|
1
|
Schaue D and McBride WH: Opportunities and
challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol.
12:527–540. 2015.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Toulany M: Targeting DNA double-strand
break repair pathways to improve radiotherapy response. Genes
(Basel). 10(25)2019.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Wilkinson B, Hill MA and Parsons JL: The
cellular response to complex DNA damage induced by ionising
radiation. Int J Mol Sci. 24(4920)2023.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Khan MGM and Wang Y: Advances in the
current understanding of how low-dose radiation affects the cell
cycle. Cells. 11(356)2022.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Balagurumoorthy P, Adelstein SJ and Kassis
AI: Novel method for quantifying radiation-induced
single-strand-break yields in plasmid DNA highlights 10-fold
discrepancy. Anal Biochem. 417:242–246. 2011.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Weber AM and Ryan AJ: ATM and ATR as
therapeutic targets in cancer. Pharmacol Ther. 149:124–138.
2015.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Li S, Wang L, Wang Y, Zhang C, Hong Z and
Han Z: The synthetic lethality of targeting cell cycle checkpoints
and PARPs in cancer treatment. J Hematol Oncol.
15(147)2022.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Rundle S, Bradbury A, Drew Y and Curtin
NJ: Targeting the ATR-CHK1 axis in cancer therapy. Cancers (Basel).
9(41)2017.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Sia J, Szmyd R, Hau E and Gee HE:
Molecular mechanisms of radiation-induced cancer cell death: A
primer. Front Cell Dev Biol. 8(41)2020.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Shimono H, Kaida A, Homma H, Nojima H,
Onozato Y, Harada H and Miura M: Fluctuation in radioresponse of
HeLa cells during the cell cycle evaluated based on micronucleus
frequency. Sci Rep. 10(20873)2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Sikora E, Bielak-Żmijewska A and Mosieniak
G: What is and what is not cell senescence. Postepy Biochem.
64:110–118. 2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Ogrodnik M: Cellular aging beyond cellular
senescence: Markers of senescence prior to cell cycle arrest in
vitro and in vivo. Aging Cell. 20(e13338)2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Birch J and Gil J: Senescence and the
SASP: Many therapeutic avenues. Genes Dev. 34:1565–1576.
2020.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Ewald JA, Desotelle JA, Wilding G and
Jarrard DF: Therapy-induced senescence in cancer. J Natl Cancer
Inst. 102:1536–1546. 2010.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Park B, Yee C and Lee KM: The effect of
radiation on the immune response to cancers. Int J Mol Sci.
15:927–943. 2014.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Peng X, Wu Y, Brouwer U, van Vliet T, Wang
B, Demaria M, Barazzuol L and Coppes RP: Cellular senescence
contributes to radiation-induced hyposalivation by affecting the
stem/progenitor cell niche. Cell Death Dis. 11(854)2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Tripathi U, Misra A, Tchkonia T and
Kirkland JL: Impact of senescent cell subtypes on tissue
dysfunction and repair: Importance and research questions. Mech
Ageing Dev. 198(111548)2021.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Saliev T and Singh PB: Targeting
senescence: A review of senolytics and senomorphics in anti-aging
interventions. Biomolecules. 15(860)2025.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Czajkowski K, Herbet M, Murias M and
Piątkowska-Chmiel I: Senolytics: Charting a new course or enhancing
existing anti-tumor therapies? Cell Oncol (Dordr). 48:351–371.
2025.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Kim JH, Brown SL and Gordon MN:
Radiation-induced senescence: Therapeutic opportunities. Radiat
Oncol. 18(10)2023.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Lérida-Viso A, Estepa-Fernández A,
Morellá-Aucejo Á, Lozano-Torres B, Alfonso M, Blandez JF, Bisbal V,
Sepúlveda P, García-Fernández A, Orzáez M and Martínez-Máñez R:
Pharmacological senolysis reduces doxorubicin-induced
cardiotoxicity and improves cardiac function in mice. Pharmacol
Res. 183(106356)2022.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Chang J, Wang Y, Shao L, Laberge RM,
Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W,
et al: Clearance of senescent cells by ABT263 rejuvenates aged
hematopoietic stem cells in mice. Nat Med. 22:78–83.
2016.PubMed/NCBI View
Article : Google Scholar
|
|
23
|
Sato K, Iwasaki S and Yoshino H: Effects
and related mechanisms of the senolytic agent ABT-263 on the
survival of irradiated A549 and Ca9-22 cancer cells. Int J Mol Sci.
22(13233)2021.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Milanovic M, Fan DNY, Belenki D, Däbritz
JHM, Zhao Z, Yu Y, Dörr JR, Dimitrova L, Lenze D, Monteiro Barbosa
IA, et al: Senescence-associated reprogramming promotes cancer
stemness. Nature. 553:96–100. 2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Zhu Y, Tchkonia T, Pirtskhalava T, Gower
AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M,
et al: The Achilles' heel of senescent cells: From transcriptome to
senolytic drugs. Aging Cell. 14:644–658. 2015.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Guerrero A, Herranz N, Sun B, Wagner V,
Gallage S, Guiho R, Wolter K, Pombo J, Irvine EE, Innes AJ, et al:
Cardiac glycosides are broad-spectrum senolytics. Nat Metab.
