|
1
|
Brinkmann V and Zychlinsky A: Neutrophil
extracellular traps: Is immunity the second function of chromatin?
J Cell Biol. 198:773–783. 2012.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Metzler KD, Fuchs TA, Nauseef WM, Reumaux
D, Roesler J, Schulze I, Wahn V, Papayannopoulos V and Zychlinsky
A: Myeloperoxidase is required for neutrophil extracellular trap
formation: Implications for innate immunity. Blood. 117:953–959.
2011.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Remijsen Q, Kuijpers TW, Wirawan E,
Lippens S, Vandenabeele P and Vanden Berghe T: Dying for a cause:
NETosis, mechanisms behind an antimicrobial cell death modality.
Cell Death Differ. 18:581–588. 2011.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Galluzzi L, Vitale I, Aaronson SA, Abrams
JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews
DW, et al: Molecular mechanisms of cell death: Recommendations of
the Nomenclature committee on cell death 2018. Cell Death Differ.
25:486–541. 2018.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Reed GW, Rossi JE and Cannon CP: Acute
myocardial infarction. Lancet. 389:197–210. 2017.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Welt FGP, Batchelor W, Spears JR, Penna C,
Pagliaro P, Ibanez B, Drakos SG, Dangas G and Kapur NK: Reperfusion
injury in patients with acute myocardial infarction: JACC
scientific statement. J Am Coll Cardiol. 83:2196–2213.
2024.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Global Cardiovascular Risk Consortium.
Magnussen C, Ojeda FM, Leong DP, Alegre-Diaz J, Amouyel P,
Aviles-Santa L, De Bacquer D, Ballantyne CM, Bernabé-Ortiz A, et
al: Global effect of modifiable risk factors on cardiovascular
disease and mortality. N Engl J Med. 389:1273–1285. 2023.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A,
Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP,
Commodore-Mensah Y, et al: Heart disease and stroke statistics-2022
update: A report from the American Heart Association. Circulation.
145:e153–e639. 2022.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Hausenloy DJ and Yellon DM: Myocardial
ischemia-reperfusion injury: A neglected therapeutic target. J Clin
Invest. 123:92–100. 2013.PubMed/NCBI View
Article : Google Scholar
|
|
10
|
Han T, Tang H, Lin C, Shen Y, Yan D, Tang
X and Guo D: Extracellular traps and the role in thrombosis. Front
Cardiovasc Med. 9(951670)2022.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Yipp BG and Kubes P: NETosis: how vital is
it? Blood. 122:2784–2794. 2013.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Thiam HR, Wong SL, Qiu R, Kittisopikul M,
Vahabikashi A, Goldman AE, Goldman RD, Wagner DD and Waterman CM:
NETosis proceeds by cytoskeleton and endomembrane disassembly and
PAD4-mediated chromatin decondensation and nuclear envelope
rupture. Proc Natl Acad Sci USA. 117:7326–7337. 2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Hakkim A, Fuchs TA, Martinez NE, Hess S,
Prinz H, Zychlinsky A and Waldmann H: Activation of the Raf-MEK-ERK
pathway is required for neutrophil extracellular trap formation.
Nat Chem Biol. 7:75–77. 2011.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Steinberg BE and Grinstein S:
Unconventional roles of the NADPH oxidase: Signaling, ion
homeostasis, and cell death. Sci STKE. 2007(pe11)2007.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Nishinaka Y, Arai T, Adachi S,
Takaori-Kondo A and Yamashita K: Singlet oxygen is essential for
neutrophil extracellular trap formation. Biochem Biophys Res
Commun. 413:75–79. 2011.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Christophorou MA, Castelo-Branco G,
Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen KA,
Bertone P, Silva JC, Zernicka-Goetz M, et al: Citrullination
regulates pluripotency and histone H1 binding to chromatin. Nature.
507:104–108. 2014.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Ho JW, Quan C, Gauger MA, Alam HB and Li
Y: Role of peptidylarginine deiminase and neutrophil extracellular
traps in injuries: Future novel diagnostics and therapeutic
targets. Shock. 59:247–255. 2023.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Wang Y, Li M, Stadler S, Correll S, Li P,
Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, et al: Histone
hypercitrullination mediates chromatin decondensation and
neutrophil extracellular trap formation. J Cell Biol. 184:205–213.
