quorum sensing inhibition selects for virulence and
cooperation in Pseudomonas aeruginosa. PLOS Pathog.
6(e1000883)2010.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Tsikopoulos A, Petinaki E, Festas C,
Tsikopoulos K, Meroni G, Drago L and Skoulakis C: In vitro
inhibition of biofilm formation on silicon rubber voice prosthesis:
Α systematic review and meta-analysis. ORL J Otorhinolaryngol Relat
Spec. 84:10–29. 2022.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Jakobsen TH, Bragason SK, Phipps RK,
Christensen LD, van Gennip M, Alhede M, Skindersoe M, Larsen TO,
Høiby N, Bjarnsholt T and Givskov M: Food as a source for quorum
sensing inhibitors: Iberin from horseradish revealed as a quorum
sensing inhibitor of Pseudomonas aeruginosa. Appl Environ
Microbiol. 78:2410–2421. 2012.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Luo J, Dong B, Wang K, Cai S, Liu T, Cheng
X, Lei D and Chen Y, Li Y, Kong J and Chen Y: Baicalin inhibits
biofilm formation, attenuates the quorum sensing-controlled
virulence and enhances Pseudomonas aeruginosa clearance in a
mouse peritoneal implant infection model. PLoS One.
12(e0176883)2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Prince AA, Steiger JD, Khalid AN,
Dogrhamji L, Reger C, Eau Claire SE, Chiu AG, Kennedy DW, Palmer JN
and Cohen NA: Prevalence of biofilm-forming bacteria in chronic
rhinosinusitis. Am J Rhinol. 22:239–245. 2008.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Foreman A, Holtappels G, Psaltis AJ,
Jervis-Bardy J, Field J, Wormald PJ and Bachert C: Adaptive immune
responses in Staphylococcus aureus biofilm-associated
chronic rhinosinusitis. Allergy. 66:1449–1456. 2011.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Yadav MK, Vidal JE, Go YY, Kim SH, Chae SW
and Song JJ: The LuxS/AI-2 quorum-sensing system of
Streptococcus pneumoniae is required to cause disease, and
to regulate virulence- and metabolism-related genes in a rat model
of middle ear infection. Front Cell Infect Microbiol.
8(138)2018.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Dawit G, Mequanent S and Makonnen E:
Efficacy and safety of azithromycin and amoxicillin/clavulanate for
otitis media in children: A systematic review and meta-analysis of
randomized controlled trials. Ann Clin Microbiol Antimicrob.
20(28)2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Brown HL, Hanman K, Reuter M, Betts RP and
Van Vliet AHM: Campylobacter jejuni biofilms contain extracellular
DNA and are sensitive to DNase I treatment. Front Microbiol.
6(699)2015.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Tetz GV, Artemenko NK and Tetz VV: Effect
of DNase and antibiotics on biofilm characteristics. Antimicrob
Agents Chemother. 53:1204–1209. 2009.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Gawande PV, Leung KP and Madhyastha S:
Antibiofilm and antimicrobial efficacy of
DispersinB®-KSL-W peptide-based wound gel against
chronic wound infection associated bacteria. Curr Microbiol.
68:635–641. 2014.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Lamppa JW and Griswold KE: Alginate lyase
exhibits catalysis-independent biofilm dispersion and antibiotic
synergy. Antimicrob Agents Chemother. 57:137–145. 2013.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Daboor SM, Rohde JR and Cheng Z:
Disruption of the extracellular polymeric network of Pseudomonas
aeruginosa biofilms by alginate lyase enhances pathogen
eradication by antibiotics. J Cyst Fibros. 20:264–270.
2021.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Barraud N, Hassett DJ, Hwang SH, Rice SA,
Kjelleberg S and Webb JS: Involvement of nitric oxide in biofilm
dispersal of Pseudomonas aeruginosa. J Bacteriol.
188:7344–7353. 2006.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Reffuveille F, de la Fuente-Núñez C,
Mansour S and Hancock REW: A broad-spectrum antibiofilm peptide
enhances Antibiotic Action against bacterial biofilms. Antimicrob
Agents Chemother. 58:5363–5371. 2014.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Le CF, Fang CM and Sekaran SD:
Intracellular targeting mechanisms by antimicrobial peptides.
Antimicrob Agents Chemother. 61:e02340–16. 2017.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Kang J, Dietz MJ and Li B: Antimicrobial
peptide LL-37 is bactericidal against Staphylococcus aureus
biofilms. PLoS One. 14(e0216676)2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Jalilsood T, Baradaran A, Song AAL, Foo
HL, Mustafa S, Saad WZ, Yusoff K and Rahim RA: Inhibition of
pathogenic and spoilage bacteria by a novel biofilm-forming
Lactobacillus isolate: A potential host for the expression of
heterologous proteins. Microb Cell Fact. 14(96)2015.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Li J, Zhang Q, Zhao J, Zhang H and Chen W:
Lactobacillus-derived components for inhibiting biofilm formation
in the food industry. World J Microbiol Biotechnol.
