
NETosis in myocardial ischemia‑reperfusion injury: From mechanisms to therapies (Review)
- Authors:
- Ziyang Zhang
- Yanxin Wang
- Tie Li
- Hongfeng Wang
-
Affiliations: College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China, Department of Cardiovascular Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China, College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China - Published online on: May 13, 2025 https://doi.org/10.3892/br.2025.1991
- Article Number: 113
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Brinkmann V and Zychlinsky A: Neutrophil extracellular traps: Is immunity the second function of chromatin? J Cell Biol. 198:773–783. 2012.PubMed/NCBI View Article : Google Scholar | |
Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I, Wahn V, Papayannopoulos V and Zychlinsky A: Myeloperoxidase is required for neutrophil extracellular trap formation: Implications for innate immunity. Blood. 117:953–959. 2011.PubMed/NCBI View Article : Google Scholar | |
Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P and Vanden Berghe T: Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 18:581–588. 2011.PubMed/NCBI View Article : Google Scholar | |
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the Nomenclature committee on cell death 2018. Cell Death Differ. 25:486–541. 2018.PubMed/NCBI View Article : Google Scholar | |
Reed GW, Rossi JE and Cannon CP: Acute myocardial infarction. Lancet. 389:197–210. 2017.PubMed/NCBI View Article : Google Scholar | |
Welt FGP, Batchelor W, Spears JR, Penna C, Pagliaro P, Ibanez B, Drakos SG, Dangas G and Kapur NK: Reperfusion injury in patients with acute myocardial infarction: JACC scientific statement. J Am Coll Cardiol. 83:2196–2213. 2024.PubMed/NCBI View Article : Google Scholar | |
Global Cardiovascular Risk Consortium. Magnussen C, Ojeda FM, Leong DP, Alegre-Diaz J, Amouyel P, Aviles-Santa L, De Bacquer D, Ballantyne CM, Bernabé-Ortiz A, et al: Global effect of modifiable risk factors on cardiovascular disease and mortality. N Engl J Med. 389:1273–1285. 2023.PubMed/NCBI View Article : Google Scholar | |
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, et al: Heart disease and stroke statistics-2022 update: A report from the American Heart Association. Circulation. 145:e153–e639. 2022.PubMed/NCBI View Article : Google Scholar | |
Hausenloy DJ and Yellon DM: Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J Clin Invest. 123:92–100. 2013.PubMed/NCBI View Article : Google Scholar | |
Han T, Tang H, Lin C, Shen Y, Yan D, Tang X and Guo D: Extracellular traps and the role in thrombosis. Front Cardiovasc Med. 9(951670)2022.PubMed/NCBI View Article : Google Scholar | |
Yipp BG and Kubes P: NETosis: how vital is it? Blood. 122:2784–2794. 2013.PubMed/NCBI View Article : Google Scholar | |
Thiam HR, Wong SL, Qiu R, Kittisopikul M, Vahabikashi A, Goldman AE, Goldman RD, Wagner DD and Waterman CM: NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci USA. 117:7326–7337. 2020.PubMed/NCBI View Article : Google Scholar | |
Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A and Waldmann H: Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 7:75–77. 2011.PubMed/NCBI View Article : Google Scholar | |
Steinberg BE and Grinstein S: Unconventional roles of the NADPH oxidase: Signaling, ion homeostasis, and cell death. Sci STKE. 2007(pe11)2007.PubMed/NCBI View Article : Google Scholar | |
Nishinaka Y, Arai T, Adachi S, Takaori-Kondo A and Yamashita K: Singlet oxygen is essential for neutrophil extracellular trap formation. Biochem Biophys Res Commun. 413:75–79. 2011.PubMed/NCBI View Article : Google Scholar | |
Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen KA, Bertone P, Silva JC, Zernicka-Goetz M, et al: Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature. 507:104–108. 2014.PubMed/NCBI View Article : Google Scholar | |
Ho JW, Quan C, Gauger MA, Alam HB and Li Y: Role of peptidylarginine deiminase and neutrophil extracellular traps in injuries: Future novel diagnostics and therapeutic targets. Shock. 59:247–255. 2023.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, et al: Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 184:205–213. 2009.PubMed/NCBI View Article : Google Scholar | |
Papayannopoulos V, Metzler KD, Hakkim A and Zychlinsky A: Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 191:677–691. 2010.PubMed/NCBI View Article : Google Scholar | |
Zollet V, Arenas Hoyos I, Hirsiger S, Brahim BB, Petrucci MF, Casoni D, Wang J, Spirig R, Nettelbeck K, Garcia L, et al: Neutrophil extracellular traps and citrullinated fibrinogen contribute to injury in a porcine model of limb ischemia and reperfusion. Front Immunol. 15(1436926)2024.PubMed/NCBI View Article : Google Scholar | |
Chen Z, Zhang H, Qu M, Nan K, Cao H, Cata JP, Chen W and Miao C: Review: The emerging role of neutrophil extracellular traps in sepsis and sepsis-associated thrombosis. Front Cell Infect Microbiol. 11(653228)2021.PubMed/NCBI View Article : Google Scholar | |
Thålin C, Hisada Y, Lundström S, Mackman N and Wallén H: Neutrophil extracellular traps: Villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol. 39:1724–1738. 2019.PubMed/NCBI View Article : Google Scholar | |
Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L and Wang Y: PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol. 3(307)2012.PubMed/NCBI View Article : Google Scholar | |
Papayannopoulos V: Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 18:134–147. 2018.PubMed/NCBI View Article : Google Scholar | |
Friedman GD, Klatsky AL and Siegelaub AB: The leukocyte count as a predictor of myocardial infarction. N Engl J Med. 290:1275–1278. 1974.PubMed/NCBI View Article : Google Scholar | |
Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, Gallant M, Martinod K, Ten Cate H, Hofstra L, et al: Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol. 33:2032–2040. 2013.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Yang M, Xu Y, Yan S, Jin E and Li X: Neutrophil extracellular trap burden correlates with the stenosis of coronary atherosclerosis. PeerJ. 11(e15471)2023.PubMed/NCBI View Article : Google Scholar | |
Kawasaki H and Iwamuro S: Potential roles of histones in host defense as antimicrobial agents. Infect Disord Drug Targets. 8:195–205. 2008.PubMed/NCBI View Article : Google Scholar | |
Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, Pittman K, Asaduzzaman M, Wu K, Meijndert HC, et al: Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 18:1386–1393. 2012.PubMed/NCBI View Article : Google Scholar | |
Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M, et al: A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 185:7413–7425. 2010.PubMed/NCBI View Article : Google Scholar | |
Schmitt MMN, Megens RTA, Zernecke A, Bidzhekov K, van den Akker NM, Rademakers T, van Zandvoort MA, Hackeng TM, Koenen RR and Weber C: Endothelial junctional adhesion molecule-a guides monocytes into flow-dependent predilection sites of atherosclerosis. Circulation. 129:66–76. 2014.PubMed/NCBI View Article : Google Scholar | |
Yalcinkaya M, Liu W, Xiao T, Abramowicz S, Wang R, Wang N, Westerterp M and Tall AR: Cholesterol trafficking to the ER leads to the activation of CaMKII/JNK/NLRP3 and promotes atherosclerosis. J Lipid Res. 65(100534)2024.PubMed/NCBI View Article : Google Scholar | |