2009.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Papayannopoulos V, Metzler KD, Hakkim A
and Zychlinsky A: Neutrophil elastase and myeloperoxidase regulate
the formation of neutrophil extracellular traps. J Cell Biol.
191:677–691. 2010.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Zollet V, Arenas Hoyos I, Hirsiger S,
Brahim BB, Petrucci MF, Casoni D, Wang J, Spirig R, Nettelbeck K,
Garcia L, et al: Neutrophil extracellular traps and citrullinated
fibrinogen contribute to injury in a porcine model of limb ischemia
and reperfusion. Front Immunol. 15(1436926)2024.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Chen Z, Zhang H, Qu M, Nan K, Cao H, Cata
JP, Chen W and Miao C: Review: The emerging role of neutrophil
extracellular traps in sepsis and sepsis-associated thrombosis.
Front Cell Infect Microbiol. 11(653228)2021.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Thålin C, Hisada Y, Lundström S, Mackman N
and Wallén H: Neutrophil extracellular traps: Villains and targets
in arterial, venous, and cancer-associated thrombosis. Arterioscler
Thromb Vasc Biol. 39:1724–1738. 2019.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Leshner M, Wang S, Lewis C, Zheng H, Chen
XA, Santy L and Wang Y: PAD4 mediated histone hypercitrullination
induces heterochromatin decondensation and chromatin unfolding to
form neutrophil extracellular trap-like structures. Front Immunol.
3(307)2012.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Papayannopoulos V: Neutrophil
extracellular traps in immunity and disease. Nat Rev Immunol.
18:134–147. 2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Friedman GD, Klatsky AL and Siegelaub AB:
The leukocyte count as a predictor of myocardial infarction. N Engl
J Med. 290:1275–1278. 1974.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Borissoff JI, Joosen IA, Versteylen MO,
Brill A, Fuchs TA, Savchenko AS, Gallant M, Martinod K, Ten Cate H,
Hofstra L, et al: Elevated levels of circulating DNA and chromatin
are independently associated with severe coronary atherosclerosis
and a prothrombotic state. Arterioscler Thromb Vasc Biol.
33:2032–2040. 2013.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Wang Y, Yang M, Xu Y, Yan S, Jin E and Li
X: Neutrophil extracellular trap burden correlates with the
stenosis of coronary atherosclerosis. PeerJ.
11(e15471)2023.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Kawasaki H and Iwamuro S: Potential roles
of histones in host defense as antimicrobial agents. Infect Disord
Drug Targets. 8:195–205. 2008.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Yipp BG, Petri B, Salina D, Jenne CN,
Scott BN, Zbytnuik LD, Pittman K, Asaduzzaman M, Wu K, Meijndert
HC, et al: Infection-induced NETosis is a dynamic process involving
neutrophil multitasking in vivo. Nat Med. 18:1386–1393.
2012.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Pilsczek FH, Salina D, Poon KK, Fahey C,
Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M, et
al: A novel mechanism of rapid nuclear neutrophil extracellular
trap formation in response to Staphylococcus aureus. J Immunol.
185:7413–7425. 2010.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Schmitt MMN, Megens RTA, Zernecke A,
Bidzhekov K, van den Akker NM, Rademakers T, van Zandvoort MA,
Hackeng TM, Koenen RR and Weber C: Endothelial junctional adhesion
molecule-a guides monocytes into flow-dependent predilection sites
of atherosclerosis. Circulation. 129:66–76. 2014.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Yalcinkaya M, Liu W, Xiao T, Abramowicz S,
Wang R, Wang N, Westerterp M and Tall AR: Cholesterol trafficking
to the ER leads to the activation of CaMKII/JNK/NLRP3 and promotes
atherosclerosis. J Lipid Res. 65(100534)2024.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Münzer P, Negro R, Fukui S, di Meglio L,
Aymonnier K, Chu L, Cherpokova D, Gutch S, Sorvillo N, Shi L, et
al: NLRP3 Inflammasome assembly in neutrophils is supported by PAD4
and promotes NETosis under sterile conditions. Front Immunol.
12(683803)2021.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Warnatsch A, Ioannou M, Wang Q and
Papayannopoulos V: Inflammation. Neutrophil extracellular traps
license macrophages for cytokine production in atherosclerosis.