1:1074–1088. 2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Wakasaya T, Yoshino H, Fukushi Y,
Yoshizawa A and Kashiwakura I: A liquid crystal-related compound
induces cell cycle arrest at the G2/M phase and apoptosis in the
A549 human non-small cell lung cancer cell line. Int J Oncol.
42:1205–1211. 2013.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Yoshino H, Kumai Y and Kashiwakura I:
Effects of endoplasmic reticulum stress on apoptosis induction in
radioresistant macrophages. Mol Med Rep. 15:2867–2872.
2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Chen G and Deng X: Cell synchronization by
double thymidine block. Bio Protoc. 8(e2994)2018.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Chatterjee N and Walker GC: Mechanisms of
DNA damage, repair, and mutagenesis. Environ Mol Mutagen.
58:235–263. 2017.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Mateo J, Lord CJ, Serra V, Tutt A, Balmaña
J, Castroviejo-Bermejo M, Cruz C, Oaknin A, Kaye SB and de Bono JS:
A decade of clinical development of PARP inhibitors in perspective.
Ann Oncol. 30:1437–1447. 2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kuo LJ and Yang LX: Gamma-H2AX-a novel
biomarker for DNA double-strand breaks. In Vivo. 22:305–309.
2008.PubMed/NCBI
|
|
33
|
Serrano M, Lin AW, McCurrach ME, Beach D
and Lowe SW: Oncogenic ras provokes premature cell senescence
associated with accumulation of p53 and p16INK4a. Cell. 88:593–602.
1997.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Nagasaka M, Hashimoto R, Inoue Y, Ishiuchi
K, Matsuno M, Itoh Y, Tokugawa M, Ohoka N, Morishita D, Mizukami H,
et al: Anti-tumorigenic activity of chrysin from oroxylum indicum
via non-genotoxic p53 activation through the ATM-Chk2 pathway.
Molecules. 23(1394)2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Vassilev LT, Vu BT, Graves B, Carvajal D,
Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et
al: In vivo activation of the p53 pathway by small-molecule
antagonists of MDM2. Science. 303:844–848. 2004.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Schmitt CA, Wang B and Demaria M:
Senescence and cancer-role and therapeutic opportunities. Nat Rev
Clin Oncol. 19:619–636. 2022.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Kong P, Yang X, Zhang Y, Dong H, Liu X, Xu
X, Zhang X, Shi Y, Hou M and Song B: Palbociclib enhances migration
and invasion of cancer cells via senescence-associated secretory
phenotype-related CCL5 in non-small-cell lung cancer. J Oncol.
2022(2260625)2022.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Nguyen HQ, To NH, Zadigue P, Kerbrat S, De
La Taille A, Le Gouvello S and Belkacemi Y: Ionizing
radiation-induced cellular senescence promotes tissue fibrosis
after radiotherapy. A review. Crit Rev Oncol Hematol. 129:13–26.
2018.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Lee JY, Reyes NS, Ravishankar S, Zhou M,
Krasilnikov M, Ringler C, Pohan G, Wilson C, Ang KKH, Wolters PJ,
et al: An in vivo screening platform identifies senolytic compounds
that target p16INK4a+ fibroblasts in lung fibrosis. J Clin Invest.
134(e173371)2024.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Zannini L, Delia D and Buscemi G: CHK2
kinase in the DNA damage response and beyond. J Mol Cell Biol.
6:442–457. 2014.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Arienti KL, Brunmark A, Axe FU, McClure K,
Lee A, Blevitt J, Neff DK, Huang L, Crawford S, Pandit CR, et al:
Checkpoint kinase inhibitors: SAR and radioprotective properties of
a series of 2-arylbenzimidazoles. J Med Chem. 48:1873–1885.
2005.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Strzeszewska A, Alster O, Mosieniak G,
Ciolko A and Sikora E: Insight into the role of PIKK family members
and NF-кB in DNAdamage-induced senescence and senescence-associated
secretory phenotype of colon cancer cells. Cell Death Dis.
9(44)2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Zhao J, Zhang L, Lu A, Han Y, Colangelo D,
Bukata C, Scibetta A, Yousefzadeh MJ, Li X, Gurkar AU, et al: ATM
is a key driver of NF-κB-dependent DNA-damage-induced senescence,
stem cell dysfunction and aging. Aging (Albany NY). 12:4688–4710.