Münzer P, Negro R, Fukui S, di Meglio L, Aymonnier K, Chu L, Cherpokova D, Gutch S, Sorvillo N, Shi L, et al: NLRP3 Inflammasome assembly in neutrophils is supported by PAD4 and promotes NETosis under sterile conditions. Front Immunol. 12(683803)2021.PubMed/NCBI View Article : Google Scholar | |
Warnatsch A, Ioannou M, Wang Q and Papayannopoulos V: Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 349:316–320. 2015.PubMed/NCBI View Article : Google Scholar | |
Yalcinkaya M, Liu W, Thomas LA, Olszewska M, Xiao T, Abramowicz S, Papapetrou EP, Westerterp M, Wang N, Tabas I and Tall AR: BRCC3-Mediated NLRP3 deubiquitylation promotes inflammasome activation and atherosclerosis in Tet2 clonal hematopoiesis. Circulation. 148:1764–1777. 2023.PubMed/NCBI View Article : Google Scholar | |
Westerterp M, Fotakis P, Ouimet M, Bochem AE, Zhang H, Molusky MM, Wang W, Abramowicz S, la Bastide-van Gemert S, Wang N, et al: Cholesterol efflux pathways suppress inflammasome activation, NETosis, and atherogenesis. Circulation. 138:898–912. 2018.PubMed/NCBI View Article : Google Scholar | |
Li H, Tang C, Zhu X, Zhang W, Abudupataer M, Ding S, Duan C, Yang X and Ge J: Histamine deficiency facilitates coronary microthrombosis after myocardial infarction by increasing neutrophil-platelet interactions. J Cell Mol Med. 24:3504–3520. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhou J, Chen R, Liu C, Zhou P, Li J, Wang Y, Zhao X, Zhao H, Song L and Yan H: Associations of NETs with inflammatory risk and atherosclerotic severity in ST-segment elevation myocardial infarction. Thromb Res. 203:5–11. 2021.PubMed/NCBI View Article : Google Scholar | |
Stakos DA, Kambas K, Konstantinidis T, Mitroulis I, Apostolidou E, Arelaki S, Tsironidou V, Giatromanolaki A, Skendros P, Konstantinides S and Ritis K: Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur Heart J. 36:1405–1414. 2015.PubMed/NCBI View Article : Google Scholar | |
Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH and Wagner DD: Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 107:15880–15885. 2010.PubMed/NCBI View Article : Google Scholar | |
Liang GY, Cai QY, Niu YM, Zheng H, Gao ZY, Liu DX and Xu G: Cardiac glucose uptake and suppressed expression/translocation of myocardium glucose transport-4 in dogs undergoing ischemia-reperfusion. Exp Biol Med (Maywood). 233:1142–1148. 2008.PubMed/NCBI View Article : Google Scholar | |
Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, Noppen S, Delforge M, Willems J and Vandenabeele P: Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 21:290–304. 2011.PubMed/NCBI View Article : Google Scholar | |
Tian H, Zhao X, Zhang Y and Xia Z: Abnormalities of glucose and lipid metabolism in myocardial ischemia-reperfusion injury. Biomed Pharmacother. 163(114827)2023.PubMed/NCBI View Article : Google Scholar | |
Zamanian M, Hajizadeh M, Shamsizadeh A, Moemenzadeh M, Amirteimouri M, Elshiekh M and Allahtavakoli M: Effects of naringin on physical fatigue and serum MMP-9 concentration in female rats. Pharm Biol. 55:423–427. 2017.PubMed/NCBI View Article : Google Scholar | |
Zamanian M, Shamsizadeh A, Esmaeili Nadimi A, Hajizadeh M, Allahtavakoli F, Rahmani M, Kaeidi A, Safari Khalegh H and Allahtavakoli M: Short-term effects of troxerutin (vitamin P4) on muscle fatigue and gene expression of Bcl-2 and Bax in the hepatic tissue of rats. Can J Physiol Pharmacol. 95:708–713. 2017.PubMed/NCBI View Article : Google Scholar | |
Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, et al: Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 515:431–435. 2014.PubMed/NCBI View Article : Google Scholar | |
Awasthi D, Nagarkoti S, Sadaf S, Chandra T, Kumar S and Dikshit M: Glycolysis dependent lactate formation in neutrophils: A metabolic link between NOX-dependent and independent NETosis. Biochim Biophys Acta Mol Basis Dis. 1865(165542)2019.PubMed/NCBI View Article : Google Scholar | |