Science. 349:316–320. 2015.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Yalcinkaya M, Liu W, Thomas LA, Olszewska
M, Xiao T, Abramowicz S, Papapetrou EP, Westerterp M, Wang N, Tabas
I and Tall AR: BRCC3-Mediated NLRP3 deubiquitylation promotes
inflammasome activation and atherosclerosis in Tet2 clonal
hematopoiesis. Circulation. 148:1764–1777. 2023.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Westerterp M, Fotakis P, Ouimet M, Bochem
AE, Zhang H, Molusky MM, Wang W, Abramowicz S, la Bastide-van
Gemert S, Wang N, et al: Cholesterol efflux pathways suppress
inflammasome activation, NETosis, and atherogenesis. Circulation.
138:898–912. 2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Li H, Tang C, Zhu X, Zhang W, Abudupataer
M, Ding S, Duan C, Yang X and Ge J: Histamine deficiency
facilitates coronary microthrombosis after myocardial infarction by
increasing neutrophil-platelet interactions. J Cell Mol Med.
24:3504–3520. 2020.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Zhou J, Chen R, Liu C, Zhou P, Li J, Wang
Y, Zhao X, Zhao H, Song L and Yan H: Associations of NETs with
inflammatory risk and atherosclerotic severity in ST-segment
elevation myocardial infarction. Thromb Res. 203:5–11.
2021.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Stakos DA, Kambas K, Konstantinidis T,
Mitroulis I, Apostolidou E, Arelaki S, Tsironidou V, Giatromanolaki
A, Skendros P, Konstantinides S and Ritis K: Expression of
functional tissue factor by neutrophil extracellular traps in
culprit artery of acute myocardial infarction. Eur Heart J.
36:1405–1414. 2015.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Fuchs TA, Brill A, Duerschmied D,
Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW,
Hartwig JH and Wagner DD: Extracellular DNA traps promote
thrombosis. Proc Natl Acad Sci USA. 107:15880–15885.
2010.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Liang GY, Cai QY, Niu YM, Zheng H, Gao ZY,
Liu DX and Xu G: Cardiac glucose uptake and suppressed
expression/translocation of myocardium glucose transport-4 in dogs
undergoing ischemia-reperfusion. Exp Biol Med (Maywood).
233:1142–1148. 2008.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Remijsen Q, Vanden Berghe T, Wirawan E,
Asselbergh B, Parthoens E, De Rycke R, Noppen S, Delforge M,
Willems J and Vandenabeele P: Neutrophil extracellular trap cell
death requires both autophagy and superoxide generation. Cell Res.
21:290–304. 2011.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Tian H, Zhao X, Zhang Y and Xia Z:
Abnormalities of glucose and lipid metabolism in myocardial
ischemia-reperfusion injury. Biomed Pharmacother.
163(114827)2023.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Zamanian M, Hajizadeh M, Shamsizadeh A,
Moemenzadeh M, Amirteimouri M, Elshiekh M and Allahtavakoli M:
Effects of naringin on physical fatigue and serum MMP-9
concentration in female rats. Pharm Biol. 55:423–427.
2017.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Zamanian M, Shamsizadeh A, Esmaeili Nadimi
A, Hajizadeh M, Allahtavakoli F, Rahmani M, Kaeidi A, Safari
Khalegh H and Allahtavakoli M: Short-term effects of troxerutin
(vitamin P4) on muscle fatigue and gene expression of Bcl-2 and Bax
in the hepatic tissue of rats. Can J Physiol Pharmacol. 95:708–713.
2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Chouchani ET, Pell VR, Gaude E,
Aksentijević D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord
ENJ, Smith AC, et al: Ischaemic accumulation of succinate controls
reperfusion injury through mitochondrial ROS. Nature. 515:431–435.
2014.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Awasthi D, Nagarkoti S, Sadaf S, Chandra
T, Kumar S and Dikshit M: Glycolysis dependent lactate formation in
neutrophils: A metabolic link between NOX-dependent and independent
NETosis. Biochim Biophys Acta Mol Basis Dis.
