1
|
Bolognia J, Jorizzo JL and Schaffer JV:
Disorders of hyperpigmentation. In: Dermatology. 3rd edition.
Elsevier, London, pp1049-1074, 2012.
|
2
|
Malviya N and Pandya A: Disorders of
hyperpigmentation. In: Dermatoanthropology of Ethnic Skin and Hair.
Vashi NA and Maibach HI (eds). Springer International Publishing,
Cham, pp197-214, 2017.
|
3
|
Ghosh A, Das A and Sarkar R: Diffuse
hyperpigmentation: A comprehensive approach. Pigment Int. 5:4–13.
2018.
|
4
|
Sandhu S, Neema S and Radhakrishnan S:
Dermoscopy of disorders of hyperpigmentation. Pigment Int. 8:14–24.
2021.
|
5
|
Alkhowailed MS, Otayf M, Albasseet A,
Almousa A, Alajlan Z and Altalhab S: Clinical approach to linear
hyperpigmentation: A review article. Clin Cosmet Investig Dermatol.
14:23–35. 2021.PubMed/NCBI View Article : Google Scholar
|
6
|
Sinha S and Kulhari A: Reticulate
pigmentary disorders: A review. Pigment Int. 6:67–76.
2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Grimes P, Nordlund JJ, Pandya AG, Taylor
S, Rendon M and Ortonne JP: Increasing our understanding of
pigmentary disorders. J Am Acad Dermatol. 54 (Suppl 2):S255–S261.
2006.PubMed/NCBI View Article : Google Scholar
|
8
|
Thawabteh AM, Jibreen A, Karaman D,
Thawabteh A and Karaman R: Skin pigmentation types, causes and
treatment-a review. Molecules. 28(4839)2023.PubMed/NCBI View Article : Google Scholar
|
9
|
Ten S, New M and Maclaren N: Clinical
review 130: Addison's disease 2001. J Clin Endocrinol Metab.
86:2909–2922. 2001.PubMed/NCBI View Article : Google Scholar
|
10
|
Betterle C and Morlin L: Autoimmune
Addison's disease. Endocr Dev. 20:161–172. 2011.PubMed/NCBI View Article : Google Scholar
|
11
|
Liu JW, Habulieti X, Wang RR, Ma DL and
Zhang X: Two novel SASH1 mutations in Chinese families with
dyschromatosis universalis hereditaria. J Clin Lab Anal.
35(e23803)2021.PubMed/NCBI View Article : Google Scholar
|
12
|
Murthy AB, Palaniappan V, Karthikeyan K
and Anbarasan V: Dyschromatosis universalis hereditaria. Int J
Dermatol. 62:1218–1227. 2023.PubMed/NCBI View Article : Google Scholar
|
13
|
Orphanet: Prevalence and Incidence of Rare
Diseases: Bibliographic Data. No. 1. Available from: http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_diseases.pdf.
Accessed June 4, 2025.
|
14
|
Khattab S, Nasser H, Al-Janabi MH and
Hasan F: Dyskeratosis congenita: A rare case report. Oxf Med Case
Reports. 2024(omae049)2024.PubMed/NCBI View Article : Google Scholar
|
15
|
Logsdon GA, Vollger MR and Eichler EE:
Long-read human genome sequencing and its applications. Nat Rev
Genet. 21:597–614. 2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Rhoads A and Au KF: PacBio Sequencing and
its applications. Genomics Proteomics Bioinformatics. 13:278–289.
2015.PubMed/NCBI View Article : Google Scholar
|
17
|
Adewale BA: Will long-read sequencing
technologies replace short-read sequencing technologies in the next
10 years? Afr J Lab Med. 9(1340)2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Hamada M, Ono Y, Asai K and Frith MC:
Training alignment parameters for arbitrary sequencers with
LAST-TRAIN. Bioinformatics. 33:926–928. 2016.
|
19
|
Mitsuhashi S, Frith MC, Mizuguchi T,
Miyatake S, Toyota T, Adachi H, Oma Y, Kino Y, Mitsuhashi H and
Matsumoto N: Tandem-genotypes: Robust detection of tandem repeat
expansions from long DNA reads. Genome Biol. 20(58)2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Manichaikul A, Mychaleckyj JC, Rich SS,
Daly K, Sale M and Chen WM: Robust relationship inference in
genome-wide association studies. Bioinformatics. 26:2867–2873.