40(117)2024.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Algburi AR, Jassim SM, Popov IV, Weeks R
and Chikindas ML: Lactobacillus acidophilus VB1
co-aggregates and inhibits biofilm formation of chronic otitis
media-associated pathogens. Braz J Microbiol. 55:2581–2592.
2024.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Wongchai M, Wongkaewkhiaw S, Kanthawong S,
Roytrakul S and Aunpad R: Dual-function antimicrobial-antibiofilm
peptide hybrid to tackle biofilm-forming Staphylococcus
epidermidis. Ann Clin Microbiol Antimicrob.
23(44)2024.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Tintino SR, Souza VCAD, Silva JMAD,
Oliveira-Tintino CDDM, Pereira PS, Leal-Balbino TC, Pereira-Neves
A, Siqueira-Junior JP, da Costa JGM, Rodrigues FFG, et al: Effect
of vitamin K3 inhibiting the function of NorA efflux
pump and its gene expression on Staphylococcus aureus.
Membranes (Basel). 10(130)2020.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Monteiro KLC, de Aquino TM and Mendonça
Junior FJB: An update on Staphylococcus aureus NorA efflux
pump inhibitors. Curr Top Med Chem. 20:2168–2185. 2020.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Lu X, Wang G, Xie Y, Tang W, Liu B and
Zhang J: Efflux pump inhibitor combined with ofloxacin decreases
MRSA biofilm formation by regulating the gene expression of NorA
and quorum sensing. RSC Adv. 13:2707–2717. 2023.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Govindarajan DK, Meghanathan Y,
Sivaramakrishnan M, Kothandan R, Muthusamy A, Seviour TW and
Kandaswamy K: Enterococcus faecalis thrives in dual-species
biofilm models under iron-rich conditions. Arch Microbiol.
204(710)2022.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Brunson DN, Colomer-Winter C, Lam LN and
Lemos JA: Identification of multiple iron uptake mechanisms in
Enterococcus faecalis and their relationship to virulence.
Infect Immun. 91(e0049622)2023.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Kaneko Y, Thoendel M, Olakanmi O, Britigan
BE and Singh PK: The transition metal gallium disrupts
Pseudomonas aeruginosa iron metabolism and has antimicrobial
and antibiofilm activity. J Clin Invest. 117:877–888.
2007.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Goss CH, Kaneko Y, Khuu L, Anderson GD,
Ravishankar S, Aitken ML, Lechtzin N, Zhou G, Czyz DM, McLean K, et
al: Gallium disrupts bacterial iron metabolism and has therapeutic
effects in mice and humans with lung infections. Sci Transl Med.
10(eaat7520)2018.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Nobile CJ, Ennis CL, Hartooni N, Johnson
AD and Lohse MB: A selective serotonin reuptake inhibitor, a proton
pump inhibitor, and two calcium channel blockers inhibit Candida
albicans biofilms. Microorganisms. 8(756)2020.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Yu Q, Ding X, Xu N, Cheng X, Qian K, Zhang
B, Xing L and Li M: In vitro activity of verapamil alone and in
combination with fluconazole or tunicamycin against Candida
albicans biofilms. Int J Antimicrob Agents. 41:179–182.
2013.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Koushki K, Shahbaz SK, Mashayekhi K,
Sadeghi M, Zayeri ZD, Taba MY, Banach M, Al-Rasadi K, Johnston TP
and Sahebkar A: Anti-inflammatory action of statins in
cardiovascular disease: The role of inflammasome and toll-like
receptor pathways. Clin Rev Allergy Immunol. 60:175–199.
2021.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Kong F, Ye B, Lin L, Cai X, Huang W and
Huang Z: Atorvastatin suppresses NLRP3 inflammasome activation via
TLR4/MyD88/NF-κB signaling in PMA-stimulated THP-1 monocytes.
Biomed Pharmacother. 82:167–172. 2016.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Graziano TS, Cuzzullin MC, Franco GC,
Schwartz-Filho HO, de Andrade ED, Groppo FC and Cogo-Müller K:
Statins and antimicrobial effects: Simvastatin as a potential drug
against Staphylococcus aureus biofilm. PLoS One.
10(e0128098)2015.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Khodaparast S, Ghanbari F and Zamani H:
Evaluation of the effect of ibuprofen in combination with
ciprofloxacin on the virulence-associated traits, and efflux pump
genes of Pseudomonas aeruginosa. World J Microbiol
Biotechnol. 38(125)2022.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Abbas HA, Atallah H, El-Sayed MA and
El-Ganiny AM: Diclofenac mitigates virulence of multidrug-resistant
Staphylococcus aureus. Arch Microbiol. 202:2751–2760.
2020.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Severino P, Silveira EF, Loureiro K, Chaud
MV, Antonini D, Lancellotti M, Sarmento VH, da Silva CF, Santana
MHA and Souto EB: Antimicrobial activity of polymyxin-loaded solid
lipid nanoparticles (PLX-SLN): Characterization of physicochemical
properties and in vitro efficacy. Eur J Pharm Sci. 106:177–184.