1865(165542)2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Sun L, Wu Q, Nie Y, Cheng N, Wang R, Wang
G, Zhang D, He H, Ye RD and Qian F: A role for MK2 in enhancing
neutrophil-derived ROS production and aggravating liver
ischemia/reperfusion injury. Front Immunol. 9(2610)2018.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Yu J, Fu Y, Gao J, Zhang Q, Zhang N, Zhang
Z, Jiang X, Chen C and Wen Z: Cathepsin C from extracellular
histone-induced M1 alveolar macrophages promotes NETosis during
lung ischemia-reperfusion injury. Redox Biol.
74(103231)2024.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Stojkov D, Gigon L, Peng S, Lukowski R,
Ruth P, Karaulov A, Rizvanov A, Barlev NA, Yousefi S and Simon HU:
Physiological and Pathophysiological Roles of Metabolic Pathways
for NET Formation and Other Neutrophil Functions. Front Immunol.
13(826515)2022.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Kurian GA, Rajagopal R, Vedantham S and
Rajesh M: The role of oxidative stress in myocardial ischemia and
reperfusion injury and remodeling: Revisited. Oxid Med Cell Longev.
2016(1656450)2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Bolli R and Marbán E: Molecular and
cellular mechanisms of myocardial stunning. Physiol Rev.
79:609–634. 1999.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Meng M, Jia R, Wei M, Meng X, Zhang X, Du
R, Sun W, Wang L and Song L: Oxidative stress activates Ryr2-Ca2+
and apoptosis to promote PM2.5-induced heart injury of
hyperlipidemia mice. Ecotoxicol Environ Saf.
232(113228)2022.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Gorski PA, Jang SP, Jeong D, Lee A, Lee P,
Oh JG, Chepurko V, Yang DK, Kwak TH, Eom SH, et al: Role of SIRT1
in modulating acetylation of the sarco-endoplasmic reticulum
Ca2+-ATPase in heart failure. Circ Res. 124:e63–e80.
2019.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Fuchs TA, Abed U, Goosmann C, Hurwitz R,
Schulze I, Wahn V, Weinrauch Y, Brinkmann V and Zychlinsky A: Novel
cell death program leads to neutrophil extracellular traps. J Cell
Biol. 176:231–241. 2007.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Ellson CD, Davidson K, Ferguson GJ,
O'Connor R, Stephens LR and Hawkins PT: Neutrophils from p40phox-/-
mice exhibit severe defects in NADPH oxidase regulation and
oxidant-dependent bacterial killing. J Exp Med. 203:1927–1937.
2006.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Douda DN, Khan MA, Grasemann H and
Palaniyar N: SK3 channel and mitochondrial ROS mediate NADPH
oxidase-independent NETosis induced by calcium influx. Proc Natl
Acad Sci USA. 112:2817–2822. 2015.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Liao X, Song X, Li J, Li L, Fan X, Qin Q,
Zhong C, Yang P, Zhan J and Cai Y: An injectable co-assembled
hydrogel blocks reactive oxygen species and inflammation cycle
resisting myocardial ischemia-reperfusion injury. Acta Biomater.
149:82–95. 2022.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Andreadou I, Cabrera-Fuentes HA, Devaux Y,
Frangogiannis NG, Frantz S, Guzik T, Liehn EA, Gomes CPC, Schulz R
and Hausenloy DJ: Immune cells as targets for cardioprotection: New
players and novel therapeutic opportunities. Cardiovasc Res.
115:1117–1130. 2019.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Zhang L, Deng S, Zhao S, Ai Y, Zhang L,
Pan P, Su X, Tan H and Wu D: Intra-peritoneal administration of
mitochondrial DNA provokes acute lung injury and systemic
inflammation via toll-like receptor 9. Int J Mol Sci.
17(1425)2016.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Xie L, He S, Kong N, Zhu Y, Tang Y, Li J,
Liu Z, Liu J and Gong J: Cpg-ODN, a TLR9 agonist, aggravates
myocardial ischemia/reperfusion injury by activation of TLR9-P38
MAPK signaling. Cell Physiol Biochem. 47:1389–1398. 2018.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Hidalgo A, Libby P, Soehnlein O, Aramburu
IV, Papayannopoulos V and Silvestre-Roig C: Neutrophil
extracellular traps: From physiology to pathology. Cardiovasc Res.
118:2737–2753. 2022.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Shah M, He Z, Rauf A, Beikoghli Kalkhoran
S, Heiestad CM, Stensløkken KO, Parish CR, Soehnlein O, Arjun S,
Davidson SM and Yellon D: Extracellular histones are a target in
myocardial ischaemia-reperfusion injury. Cardiovasc Res.