2010.PubMed/NCBI View Article : Google Scholar
|
21
|
Kisiel MA and Klar AS: Isolation and
culture of human dermal fibroblasts. Methods Mol Biol. 1993:71–78.
2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2 (-Delta Delta C (T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
23
|
Thorvaldsdóttir H, Robinson JT and Mesirov
JP: Integrative Genomics Viewer (IGV): High-performance genomics
data visualization and exploration. Brief Bioinform. 14:178–192.
2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Paller AS and Mancini AJ: Hurwitz Clinical
Pediatric Dermatology. Fifth edition. Elsevier, Amsterdam,
pp245-278, 2016.
|
25
|
Kaviarasan PK, Prasad PV, Joe JM, Nandana
N and Viswanathan P: Universal acquired melanosis (Carbon baby).
Indian J Dermatol Venereol Leprol. 74:38–40. 2008.PubMed/NCBI View Article : Google Scholar
|
26
|
Convit J, Kerdel-Vegas F and Rodríguez G:
Erythema dyschromicum perstans: A hitherto undescribed skin
disease*. J Invest Dermatol. 36:457–462. 1961.
|
27
|
Bhutani LK, Bedi TR, Pandhi RK and Nayak
NC: Lichen planus pigmentosus. Dermatologica. 149:43–50.
1974.PubMed/NCBI View Article : Google Scholar
|
28
|
Chernosky ME, Anderson DE, Chang JP, Shaw
MW and Romsdahl MM: Familial progressive hyperpigmentation. Arch
Dermatol. 103:581–591, passim. 1971.PubMed/NCBI
|
29
|
Betz RC, Planko L, Eigelshoven S, Hanneken
S, Pasternack SM, Büssow H, Van Den Bogaert K, Wenzel J,
Braun-Falco M, Rütten A, et al: Loss-of-function mutations in the
keratin 5 gene lead to dowling-degos diseasnue. Am J Hum Genet.
78:510–519. 2006.PubMed/NCBI View
Article : Google Scholar
|
30
|
Kono M, Sugiura K, Sugama M, Hayashi M,
Takama H, Suzuki T, Matsunaga K, Tomita Y and Akiyama M:
Whole-exome sequencing identifies ADAM10 mutations as a cause of
reticulate acropigmentation of Kitamura, a clinical entity distinct
from Dowling-Degos disease. Hum Mol Genet. 22:3524–3533.
2013.PubMed/NCBI View Article : Google Scholar
|
31
|
Pezzani L, Brena M, Callea M, Colombi M
and Tadini G: X-linked reticulate pigmentary disorder with systemic
manifestations: A new family and review of the literature. Am J Med
Genet A. 161A:1414–1420. 2013.PubMed/NCBI View Article : Google Scholar
|
32
|
Cao L, Zhang R, Yong L, Chen S, Zhang H,
Chen W, Xu Q, Ge H, Mao Y, Zhen Q, et al: Novel missense mutation
of SASH1 in a Chinese family with dyschromatosis universalis
hereditaria. BMC Med Genomics. 14(168)2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Takeichi T, Hsu CK, Yang HS, Chen HY, Wong
TW, Tsai WL, Chao SC, Lee JY, Akiyama M, Simpson MA and McGrath JA:
Progressive hyperpigmentation in a Taiwanese child due to an inborn
error of vitamin B12 metabolism (cblJ). Br J Dermatol.
172:1111–1115. 2015.PubMed/NCBI View Article : Google Scholar
|
34
|
Baxter LL and Pavan WJ: The etiology and
molecular genetics of human pigmentation disorders. Wiley
Interdiscip Rev Dev Biol. 2:379–392. 2013.PubMed/NCBI View Article : Google Scholar
|
35
|
Chakrabarti N and Chattopadhyay C: Ashy
dermatosis: A controversial entity. Indian J Dermatol. 57:61–62.