Sun L, Wu Q, Nie Y, Cheng N, Wang R, Wang G, Zhang D, He H, Ye RD and Qian F: A role for MK2 in enhancing neutrophil-derived ROS production and aggravating liver ischemia/reperfusion injury. Front Immunol. 9(2610)2018.PubMed/NCBI View Article : Google Scholar | |
Yu J, Fu Y, Gao J, Zhang Q, Zhang N, Zhang Z, Jiang X, Chen C and Wen Z: Cathepsin C from extracellular histone-induced M1 alveolar macrophages promotes NETosis during lung ischemia-reperfusion injury. Redox Biol. 74(103231)2024.PubMed/NCBI View Article : Google Scholar | |
Stojkov D, Gigon L, Peng S, Lukowski R, Ruth P, Karaulov A, Rizvanov A, Barlev NA, Yousefi S and Simon HU: Physiological and Pathophysiological Roles of Metabolic Pathways for NET Formation and Other Neutrophil Functions. Front Immunol. 13(826515)2022.PubMed/NCBI View Article : Google Scholar | |
Kurian GA, Rajagopal R, Vedantham S and Rajesh M: The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: Revisited. Oxid Med Cell Longev. 2016(1656450)2016.PubMed/NCBI View Article : Google Scholar | |
Bolli R and Marbán E: Molecular and cellular mechanisms of myocardial stunning. Physiol Rev. 79:609–634. 1999.PubMed/NCBI View Article : Google Scholar | |
Meng M, Jia R, Wei M, Meng X, Zhang X, Du R, Sun W, Wang L and Song L: Oxidative stress activates Ryr2-Ca2+ and apoptosis to promote PM2.5-induced heart injury of hyperlipidemia mice. Ecotoxicol Environ Saf. 232(113228)2022.PubMed/NCBI View Article : Google Scholar | |
Gorski PA, Jang SP, Jeong D, Lee A, Lee P, Oh JG, Chepurko V, Yang DK, Kwak TH, Eom SH, et al: Role of SIRT1 in modulating acetylation of the sarco-endoplasmic reticulum Ca2+-ATPase in heart failure. Circ Res. 124:e63–e80. 2019.PubMed/NCBI View Article : Google Scholar | |
Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V and Zychlinsky A: Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 176:231–241. 2007.PubMed/NCBI View Article : Google Scholar | |
Ellson CD, Davidson K, Ferguson GJ, O'Connor R, Stephens LR and Hawkins PT: Neutrophils from p40phox-/- mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing. J Exp Med. 203:1927–1937. 2006.PubMed/NCBI View Article : Google Scholar | |
Douda DN, Khan MA, Grasemann H and Palaniyar N: SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci USA. 112:2817–2822. 2015.PubMed/NCBI View Article : Google Scholar | |
Liao X, Song X, Li J, Li L, Fan X, Qin Q, Zhong C, Yang P, Zhan J and Cai Y: An injectable co-assembled hydrogel blocks reactive oxygen species and inflammation cycle resisting myocardial ischemia-reperfusion injury. Acta Biomater. 149:82–95. 2022.PubMed/NCBI View Article : Google Scholar | |
Andreadou I, Cabrera-Fuentes HA, Devaux Y, Frangogiannis NG, Frantz S, Guzik T, Liehn EA, Gomes CPC, Schulz R and Hausenloy DJ: Immune cells as targets for cardioprotection: New players and novel therapeutic opportunities. Cardiovasc Res. 115:1117–1130. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang L, Deng S, Zhao S, Ai Y, Zhang L, Pan P, Su X, Tan H and Wu D: Intra-peritoneal administration of mitochondrial DNA provokes acute lung injury and systemic inflammation via toll-like receptor 9. Int J Mol Sci. 17(1425)2016.PubMed/NCBI View Article : Google Scholar | |
Xie L, He S, Kong N, Zhu Y, Tang Y, Li J, Liu Z, Liu J and Gong J: Cpg-ODN, a TLR9 agonist, aggravates myocardial ischemia/reperfusion injury by activation of TLR9-P38 MAPK signaling. Cell Physiol Biochem. 47:1389–1398. 2018.PubMed/NCBI View Article : Google Scholar | |