118:1115–1125. 2022.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Wilson AS, Randall KL, Pettitt JA, Ellyard
JI, Blumenthal A, Enders A, Quah BJ, Bopp T, Parish CR and Brüstle
A: Neutrophil extracellular traps and their histones promote Th17
cell differentiation directly via TLR2. Nat Commun.
13(528)2022.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Tsourouktsoglou TD, Warnatsch A, Ioannou
M, Hoving D, Wang Q and Papayannopoulos V: Histones, DNA, and
citrullination promote neutrophil extracellular trap inflammation
by regulating the localization and activation of TLR4. Cell Rep.
31(107602)2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Liu S, Su X, Pan P, Zhang L, Hu Y, Tan H,
Wu D, Liu B, Li H, Li H, et al: Neutrophil extracellular traps are
indirectly triggered by lipopolysaccharide and contribute to acute
lung injury. Sci Rep. 6(37252)2016.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Clark SR, Ma AC, Tavener SA, McDonald B,
Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair
GD, et al: Platelet TLR4 activates neutrophil extracellular traps
to ensnare bacteria in septic blood. Nat Med. 13:463–469.
2007.PubMed/NCBI View
Article : Google Scholar
|
|
68
|
Maugeri N, Campana L, Gavina M, Covino C,
De Metrio M, Panciroli C, Maiuri L, Maseri A, D'Angelo A, Bianchi
ME, et al: Activated platelets present high mobility group box 1 to
neutrophils, inducing autophagy and promoting the extrusion of
neutrophil extracellular traps. J Thromb Haemost. 12:2074–2088.
2014.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Kawashima S and Yokoyama M: Dysfunction of
endothelial nitric oxide synthase and atherosclerosis. Arterioscler
Thromb Vasc Biol. 24:998–1005. 2004.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Carlstrom M, Weitzberg E and Lundberg JO:
Nitric oxide signaling and regulation in the cardiovascular system:
Recent advances. Pharmacol Rev. 76:1038–1062. 2024.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Godo S, Takahashi J, Shiroto T, Yasuda S
and Shimokawa H: Coronary microvascular spasm: Clinical
presentation and diagnosis. Eur Cardiol. 18(e07)2023.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Zhou Q, Cao J and Chen L: Apelin/APJ
system: A novel therapeutic target for oxidative stress-related
inflammatory diseases (Review). Int J Mol Med. 37:1159–1169.
2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Wu X, Xu M, Liu Z, Zhang Z, Liu Y, Luo S,
Zheng X, Little PJ, Xu S and Weng J: Pharmacological inhibition of
IRAK1 and IRAK4 prevents endothelial inflammation and
atherosclerosis in ApoE-/- mice. Pharmacol Res.
175(106043)2022.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Aldabbous L, Abdul-Salam V, McKinnon T,
Duluc L, Pepke-Zaba J, Southwood M, Ainscough AJ, Hadinnapola C,
Wilkins MR, Toshner M and Wojciak-Stothard B: Neutrophil
extracellular traps promote angiogenesis: Evidence from vascular
pathology in pulmonary hypertension. Arterioscler Thromb Vasc Biol.
36:2078–2087. 2016.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Cao Y, Chen M, Jiao X, Li S, Wang D, Zhan
Y, Li J, Hao Z, Li Q, Liu Y, et al: Neutrophil extracellular traps
mediate the crosstalk between plaque microenvironment and unstable
carotid plaque formation. Exp Mol Med. 56:1717–1735.
2024.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Chrysanthopoulou A, Gkaliagkousi E,
Lazaridis A, Arelaki S, Pateinakis P, Ntinopoulou M, Mitsios A,
Antoniadou C, Argyriou C, Georgiadis GS, et al: Angiotensin II
triggers release of neutrophil extracellular traps, linking
thromboinflammation with essential hypertension. JCI Insight.
6(e148668)2021.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Cohn JN, Ferrari R and Sharpe N: Cardiac
remodeling-concepts and clinical implications: A consensus paper
from an international forum on cardiac remodeling. Behalf of an
International Forum on Cardiac Remodeling. J Am Coll Cardiol.