2012.PubMed/NCBI View Article : Google Scholar
|
36
|
Furuya T and Mishima Y: Progressive
pigmentary disorder in Japanese child. Arch Dermatol. 86:412–418.
1962.PubMed/NCBI View Article : Google Scholar
|
37
|
Ghosh SK, Ghoshal L, Bhunia D and Ghoshal
AM: Acquired universal melanosis (carbon baby syndrome). Pediatr
Dermatol. 31:620–622. 2014.PubMed/NCBI View Article : Google Scholar
|
38
|
Kint A, Oomen C, Geerts ML and Breuillard
F: Congenital diffuse melanosis. Ann Dermatol Venereol. 114:11–16.
1987.PubMed/NCBI(In French).
|
39
|
Mahajan BB, Budhwar J, Chojer P and Singla
C: Carbon baby syndrome: A rare case report. JDA Indian J Clin
Dermatol. 1:61–63. 2018.
|
40
|
Malik P, Pathania M and Rathaur VK: A case
of a 4-year-old carbon baby: Acquired universal melanosis and
literature review. Int J Inn Res Med Sci. 5:92–94. 2020.
|
41
|
Mammen A, Deepthi B, Majhi C, Kumar M and
Kumar S: Carbon baby syndrome-A rare case. Kerala Med J. 9:138–140.
2015.
|
42
|
Naskar S, Kharkar V, Hershada M and
Maharshtra M: Carbon baby-A unique manifestation of cryptic
mastocytosis. Am J Dermatol Res Rev. 37(3)2020.
|
43
|
Niiyama S, Bando Y, Ishii M and Katsuoka
K: Universal acquired melanosis: Carbon baby. Dermatol Online J.
19(18961)2013.PubMed/NCBI
|
44
|
Parviz T, Sarah E and Ehsan A: Acquired
universal melanosis (Carbon baby syndrome) in a 4-year old girl.
Iran J Dermatol. 16:162–164. 2013.PubMed/NCBI View Article : Google Scholar
|
45
|
Ruiz-Maldonado R, Tamayo L and
Fernández-Diez J: Universal Acquired Melanosis: The Carbon Baby.
Arch Dermatol. 114:775–778. 1978.PubMed/NCBI
|
46
|
Shome K, Seth J, Samanta AB, Halder S, Das
I and Sarkar P: Carbon baby syndrome: Two case reports. J Pak Assoc
Dermatol. 22:59–62. 2012.
|
47
|
Wanlapakorn N, Nilyanimit P,
Vorawandthanachai T, Deesudjit T, Dumrongpisutikul N and Poovorawan
Y: A novel stop codon mutation in exon 1 (558C>A) of the UGT1A1
gene in a Thai neonate with Crigler-Najjar syndrome type I. Genet
Mol Res. 14:419–425. 2015.PubMed/NCBI View Article : Google Scholar
|
48
|
Song Y, Zhao D, Xu X, Lv F, Li L, Jiang Y,
Wang O, Xia W, Xing X and Li M: Novel compound heterozygous
mutations in SERPINH1 cause rare autosomal recessive osteogenesis
imperfecta type X. Osteoporos Int. 29:1389–1396. 2018.PubMed/NCBI View Article : Google Scholar
|
49
|
Huang K, Luo YB, Bi FF and Yang H:
Pharmacological strategy for congenital myasthenic syndrome with
CHRNE mutations: A meta-analysis of case reports. Curr
Neuropharmacol. 19:718–729. 2021.PubMed/NCBI View Article : Google Scholar
|
50
|
Alizadeh R, Jamshidi S, Keramatipour M,
Moeinian P, Hosseini R, Otukesh H and Talebi S: Whole exome
sequencing reveals a XPNPEP3 novel mutation causing
nephronophthisis in a pediatric patient. Iran Biomed J. 24:405–408.