Hidalgo A, Libby P, Soehnlein O, Aramburu IV, Papayannopoulos V and Silvestre-Roig C: Neutrophil extracellular traps: From physiology to pathology. Cardiovasc Res. 118:2737–2753. 2022.PubMed/NCBI View Article : Google Scholar | |
Shah M, He Z, Rauf A, Beikoghli Kalkhoran S, Heiestad CM, Stensløkken KO, Parish CR, Soehnlein O, Arjun S, Davidson SM and Yellon D: Extracellular histones are a target in myocardial ischaemia-reperfusion injury. Cardiovasc Res. 118:1115–1125. 2022.PubMed/NCBI View Article : Google Scholar | |
Wilson AS, Randall KL, Pettitt JA, Ellyard JI, Blumenthal A, Enders A, Quah BJ, Bopp T, Parish CR and Brüstle A: Neutrophil extracellular traps and their histones promote Th17 cell differentiation directly via TLR2. Nat Commun. 13(528)2022.PubMed/NCBI View Article : Google Scholar | |
Tsourouktsoglou TD, Warnatsch A, Ioannou M, Hoving D, Wang Q and Papayannopoulos V: Histones, DNA, and citrullination promote neutrophil extracellular trap inflammation by regulating the localization and activation of TLR4. Cell Rep. 31(107602)2020.PubMed/NCBI View Article : Google Scholar | |
Liu S, Su X, Pan P, Zhang L, Hu Y, Tan H, Wu D, Liu B, Li H, Li H, et al: Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Sci Rep. 6(37252)2016.PubMed/NCBI View Article : Google Scholar | |
Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, et al: Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 13:463–469. 2007.PubMed/NCBI View Article : Google Scholar | |
Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, Maiuri L, Maseri A, D'Angelo A, Bianchi ME, et al: Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. 12:2074–2088. 2014.PubMed/NCBI View Article : Google Scholar | |
Kawashima S and Yokoyama M: Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol. 24:998–1005. 2004.PubMed/NCBI View Article : Google Scholar | |
Carlstrom M, Weitzberg E and Lundberg JO: Nitric oxide signaling and regulation in the cardiovascular system: Recent advances. Pharmacol Rev. 76:1038–1062. 2024.PubMed/NCBI View Article : Google Scholar | |
Godo S, Takahashi J, Shiroto T, Yasuda S and Shimokawa H: Coronary microvascular spasm: Clinical presentation and diagnosis. Eur Cardiol. 18(e07)2023.PubMed/NCBI View Article : Google Scholar | |
Zhou Q, Cao J and Chen L: Apelin/APJ system: A novel therapeutic target for oxidative stress-related inflammatory diseases (Review). Int J Mol Med. 37:1159–1169. 2016.PubMed/NCBI View Article : Google Scholar | |
Wu X, Xu M, Liu Z, Zhang Z, Liu Y, Luo S, Zheng X, Little PJ, Xu S and Weng J: Pharmacological inhibition of IRAK1 and IRAK4 prevents endothelial inflammation and atherosclerosis in ApoE-/- mice. Pharmacol Res. 175(106043)2022.PubMed/NCBI View Article : Google Scholar | |
Aldabbous L, Abdul-Salam V, McKinnon T, Duluc L, Pepke-Zaba J, Southwood M, Ainscough AJ, Hadinnapola C, Wilkins MR, Toshner M and Wojciak-Stothard B: Neutrophil extracellular traps promote angiogenesis: Evidence from vascular pathology in pulmonary hypertension. Arterioscler Thromb Vasc Biol. 36:2078–2087. 2016.PubMed/NCBI View Article : Google Scholar | |
Cao Y, Chen M, Jiao X, Li S, Wang D, Zhan Y, Li J, Hao Z, Li Q, Liu Y, et al: Neutrophil extracellular traps mediate the crosstalk between plaque microenvironment and unstable carotid plaque formation. Exp Mol Med. 56:1717–1735. 2024.PubMed/NCBI View Article : Google Scholar | |
Chrysanthopoulou A, Gkaliagkousi E, Lazaridis A, Arelaki S, Pateinakis P, Ntinopoulou M, Mitsios A, Antoniadou C, Argyriou C, Georgiadis GS, et al: Angiotensin II triggers release of neutrophil extracellular traps, linking thromboinflammation with essential hypertension. JCI Insight. 6(e148668)2021.PubMed/NCBI View Article : Google Scholar | |
Cohn JN, Ferrari R and Sharpe N: Cardiac remodeling-concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 35:569–582. 2000.PubMed/NCBI View Article : Google Scholar | |