35:569–582. 2000.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Mangold A, Hofbauer TM, Ondracek AS,
Artner T, Scherz T, Speidl WS, Krychtiuk KA, Sadushi-Kolici R,
Jakowitsch J and Lang IM: Neutrophil extracellular traps and
monocyte subsets at the culprit lesion site of myocardial
infarction patients. Sci Rep. 9(16304)2019.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Jorch SK and Kubes P: An emerging role for
neutrophil extracellular traps in noninfectious disease. Nat Med.
23:279–287. 2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Li C, Gao P, Zhuang F, Wang T, Wang Z, Wu
G, Zhou Z, Xie H, Xie D, Zhao D, et al: Inhibition of
ALOX12-12-HETE alleviates lung ischemia-reperfusion injury by
reducing endothelial ferroptosis-mediated neutrophil extracellular
trap formation. Research (Wash D C). 7(0473)2024.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Chen J, Wang T, Li X, Gao L, Wang K, Cheng
M, Zeng Z, Chen L, Shen Y and Wen F: DNA of neutrophil
extracellular traps promote NF-κB-dependent autoimmunity via
cGAS/TLR9 in chronic obstructive pulmonary disease. Signal
Transduct Target Ther. 9(163)2024.PubMed/NCBI View Article : Google Scholar
|
|
82
|
He L, Liu R, Yue H, Zhu G, Fu L, Chen H,
Guo Y and Qin C: NETs promote pathogenic cardiac fibrosis and
participate in ventricular aneurysm formation after ischemia injury
through the facilitation of perivascular fibrosis. Biochem Biophys
Res Commun. 583:154–161. 2021.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Chang CP, Chia RH, Wu TL, Tsao KC, Sun CF
and Wu JT: Elevated cell-free serum DNA detected in patients with
myocardial infarction. Clin Chim Acta. 327:95–101. 2003.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Cao J, Roth S, Zhang S, Kopczak A, Mami S,
Asare Y, Georgakis MK, Messerer D, Horn A, Shemer R, et al:
DNA-sensing inflammasomes cause recurrent atherosclerotic stroke.
Nature. 633:433–441. 2024.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Hally KE, Parker OM, Brunton-O'Sullivan
MM, Harding SA and Larsen PD: Linking neutrophil extracellular
traps and platelet activation: A composite biomarker score for
predicting outcomes after acute myocardial infarction. Thromb
Haemost. 121:1637–1649. 2021.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Yu S, Li M, Li Z, Xu P, Yao Z, Qian S,
Qian F, Gao D and Wang H: Positive correlations between plasma BPI
level and MPO-DNA and S100A8/A9 in myocardial infarction.
Platelets. 33:603–611. 2022.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Nagareddy PR, Sreejit G, Abo-Aly M,
Jaggers RM, Chelvarajan L, Johnson J, Pernes G, Athmanathan B,
Abdel-Latif A and Murphy AJ: NETosis Is Required for
S100A8/A9-induced granulopoiesis after myocardial infarction.
Arterioscler Thromb Vasc Biol. 40:2805–2807. 2020.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Li YW, Chen SX, Yang Y, Zhang ZH, Zhou WB,
Huang YN, Huang ZQ, He JQ, Chen TF, Wang JF, et al: Colchicine
inhibits NETs and alleviates cardiac remodeling after acute
myocardial infarction. Cardiovasc Drugs Ther. 38:31–41.
2024.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Tan Y, Bao X, Li Y, Song G, Lu H, Sun X,
Gu R, Kang L and Xu B: Colchicine attenuates microvascular
obstruction after myocardial ischemia-reperfusion injury by
inhibiting the proliferation of neutrophil in bone marrow.
Cardiovasc Drugs Ther. 39:259–273. 2025.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Banach M and Penson PE: Colchicine and
cardiovascular outcomes: A critical appraisal of recent studies.
Curr Atheroscler Rep. 23(32)2021.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Tardif JC, Kouz S, Waters DD, Bertrand OF,
Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, et al:
Efficacy and safety of low-dose colchicine after myocardial
infarction. N Engl J Med. 381:2497–2505. 2019.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Zhang W, Liu J, Li X, Bai Z, Sun Y and
Chen X: Lidocaine effects on neutrophil extracellular trapping and
angiogenesis biomarkers in postoperative breast cancer patients
with different anesthesia methods: A prospective, randomized trial.