2020.PubMed/NCBI View Article : Google Scholar
|
51
|
Lu J, Chen P, Chen T, Li L, Fu X, Yang T
and Wu H: The p.R206C mutation in MYO7A leads to autosomal dominant
nonsyndromic hearing loss. ORL J Otorhinolaryngol Relat Spec.
82:181–187. 2020.PubMed/NCBI View Article : Google Scholar
|
52
|
Schiaffino S, Hughes SM, Murgia M and
Reggiani C: MYH13, a superfast myosin expressed in extraocular,
laryngeal and syringeal muscles. J Physiol. 602:427–443.
2024.PubMed/NCBI View Article : Google Scholar
|
53
|
Brychtova V, Coates PJ, Hrabal V, Boldrup
L, Fabian P, Vojtesek B, Sgaramella N and Nylander K: Keratin 36, a
specific marker of tongue filiform papillae, is downregulated in
squamous cell carcinoma of the mobile tongue. Mol Clin Oncol.
12:421–428. 2020.PubMed/NCBI View Article : Google Scholar
|
54
|
Cao L and Lin F: TECPR1 induces apoptosis
in non-small cell lung carcinoma via ATG5 upregulation-induced
autophagy promotion. Ann Clin Lab Sci. 52:580–592. 2022.PubMed/NCBI
|
55
|
Ozer U, Barbour KW, Clinton SA and Berger
FG: Oxidative stress and response to thymidylate synthase-targeted
antimetabolites. Mol Pharmacol. 88:970–981. 2015.PubMed/NCBI View Article : Google Scholar
|
56
|
Cui R, Widlund HR, Feige E, Lin JY,
Wilensky DL, Igras VE, D'Orazio J, Fung CY, Schanbacher CF, Granter
SR and Fisher DE: Central role of p53 in the suntan response and
pathologic hyperpigmentation. Cell. 128:853–864. 2007.PubMed/NCBI View Article : Google Scholar
|
57
|
Niu C and Aisa HA: Upregulation of
melanogenesis and tyrosinase activity: Potential agents for
vitiligo. Molecules. 22(1303)2017.PubMed/NCBI View Article : Google Scholar
|
58
|
Speeckaert R, Van Gele M, Speeckaert MM,
Lambert J and van Geel N: The biology of hyperpigmentation
syndromes. Pigment Cell Melanoma Res. 27:512–524. 2014.PubMed/NCBI View Article : Google Scholar
|
59
|
Liberzon A, Birger C, Thorvaldsdóttir H,
Ghandi M, Mesirov JP and Tamayo P: The Molecular signatures
database (MSigDB) hallmark gene set collection. Cell Syst.
1:417–425. 2015.PubMed/NCBI View Article : Google Scholar
|
60
|
Tummala H, Walne A, Buccafusca R, Alnajar
J, Szabo A, Robinson P, McConkie-Rosell A, Wilson M, Crowley S,
Kinsler V, et al: Germline thymidylate synthase deficiency impacts
nucleotide metabolism and causes dyskeratosis congenita. Am J Hum
Genet. 109:1472–1483. 2022.PubMed/NCBI View Article : Google Scholar
|
61
|
Leoyklang P, Siriwan P and Shotelersuk V:
A mutation of the p63 gene in non-syndromic cleft lip. J Med Genet.
43(e28)2006.PubMed/NCBI View Article : Google Scholar
|
62
|
Depienne C and Mandel JL: 30 years of
repeat expansion disorders: What have we learned and what are the
remaining challenges? Am J Hum Genet. 108:764–785. 2021.PubMed/NCBI View Article : Google Scholar
|
63
|
Greene E, Mahishi L, Entezam A, Kumari D
and Usdin K: Repeat-induced epigenetic changes in intron 1 of the
frataxin gene and its consequences in Friedreich ataxia. Nucleic
Acids Res. 35:3383–3390. 2007.PubMed/NCBI View Article : Google Scholar
|
64
|
Cen Z, Jiang Z, Chen Y, Zheng X, Xie F,
Yang X, Lu X, Ouyang Z, Wu H, Chen S, et al: Intronic
pentanucleotide TTTCA repeat insertion in the SAMD12 gene causes
familial cortical myoclonic tremor with epilepsy type 1. Brain.
