|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49.
2024.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Siriraj Cancer Center: Siriraj Cancer
Registry 2023. https://www2.si.mahidol.ac.th/department/cancer/download/siriraj-cancer-registry-2023/?wpdmdl=6263&refresh=6882115c9e2771753354588.
Accessed March 18, 2025.
|
|
4
|
Dralle H, Machens A, Basa J, Fatourechi V,
Franceschi S, Hay ID, Nikiforov YE, Pacini F, Pasieka JL and
Sherman SI: Follicular cell-derived thyroid cancer. Nat Rev Dis
Primers. 1(15077)2015.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Kitahara CM and Sosa JA: The changing
incidence of thyroid cancer. Nat Rev Endocrinol. 12:646–653.
2016.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Song YS and Park YJ: Genomic
characterization of differentiated thyroid carcinoma. Endocrinol
Metab (Seoul). 34:1–10. 2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Veiga LH, Holmberg E, Anderson H, Pottern
L, Sadetzki S, Adams MJ, Sakata R, Schneider AB, Inskip P, Bhatti
P, et al: Thyroid cancer after childhood exposure to external
radiation: An updated pooled analysis of 12 studies. Radiat Res.
185:473–484. 2016.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Figlioli G, Elisei R, Romei C, Melaiu O,
Cipollini M, Bambi F, Chen B, Köhler A, Cristaudo A, Hemminki K, et
al: A comprehensive meta-analysis of case-control association
studies to evaluate polymorphisms associated with the risk of
differentiated thyroid carcinoma. Cancer Epidemiol Biomarkers Prev.
25:700–713. 2016.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Gudmundsson J, Sulem P, Gudbjartsson DF,
Jonasson JG, Sigurdsson A, Bergthorsson JT, He H, Blondal T, Geller
F, Jakobsdottir M, et al: Common variants on 9q22.33 and 14q13.3
predispose to thyroid cancer in European populations. Nat Genet.
41:460–464. 2009.PubMed/NCBI View
Article : Google Scholar
|
|
10
|
Bonora E, Tallini G and Romeo G: Genetic
predisposition to familial nonmedullary thyroid cancer: An update
of molecular findings and state-of-the-art studies. J Oncol.
2010(385206)2010.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Jones AM, Howarth KM, Martin L, Gorman M,
Mihai R, Moss L, Auton A, Lemon C, Mehanna H, Mohan H, et al:
Thyroid cancer susceptibility polymorphisms: Confirmation of loci
on chromosomes 9q22 and 14q13, validation of a recessive 8q24 locus
and failure to replicate a locus on 5q24. J Med Genet. 49:158–163.
2012.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Guo Y, Zhang W, He R, Zheng C, Liu X, Ge M
and Xu J: Investigating the association between rs2439302
polymorphism and thyroid cancer: A systematic review and
meta-analysis. Front Surg. 9(877206)2022.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Wang YL, Feng SH, Guo SC, Wei WJ, Li DS,
Wang Y, Wang X, Wang ZY, Ma YY, Jin L, et al: Confirmation of
papillary thyroid cancer susceptibility loci identified by
genome-wide association studies of chromosomes 14q13, 9q22, 2q35
and 8p12 in a Chinese population. J Med Genet. 50:689–695.
2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Mussazhanova Z, Rogounovitch TI, Saenko
VA, Krykpayeva A, Espenbetova M, Azizov B, Kondo H, Matsuda K,
Kalmatayeva Z, Issayeva R, et al: The contribution of genetic
variants to the risk of papillary thyroid carcinoma in the kazakh
population: Study of common single nucleotide polymorphisms and
their clinicopathological correlations. Front Endocrinol
(Lausanne). 11(543500)2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Gudmundsson J, Sulem P, Gudbjartsson DF,
Jonasson JG, Masson G, He H, Jonasdottir A, Sigurdsson A, Stacey
SN, Johannsdottir H, et al: Discovery of common variants associated
with low TSH levels and thyroid cancer risk. Nat Genet. 44:319–322.
2012.PubMed/NCBI View
Article : Google Scholar
|
|
16
|
Yan L, Li Q, Li X, Ji H and Zhang L:
Association studies between XRCC1, XRCC2, XRCC3 polymorphisms and
differentiated thyroid carcinoma. Cell Physiol Biochem.
38:1075–1084. 2016.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Faul F, Erdfelder E, Buchner A and Lang
AG: Statistical power analyses using G*Power 3.1: Tests for
correlation and regression analyses. Behav Res Methods.