BMC Anesthesiol. 24(162)2024.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Sapey E, Patel JM, Greenwood H, Walton GM,
Grudzinska F, Parekh D, Mahida RY, Dancer RCA, Lugg ST, Howells PA,
et al: Simvastatin improves neutrophil function and clinical
outcomes in pneumonia. A pilot randomized controlled clinical
trial. Am J Respir Crit Care Med. 200:1282–1293. 2019.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Ebrahimi F, Giaglis S, Hahn S, Blum CA,
Baumgartner C, Kutz A, van Breda SV, Mueller B, Schuetz P,
Christ-Crain M and Hasler P: Markers of neutrophil extracellular
traps predict adverse outcome in community-acquired pneumonia:
Secondary analysis of a randomised controlled trial. Eur Respir J.
51(1701389)2018.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Shin D, Kim J, Lee S and Chae MS: Impact
of perioperative lidocaine on neutrophil extracellular trapping and
serum cytokines in robot-assisted radical prostatectomy: Randomized
controlled study. Medicina (Kaunas). 60(1452)2024.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Hu Z, Hua X, Mo X, Chang Y, Chen X, Xu Z,
Tao M, Hu G and Song J: Inhibition of NETosis via PAD4 alleviated
inflammation in giant cell myocarditis. IScience.
26(107162)2023.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Ai P, Pan H, Chen K, Zheng J, Gao Z and
Jin G: Viral mimetic poly(I:C) induces neutrophil extracellular
traps via PAD4 to promote inflammation and thrombosis. Biochem
Biophys Res Commun. 565:64–71. 2021.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Savchenko AS, Borissoff JI, Martinod K, De
Meyer SF, Gallant M, Erpenbeck L, Brill A, Wang Y and Wagner DD:
VWF-mediated leukocyte recruitment with chromatin decondensation by
PAD4 increases myocardial ischemia/reperfusion injury in mice.
Blood. 123:141–148. 2014.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Ge L, Zhou X, Ji WJ, Lu RY, Zhang Y, Zhang
YD, Ma YQ, Zhao JH and Li YM: Neutrophil extracellular traps in
ischemia-reperfusion injury-induced myocardial no-reflow:
Therapeutic potential of DNase-based reperfusion strategy. Am J
Physiol Heart Circ Physiol. 308:H500–H509. 2015.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Di G, Vázquez-Reyes S, Díaz B,
Peña-Martinez C, García-Culebras A, Cuartero MI, Moraga A, Pradillo
JM, Esposito E, Lo EH, et al: Daytime DNase-I administration
protects mice from ischemic stroke without inducing bleeding or
tPA-induced hemorrhagic transformation, even with aspirin
pretreatment. Stroke. 56:527–532. 2025.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Carminita E, Crescence L, Brouilly N,
Altié A, Panicot-Dubois L and Dubois C: DNAse-dependent,
NET-independent pathway of thrombus formation in vivo. Proc Natl
Acad Sci USA. 118(e2100561118)2021.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Mangold A, Alias S, Scherz T, Hofbauer M,
Jakowitsch J, Panzenböck A, Simon D, Laimer D, Bangert C,
Kammerlander A, et al: Coronary neutrophil extracellular trap
burden and deoxyribonuclease activity in ST-elevation acute
coronary syndrome are predictors of ST-segment resolution and
infarct size. Circ Res. 116:1182–1192. 2015.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Kolaczkowska E, Jenne CN, Surewaard BG,
Thanabalasuriar A, Lee WY, Sanz MJ, Mowen K, Opdenakker G and Kubes
P: Molecular mechanisms of NET formation and degradation revealed
by intravital imaging in the liver vasculature. Nat Commun.
6(6673)2015.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Englert H, Göbel J, Khong D, Omidi M,
Wolska N, Konrath S, Frye M, Mailer RK, Beerens M, Gerwers JC, et
al: Targeting NETs using dual-active DNase1 variants. Front
Immunol. 14(1181761)2023.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Liu T, Lv X, Xu Q, Qi X, Qiu S, Luan Y,
Shen N, Cheng J, Jin L, Tian T, et al: Stroke-homing peptide-DNase1
alleviates intestinal ischemia reperfusion injury by selectively
degrading neutrophil extracellular traps. Cell Prolif.