2020.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Kang C, Xu Q, Martin TD, Li MZ, Demaria M,
Aron L, Lu T, Yankner BA, Campisi J and Elledge SJ: The DNA damage
response induces inflammation and senescence by inhibiting
autophagy of GATA4. Science. 349(aaa5612)2015.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Nayak D, Kumar A, Chakraborty S, Rasool
RU, Amin H, Katoch A, Gopinath V, Mahajan V, Zilla MK, Rah B, et
al: Inhibition of Twist1-mediated invasion by Chk2 promotes
premature senescence in p53-defective cancer cells. Cell Death
Differ. 24:1275–1287. 2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Gire V, Roux P, Wynford-Thomas D,
Brondello JM and Dulic V: DNA damage checkpoint kinase Chk2
triggers replicative senescence. EMBO J. 23:2554–2563.
2004.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Nakao M, Tanaka H and Koga T: Cellular
senescence variation by metabolic and epigenomic remodeling. Trends
Cell Biol. 30:919–922. 2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Bartek J and Lukas J: DNA damage
checkpoints: From initiation to recovery or adaptation. Curr Opin
Cell Biol. 19:238–245. 2007.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Stracker TH, Usui T and Petrini JHJ:
Taking the time to make important decisions: The checkpoint
effector kinases Chk1 and Chk2 and the DNA damage response. DNA
Repair (Amst). 8:1047–1054. 2009.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Kandhaya-Pillai R, Miro-Mur F,
Alijotas-Reig J, Tchkonia T, Schwartz S, Kirkland JL and Oshima J:
Key elements of cellular senescence involve transcriptional
repression of mitotic and DNA repair genes through the
p53-p16/RB-E2F-DREAM complex. Aging (Albany NY). 15:4012–4034.
2023.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Ha L, Ceryak S and Patierno SR: Chromium
(VI) activates ataxia telangiectasia mutated (ATM) protein.
Requirement of ATM for both apoptosis and recovery from terminal
growth arrest. J Biol Chem. 278:17885–17894. 2003.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Huart C, Fransolet M, Demazy C, Le Calvé
B, Lucas S, Michiels C and Wéra AC: Taking advantage of the
senescence-promoting effect of olaparib after X-ray and proton
irradiation using the senolytic drug, ABT-263. Cancers (Basel).
14(1460)2022.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Bunz F, Dutriaux A, Lengauer C, Waldman T,
Zhou S, Brown JP, Sedivy JM, Kinzler KW and Vogelstein B:
Requirement for p53 and p21 to sustain G2 arrest after DNA damage.
Science. 282:1497–1501. 1998.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Kastan MB and Bartek J: Cell-cycle
checkpoints and cancer. Nature. 432:316–323. 2004.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Fennell DA, Porter C, Lester J, Danson S,
Blackhall F, Nicolson M, Nixon L, Gardner G, White A, Griffiths G
and Casbard A: Olaparib maintenance versus placebo monotherapy in
patients with advanced non-small cell lung cancer (PIN): A
multicentre, randomised, controlled, phase 2 trial.
EClinicalMedicine. 52(101595)2022.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Woll P, Gaunt P, Danson S, Steele N, Ahmed
S, Mulatero C, Shah R, Bhosle J, Hodgkinson E, Watkins B and
Billingham L: Olaparib as maintenance treatment in patients with
chemosensitive small cell lung cancer (STOMP): A randomised,
double-blind, placebo-controlled phase II trial. Lung Cancer.
171:26–33. 2022.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Senra JM, Telfer BA, Cherry KE, McCrudden
CM, Hirst DG, O'Connor MJ, Wedge SR and Stratford IJ: Inhibition of
PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a
lung tumor xenograft. Mol Cancer Ther. 10:1949–1958.
2011.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Jiang Y, Verbiest T, Devery AM, Bokobza
SM, Weber AM, Leszczynska KB, Hammond EM and Ryan AJ: Hypoxia
potentiates the radiation-sensitizing effect of olaparib in human
non-small cell lung cancer xenografts by contextual synthetic
lethality. Int J Radiat Oncol Biol Phys. 95:772–781.
2016.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Coppé JP, Desprez PY, Krtolica A and
Campisi J: The senescence-associated secretory phenotype: The dark
side of tumor suppression. Annu Rev Pathol. 5:99–118.
2010.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Soto-Gamez A and Demaria M: Therapeutic
interventions for aging: The case of cellular senescence. Drug
Discov Today. 22:786–795. 2017.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Hsu CH, Altschuler SJ and Wu LF: Patterns
of early p21 dynamics determine proliferation-senescence cell fate
after chemotherapy. Cell. 178:361–373.e12. 2019.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Manila NG, Kaida A and Miura M: Kinetic
analysis of radiation-induced cell-cycle alterations in HeLa cells
expressing fluorescent ubiquitination-based cell cycle indicator
(Fucci). Radiat Environ Med. 5:16–21. 2016.
|
|
63
|
Humar B, Müller H and Scott RJ: Cell cycle
dependent DNA break increase in ataxia telangiectasia lymphoblasts
after radiation exposure. Mol Pathol. 54:347–350. 2001.PubMed/NCBI View Article : Google Scholar
|