141:2280–2288. 2018.PubMed/NCBI View Article : Google Scholar
|
65
|
Yeetong P, Chunharas C, Pongpanich M,
Bennett MF, Srichomthong C, Pasutharnchat N, Suphapeetiporn K,
Bahlo M and Shotelersuk V: Founder effect of the TTTCA repeat
insertions in SAMD12 causing BAFME1. Eur J Hum Genet. 29:343–348.
2021.PubMed/NCBI View Article : Google Scholar
|
66
|
Florian RT, Kraft F, Leitão E, Kaya S,
Klebe S, Magnin E, van Rootselaar AF, Buratti J, Kühnel T, Schröder
C, et al: Unstable TTTTA/TTTCA expansions in MARCH6 are associated
with Familial Adult Myoclonic Epilepsy type 3. Nat Commun.
10(4919)2019.PubMed/NCBI View Article : Google Scholar
|
67
|
Yeetong P, Pongpanich M, Srichomthong C,
Assawapitaksakul A and Shotelersuk V, Tantirukdham N, Chunharas C,
Suphapeetiporn K and Shotelersuk V: TTTCA repeat insertions in an
intron of YEATS2 in benign adult familial myoclonic epilepsy type
4. Brain. 142:3360–3366. 2019.PubMed/NCBI View Article : Google Scholar
|
68
|
Ishiura H, Doi K, Mitsui J, Yoshimura J,
Matsukawa MK, Fujiyama A, Toyoshima Y, Kakita A, Takahashi H,
Suzuki Y, et al: Expansions of intronic TTTCA and TTTTA repeats in
benign adult familial myoclonic epilepsy. Nat Genet. 50:581–590.
2018.PubMed/NCBI View Article : Google Scholar
|
69
|
Yeetong P, Dembélé ME, Pongpanich M, Cissé
L, Srichomthong C, Maiga AB, Dembélé K, Assawapitaksakul A, Bamba
S, Yalcouyé A, et al: Pentanucleotide repeat insertions in RAI1
cause benign adult familial myoclonic epilepsy type 8. Mov Disord.
39:164–172. 2024.PubMed/NCBI View Article : Google Scholar
|
70
|
Corbett MA, Kroes T, Veneziano L, Bennett
MF, Florian R, Schneider AL, Coppola A, Licchetta L, Franceschetti
S, Suppa A, et al: Intronic ATTTC repeat expansions in STARD7 in
familial adult myoclonic epilepsy linked to chromosome 2. Nat
Commun. 10(4920)2019.PubMed/NCBI View Article : Google Scholar
|
71
|
Hida T, Kamiya T, Kawakami A, Ogino J,
Sohma H, Uhara H and Jimbow K: Elucidation of melanogenesis cascade
for identifying pathophysiology and therapeutic approach of
pigmentary disorders and melanoma. Int J Mol Sci.
21(6129)2020.PubMed/NCBI View Article : Google Scholar
|
72
|
Duval C, Cohen C, Chagnoleau C, Flouret V,
Bourreau E and Bernerd F: Key regulatory role of dermal fibroblasts
in pigmentation as demonstrated using a reconstructed skin model:
Impact of photo-aging. PLoS One. 9(e114182)2014.PubMed/NCBI View Article : Google Scholar
|
73
|
Wang Y, Viennet C, Robin S, Berthon JY, He
L and Humbert P: Precise role of dermal fibroblasts on melanocyte
pigmentation. J Dermatol Sci. 88:159–166. 2017.PubMed/NCBI View Article : Google Scholar
|
74
|
Li PH, Liu LH, Chang CC, Gao R, Leung CH,
Ma DL and David Wang HM: Silencing stem cell factor gene in
fibroblasts to regulate paracrine factor productions and enhance
c-Kit expression in melanocytes on melanogenesis. Int J Mol Sci.
19(1475)2018.PubMed/NCBI View Article : Google Scholar
|