Mangold A, Hofbauer TM, Ondracek AS, Artner T, Scherz T, Speidl WS, Krychtiuk KA, Sadushi-Kolici R, Jakowitsch J and Lang IM: Neutrophil extracellular traps and monocyte subsets at the culprit lesion site of myocardial infarction patients. Sci Rep. 9(16304)2019.PubMed/NCBI View Article : Google Scholar | |
Jorch SK and Kubes P: An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 23:279–287. 2017.PubMed/NCBI View Article : Google Scholar | |
Li C, Gao P, Zhuang F, Wang T, Wang Z, Wu G, Zhou Z, Xie H, Xie D, Zhao D, et al: Inhibition of ALOX12-12-HETE alleviates lung ischemia-reperfusion injury by reducing endothelial ferroptosis-mediated neutrophil extracellular trap formation. Research (Wash D C). 7(0473)2024.PubMed/NCBI View Article : Google Scholar | |
Chen J, Wang T, Li X, Gao L, Wang K, Cheng M, Zeng Z, Chen L, Shen Y and Wen F: DNA of neutrophil extracellular traps promote NF-κB-dependent autoimmunity via cGAS/TLR9 in chronic obstructive pulmonary disease. Signal Transduct Target Ther. 9(163)2024.PubMed/NCBI View Article : Google Scholar | |
He L, Liu R, Yue H, Zhu G, Fu L, Chen H, Guo Y and Qin C: NETs promote pathogenic cardiac fibrosis and participate in ventricular aneurysm formation after ischemia injury through the facilitation of perivascular fibrosis. Biochem Biophys Res Commun. 583:154–161. 2021.PubMed/NCBI View Article : Google Scholar | |
Chang CP, Chia RH, Wu TL, Tsao KC, Sun CF and Wu JT: Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin Chim Acta. 327:95–101. 2003.PubMed/NCBI View Article : Google Scholar | |
Cao J, Roth S, Zhang S, Kopczak A, Mami S, Asare Y, Georgakis MK, Messerer D, Horn A, Shemer R, et al: DNA-sensing inflammasomes cause recurrent atherosclerotic stroke. Nature. 633:433–441. 2024.PubMed/NCBI View Article : Google Scholar | |
Hally KE, Parker OM, Brunton-O'Sullivan MM, Harding SA and Larsen PD: Linking neutrophil extracellular traps and platelet activation: A composite biomarker score for predicting outcomes after acute myocardial infarction. Thromb Haemost. 121:1637–1649. 2021.PubMed/NCBI View Article : Google Scholar | |
Yu S, Li M, Li Z, Xu P, Yao Z, Qian S, Qian F, Gao D and Wang H: Positive correlations between plasma BPI level and MPO-DNA and S100A8/A9 in myocardial infarction. Platelets. 33:603–611. 2022.PubMed/NCBI View Article : Google Scholar | |
Nagareddy PR, Sreejit G, Abo-Aly M, Jaggers RM, Chelvarajan L, Johnson J, Pernes G, Athmanathan B, Abdel-Latif A and Murphy AJ: NETosis Is Required for S100A8/A9-induced granulopoiesis after myocardial infarction. Arterioscler Thromb Vasc Biol. 40:2805–2807. 2020.PubMed/NCBI View Article : Google Scholar | |
Li YW, Chen SX, Yang Y, Zhang ZH, Zhou WB, Huang YN, Huang ZQ, He JQ, Chen TF, Wang JF, et al: Colchicine inhibits NETs and alleviates cardiac remodeling after acute myocardial infarction. Cardiovasc Drugs Ther. 38:31–41. 2024.PubMed/NCBI View Article : Google Scholar | |
Tan Y, Bao X, Li Y, Song G, Lu H, Sun X, Gu R, Kang L and Xu B: Colchicine attenuates microvascular obstruction after myocardial ischemia-reperfusion injury by inhibiting the proliferation of neutrophil in bone marrow. Cardiovasc Drugs Ther. 39:259–273. 2025.PubMed/NCBI View Article : Google Scholar | |
Banach M and Penson PE: Colchicine and cardiovascular outcomes: A critical appraisal of recent studies. Curr Atheroscler Rep. 23(32)2021.PubMed/NCBI View Article : Google Scholar | |
Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, et al: Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 381:2497–2505. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang W, Liu J, Li X, Bai Z, Sun Y and Chen X: Lidocaine effects on neutrophil extracellular trapping and angiogenesis biomarkers in postoperative breast cancer patients with different anesthesia methods: A prospective, randomized trial. BMC Anesthesiol. 24(162)2024.PubMed/NCBI View Article : Google Scholar | |
Sapey E, Patel JM, Greenwood H, Walton GM, Grudzinska F, Parekh D, Mahida RY, Dancer RCA, Lugg ST, Howells PA, et al: Simvastatin improves neutrophil function and clinical outcomes in pneumonia. A pilot randomized controlled clinical trial. Am J Respir Crit Care Med. 200:1282–1293. 2019.PubMed/NCBI View Article : Google Scholar | |
Ebrahimi F, Giaglis S, Hahn S, Blum CA, Baumgartner C, Kutz A, van Breda SV, Mueller B, Schuetz P, Christ-Crain M and Hasler P: Markers of neutrophil extracellular traps predict adverse outcome in community-acquired pneumonia: Secondary analysis of a randomised controlled trial. Eur Respir J. 51(1701389)2018.PubMed/NCBI View Article : Google Scholar | |
Shin D, Kim J, Lee S and Chae MS: Impact of perioperative lidocaine on neutrophil extracellular trapping and serum cytokines in robot-assisted radical prostatectomy: Randomized controlled study. Medicina (Kaunas). 60(1452)2024.PubMed/NCBI View Article : Google Scholar | |
Hu Z, Hua X, Mo X, Chang Y, Chen X, Xu Z, Tao M, Hu G and Song J: Inhibition of NETosis via PAD4 alleviated inflammation in giant cell myocarditis. IScience. 26(107162)2023.PubMed/NCBI View Article : Google Scholar | |
Ai P, Pan H, Chen K, Zheng J, Gao Z and Jin G: Viral mimetic poly(I:C) induces neutrophil extracellular traps via PAD4 to promote inflammation and thrombosis. Biochem Biophys Res Commun. 565:64–71. 2021.PubMed/NCBI View Article : Google Scholar | |
Savchenko AS, Borissoff JI, Martinod K, De Meyer SF, Gallant M, Erpenbeck L, Brill A, Wang Y and Wagner DD: VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood. 123:141–148. 2014.PubMed/NCBI View Article : Google Scholar | |
Ge L, Zhou X, Ji WJ, Lu RY, Zhang Y, Zhang YD, Ma YQ, Zhao JH and Li YM: Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: Therapeutic potential of DNase-based reperfusion strategy. Am J Physiol Heart Circ Physiol. 308:H500–H509. 2015.PubMed/NCBI View Article : Google Scholar | |
Di G, Vázquez-Reyes S, Díaz B, Peña-Martinez C, García-Culebras A, Cuartero MI, Moraga A, Pradillo JM, Esposito E, Lo EH, et al: Daytime DNase-I administration protects mice from ischemic stroke without inducing bleeding or tPA-induced hemorrhagic transformation, even with aspirin pretreatment. Stroke. 56:527–532. 2025.PubMed/NCBI View Article : Google Scholar | |
Carminita E, Crescence L, Brouilly N, Altié A, Panicot-Dubois L and Dubois C: DNAse-dependent, NET-independent pathway of thrombus formation in vivo. Proc Natl Acad Sci USA. 118(e2100561118)2021.PubMed/NCBI View Article : Google Scholar | |
Mangold A, Alias S, Scherz T, Hofbauer M, Jakowitsch J, Panzenböck A, Simon D, Laimer D, Bangert C, Kammerlander A, et al: Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res. 116:1182–1192. 2015.PubMed/NCBI View Article : Google Scholar | |
Kolaczkowska E, Jenne CN, Surewaard BG, Thanabalasuriar A, Lee WY, Sanz MJ, Mowen K, Opdenakker G and Kubes P: Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun. 6(6673)2015.PubMed/NCBI View Article : Google Scholar | |
Englert H, Göbel J, Khong D, Omidi M, Wolska N, Konrath S, Frye M, Mailer RK, Beerens M, Gerwers JC, et al: Targeting NETs using dual-active DNase1 variants. Front Immunol. 14(1181761)2023.PubMed/NCBI View Article : Google Scholar | |
Liu T, Lv X, Xu Q, Qi X, Qiu S, Luan Y, Shen N, Cheng J, Jin L, Tian T, et al: Stroke-homing peptide-DNase1 alleviates intestinal ischemia reperfusion injury by selectively degrading neutrophil extracellular traps. Cell Prolif. (e70010)2025.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print). | |