2017.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Wang XF, Zhang SL, Zhu LY, Xie SY, Dong Z,
Wang Y and Zhou WZ: Enhancement of antibacterial activity of
tilmicosin against Staphylococcus aureus by solid lipid
nanoparticles in vitro and in vivo. Vet J. 191:115–120.
2012.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Kotrange H, Najda A, Bains A, Gruszecki R,
Chawla P and Tosif MM: Metal and metal oxide nanoparticle as a
novel antibiotic carrier for the direct delivery of antibiotics.
Int J Mol Sci. 22(9596)2021.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Patro SK, Panda NK and Sharma M: Drug
repurposing for, ENT and head and neck, infectious and oncologic
diseases: Current practices and future possibilities. In: Sobti RC,
Lal SK and Goyal RK (eds). Drug Repurposing for Emerging Infectious
Diseases and Cancer. Singapore: Springer Nature, pp253-282,
2023.
|
|
105
|
Kora AJ and Arunachalam J: Assessment of
antibacterial activity of silver nanoparticles on Pseudomonas
aeruginosa and its mechanism of action. World J Microbiol
Biotechnol. 27:1209–1216. 2011.
|
|
106
|
Caciandone M, Niculescu AG, Grumezescu V,
Bîrcă AC, Ghica IC, Vasile BȘ, Oprea O, Nica IC, Stan MS, Holban
AM, et al: Magnetite nanoparticles functionalized with therapeutic
agents for enhanced ENT antimicrobial properties. Antibiotics
(Basel). 11(623)2022.PubMed/NCBI View Article : Google Scholar
|
|
107
|
García-Alvarez R, Izquierdo-Barba I and
Vallet-Regí M: 3D scaffold with effective multidrug sequential
release against bacteria biofilm. Acta Biomater. 49:113–126.
2017.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Lee M, Park CG, Huh BK, Kim SN, Lee SH,
Khalmuratova R, Park JW, Shin HW and Choy YB: Sinonasal delivery of
resveratrol via mucoadhesive nanostructured microparticles in a
nasal polyp mouse model. Sci Rep. 7(40249)2017.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Cano EJ, Caflisch KM, Bollyky PL, Van
Belleghem JD, Patel R, Fackler J, Brownstein MJ, Horne B, Biswas B,
Henry M, et al: Phage therapy for limb-threatening prosthetic knee
Klebsiella pneumoniae infection: Case report and in vitro
characterization of anti-biofilm activity. Clin Infect Dis.
73:e144–e151. 2021.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Manoharadas S, Altaf M, Alrefaei AF,
Hussain SA, Devasia RM, Badjah Hadj AYM and Abuhasil MSA:
Microscopic analysis of the inhibition of staphylococcal biofilm
formation by Escherichia coli and the disruption of preformed
staphylococcal biofilm by bacteriophage. Microsc Res Tech.
84:1513–1521. 2021.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Morris J, Kelly N, Elliott L, Grant A,
Wilkinson M, Hazratwala K and McEwen P: Evaluation of bacteriophage
anti-biofilm activity for potential control of orthopedic
implant-related infections caused by Staphylococcus aureus.
Surg Infect (Larchmt). 20:16–24. 2019.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Zhao M, Li H, Gan D, Wang M, Deng H and
Yang QE: Antibacterial effect of phage cocktails and
phage-antibiotic synergy against pathogenic Klebsiella
pneumoniae. mSystems. 9(e0060724)2024.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Fong SA, Drilling A, Morales S, Cornet ME,
Woodworth BA, Fokkens WJ, Psaltis AJ, Vreugde S and Wormald PJ:
Activity of bacteriophages in removing biofilms of Pseudomonas
aeruginosa isolates from chronic rhinosinusitis patients. Front
Cell Infect Microbiol. 7(418)2017.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Gordon M and Ramirez P: Efficacy and
experience of bacteriophages in biofilm-related infections.
Antibiotics (Basel). 13(125)2024.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Lim DJ, Skinner D, Mclemore J, Rivers N,
Elder JB, Allen M, Koch C, West J, Zhang S, Thompson HM, et al:
In-vitro evaluation of a ciprofloxacin and azithromycin sinus stent
for Pseudomonas aeruginosa biofilms. Int Forum Allergy
Rhinol. 10:121–127. 2020.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Pakkulnan R, Thonglao N and Chareonsudjai
S: DNase I and chitosan enhance efficacy of ceftazidime to
eradicate Burkholderia pseudomallei biofilm cells. Sci Rep.
13(1059)2023.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Cresti L, Falciani C, Cappello G, Brunetti
J, Vailati S, Melloni E, Bracci L and Pini A: Safety evaluations of
a synthetic antimicrobial peptide administered intravenously in
rats and dogs. Sci Rep. 12(19294)2022.PubMed/NCBI View Article : Google Scholar
|