(e70010)2025.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
|
106
|
Yao D, Bao L, Wang S, Tan M, Xu Y, Wu T,
Zhang Z and Gong K: Isoliquiritigenin alleviates myocardial
ischemia-reperfusion injury by regulating the
Nrf2/HO-1/SLC7a11/GPX4 axis in mice. Free Radic Biol Med. 221:1–12.
2024.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Yang K, Gao R, Chen H, Hu J, Zhang P, Wei
X, Shi J, Chen Y, Zhang L, Chen J, et al: Myocardial reperfusion
injury exacerbation due to ALDH2 deficiency is mediated by
neutrophil extracellular traps and prevented by leukotriene C4
inhibition. Eur Heart J. 45:1662–1680. 2024.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Lin K, Fang S, Cai B, Huang X, Zhang X, Lu
Y, Zhang W and Wei E: ERK/Egr-1 signaling pathway is involved in
CysLT2 receptor-mediated IL-8 production in HEK293 cells. Eur J
Cell Biol. 93:278–288. 2014.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Dölling M, Eckstein M, Singh J, Schauer C,
Schoen J, Shan X, Bozec A, Knopf J, Schett G, Muñoz LE and Herrmann
M: Hypoxia promotes neutrophil survival after acute myocardial
infarction. Front Immunol. 13(726153)2022.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Tang X, Wang P, Zhang R, Watanabe I, Chang
E, Vinayachandran V, Nayak L, Lapping S, Liao S, Madera A, et al:
KLF2 regulates neutrophil activation and thrombosis in cardiac
hypertrophy and heart failure progression. J Clin Invest.
132(e147191)2022.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Vorobjeva N, Galkin I, Pletjushkina O,
Golyshev S, Zinovkin R, Prikhodko A, Pinegin V, Kondratenko I,
Pinegin B and Chernyak B: Mitochondrial permeability transition
pore is involved in oxidative burst and NETosis of human
neutrophils. Biochim Biophys Acta Mol Basis Dis.
1866(165664)2020.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Vajen T, Koenen RR, Werner I, Staudt M,
Projahn D, Curaj A, Sönmez TT, Simsekyilmaz S, Schumacher D,
Möllmann J, et al: Blocking CCL5-CXCL4 heteromerization preserves
heart function after myocardial infarction by attenuating leukocyte
recruitment and NETosis. Sci Rep. 8(10647)2018.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Xu K, Cooney KA, Shin EY, Wang L, Deppen
JN, Ginn SC and Levit RD: Adenosine from a biologic source
regulates neutrophil extracellular traps (NETs). J Leukoc Biol.
105:1225–1234. 2019.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Allard B, Longhi MS, Robson SC and Stagg
J: The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor
targets. Immunol Rev. 276:121–144. 2017.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Borg N, Alter C, Görldt N, Jacoby C, Ding
Z, Steckel B, Quast C, Bönner F, Friebe D, Temme S, et al: CD73 on
T cells orchestrates cardiac wound healing after myocardial
infarction by purinergic metabolic reprogramming. Circulation.
136:297–313. 2017.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Sayegh MN, Cooney KA, Han WM, Cicka M,
Strobel F, Wang L, García AJ and Levit RD: Hydrogel delivery of
purinergic enzymes improves cardiac ischemia/reperfusion injury. J
Mol Cell Cardiol. 176:98–109. 2023.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Chilingaryan Z, Deshmukh T, Leung HHL,
Perdomo J, Emerson P, Kurup R, Chong BH and Chong JJH: Erythrocyte
interaction with neutrophil extracellular traps in coronary artery
thrombosis following myocardial infarction. Pathology. 54:87–94.
2022.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Dou H, Kotini A, Liu W, Fidler T,
Endo-Umeda K, Sun X, Olszewska M, Xiao T, Abramowicz S, Yalcinkaya
M, et al: Oxidized phospholipids promote NETosis and arterial
thrombosis in LNK(SH2B3) deficiency. Circulation. 144:1940–1954.
2021.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Fordyce CB, Gersh BJ, Stone GW and Granger
CB: Novel therapeutics in myocardial infarction: Targeting
microvascular dysfunction and reperfusion injury. Trends Pharmacol
Sci. 36:605–616. 2015.PubMed/NCBI View Article : Google Scholar
|