Yao D, Bao L, Wang S, Tan M, Xu Y, Wu T, Zhang Z and Gong K: Isoliquiritigenin alleviates myocardial ischemia-reperfusion injury by regulating the Nrf2/HO-1/SLC7a11/GPX4 axis in mice. Free Radic Biol Med. 221:1–12. 2024.PubMed/NCBI View Article : Google Scholar | |
Yang K, Gao R, Chen H, Hu J, Zhang P, Wei X, Shi J, Chen Y, Zhang L, Chen J, et al: Myocardial reperfusion injury exacerbation due to ALDH2 deficiency is mediated by neutrophil extracellular traps and prevented by leukotriene C4 inhibition. Eur Heart J. 45:1662–1680. 2024.PubMed/NCBI View Article : Google Scholar | |
Lin K, Fang S, Cai B, Huang X, Zhang X, Lu Y, Zhang W and Wei E: ERK/Egr-1 signaling pathway is involved in CysLT2 receptor-mediated IL-8 production in HEK293 cells. Eur J Cell Biol. 93:278–288. 2014.PubMed/NCBI View Article : Google Scholar | |
Dölling M, Eckstein M, Singh J, Schauer C, Schoen J, Shan X, Bozec A, Knopf J, Schett G, Muñoz LE and Herrmann M: Hypoxia promotes neutrophil survival after acute myocardial infarction. Front Immunol. 13(726153)2022.PubMed/NCBI View Article : Google Scholar | |
Tang X, Wang P, Zhang R, Watanabe I, Chang E, Vinayachandran V, Nayak L, Lapping S, Liao S, Madera A, et al: KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure progression. J Clin Invest. 132(e147191)2022.PubMed/NCBI View Article : Google Scholar | |
Vorobjeva N, Galkin I, Pletjushkina O, Golyshev S, Zinovkin R, Prikhodko A, Pinegin V, Kondratenko I, Pinegin B and Chernyak B: Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim Biophys Acta Mol Basis Dis. 1866(165664)2020.PubMed/NCBI View Article : Google Scholar | |
Vajen T, Koenen RR, Werner I, Staudt M, Projahn D, Curaj A, Sönmez TT, Simsekyilmaz S, Schumacher D, Möllmann J, et al: Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis. Sci Rep. 8(10647)2018.PubMed/NCBI View Article : Google Scholar | |
Xu K, Cooney KA, Shin EY, Wang L, Deppen JN, Ginn SC and Levit RD: Adenosine from a biologic source regulates neutrophil extracellular traps (NETs). J Leukoc Biol. 105:1225–1234. 2019.PubMed/NCBI View Article : Google Scholar | |
Allard B, Longhi MS, Robson SC and Stagg J: The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev. 276:121–144. 2017.PubMed/NCBI View Article : Google Scholar | |
Borg N, Alter C, Görldt N, Jacoby C, Ding Z, Steckel B, Quast C, Bönner F, Friebe D, Temme S, et al: CD73 on T cells orchestrates cardiac wound healing after myocardial infarction by purinergic metabolic reprogramming. Circulation. 136:297–313. 2017.PubMed/NCBI View Article : Google Scholar | |
Sayegh MN, Cooney KA, Han WM, Cicka M, Strobel F, Wang L, García AJ and Levit RD: Hydrogel delivery of purinergic enzymes improves cardiac ischemia/reperfusion injury. J Mol Cell Cardiol. 176:98–109. 2023.PubMed/NCBI View Article : Google Scholar | |
Chilingaryan Z, Deshmukh T, Leung HHL, Perdomo J, Emerson P, Kurup R, Chong BH and Chong JJH: Erythrocyte interaction with neutrophil extracellular traps in coronary artery thrombosis following myocardial infarction. Pathology. 54:87–94. 2022.PubMed/NCBI View Article : Google Scholar | |
Dou H, Kotini A, Liu W, Fidler T, Endo-Umeda K, Sun X, Olszewska M, Xiao T, Abramowicz S, Yalcinkaya M, et al: Oxidized phospholipids promote NETosis and arterial thrombosis in LNK(SH2B3) deficiency. Circulation. 144:1940–1954. 2021.PubMed/NCBI View Article : Google Scholar | |
Fordyce CB, Gersh BJ, Stone GW and Granger CB: Novel therapeutics in myocardial infarction: Targeting microvascular dysfunction and reperfusion injury. Trends Pharmacol Sci. 36:605–616. 2015.PubMed/NCBI View Article : Google Scholar |