41:1149–1160. 2009.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Sturgis EM and Li G: Molecular
epidemiology of papillary thyroid cancer: In search of common
genetic associations. Thyroid. 19:1031–1034. 2009.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Li P, Ding Y, Liu M, Wang W and Li X: Sex
disparities in thyroid cancer: A SEER population study. Gland Surg.
10:3200–3210. 2021.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Duffek M, Skerenova M, Halasova E,
Sarlinova M, Dzian A, Repiska V, Dobrovodsky A, Mistuna D, Bernadic
M and Matakova T: Risk genetic polymorphism and haplotype
associated with papillary thyroid cancer and their relation to
associated diseases in Slovak population. Bratisl Lek Listy.
123:475–448. 2022.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Świerniak M, Wójcicka A, Czetwertyńska M,
Długosińska J, Stachlewska E, Gierlikowski W, Kot A, Górnicka B,
Koperski Ł, Bogdańska M, et al: Association between GWAS-derived
rs966423 genetic variant and overall mortality in patients with
differentiated thyroid cancer. Clin Cancer Res. 22:1111–1119.
2016.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Guo S, Wang YL, Li Y, Jin L, Xiong M, Ji
QH and Wang J: Significant SNPs have limited prediction ability for
thyroid cancer. Cancer Med. 3:731–735. 2014.PubMed/NCBI View
Article : Google Scholar
|
|
23
|
Hincza K, Kowalik A, Palyga I, Walczyk A,
Gasior-Perczak D, Mikina E, Trybek T, Szymonek M, Gadawska-Juszczyk
K, Zajkowska K, et al: Does the TT variant of the rs966423
polymorphism in DIRC3 affect the stage and clinical course of
papillary thyroid cancer? Cancers (Basel). 12(423)2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Zhu J, Qi P and Li Z: Interaction between
XRCC1 gene polymorphisms and obesity on susceptibility to papillary
thyroid cancer in Chinese Han population. Cell Physiol Biochem.
49:638–644. 2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Jafari Nedooshan J, Forat Yazdi M,
Neamatzadeh H, Zare Shehneh M, Kargar S and Seddighi N: Genetic
association of XRCC1 gene rs1799782, rs25487 and rs25489
polymorphisms with risk of thyroid cancer: A systematic review and
meta-analysis. Asian Pac J Cancer Prev. 18:263–270. 2017.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Bashir K, Sarwar R, Fatima S, Saeed S,
Mahjabeen I and Akhtar Kayani M: Haplotype analysis of XRCC1 gene
polymorphisms and the risk of thyroid carcinoma. J BUON.
23:234–243. 2018.PubMed/NCBI
|
|
27
|
Ai L, Liu X, Yao Y, Yu Y, Sun H and Yu Q:
Associations between rs965513/rs944289 and papillary thyroid
carcinoma risk: A meta-analysis. Endocrine. 47:428–434.
2014.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Saenko VA and Rogounovitch TI: Genetic
polymorphism predisposing to differentiated thyroid cancer: A
review of major findings of the genome-wide association studies.
Endocrinol Metab (Seoul). 33:164–174. 2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Rogounovitch TI, Bychkov A, Takahashi M,
Mitsutake N, Nakashima M, Nikitski AV, Hayashi T, Hirokawa M,
Ishigaki K, Shigematsu K, et al: The common genetic variant
rs944289 on chromosome 14q13.3 associates with risk of both
malignant and benign thyroid tumors in the Japanese population.
Thyroid. 25:333–340. 2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Zheng J, Li C, Wang C and Ai Z: Common
genetic variant on 14q13.3 contributes to thyroid cancer
susceptibility: Evidence based on 12 studies. Mol Genet Genomics.
290:1125–1133. 2015.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Demir S, Gürkan H, Çelik M, Sezer A, Eker
D, Güldiken S, Süt N, Tozkır H, Göncü E, Bülbül BY, et al:
Investigation of the relationship between genome wide association
studies-derived polymorphisms and differentiated thyroid cancer
risk in a Turkish population. Gazi Med J. 32:547–553. 2021.
|
|
32
|
Sarwar R, Mahjabeen I, Bashir K, Saeed S
and Kayani MA: Haplotype based analysis of XRCC3 gene polymorphisms
in thyroid cancer. Cell Physiol Biochem. 42:22–33. 2017.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Mandegari M, Dastgheib SA, Asadian F,
Shaker SH, Tabatabaie SM, Kargar S, Sadeghizadeh-Yazdi J and
Neamatzadeh H: A meta-analysis for association of XRCC1, XRCC2 and
XRCC3 polymorphisms with susceptibility to thyroid cancer. Asian
Pac J Cancer Prev. 22:2221–2236. 2021.PubMed/NCBI View Article : Google Scholar
|