Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
January-2026 Volume 24 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 24 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Role of the gut microbiota in the pathogenesis and therapeutic approach to osteoporosis (Review)

  • Authors:
    • Mingyue Ao
    • Xing Li
    • Chun Xiao
    • Yinhua Liu
    • Ya Zhang
    • Ru Chen
  • View Affiliations / Copyright

    Affiliations: Yunnan Institute of Traditional Chinese Medicine, Chinese Medicine Research Center, Kunming, Yunnan 650051, P.R. China, Department of Pharmacy, Jianyang Chinese Medicine Hospital, Chengdu, Sichuan 641499, P.R. China, Yunnan Institute of Traditional Chinese Medicine, Chinese Medicine Research Center, Kunming, Yunnan 650051, P.R. China
    Copyright: © Ao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 16
    |
    Published online on: November 19, 2025
       https://doi.org/10.3892/br.2025.2089
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteoporosis (OP) is a chronic systemic metabolic bone disease characterized by an imbalance between bone resorption and bone formation, resulting in a decrease in bone mass and density. Additionally, the deterioration of bone tissue microstructure increases the risk of fracture. This condition not only impairs the quality of life of patients but also threatens their safety. With the gradual aging of the population of China, the incidence of OP has been increasing annually, becoming a major public health issue threatening the health of middle‑aged and elderly individuals, particularly women in these age groups. OP has garnered increasing attention due to its high prevalence and severe complications. OP has many triggering factors and a complex pathogenesis, which are currently considered to be related to hormones, the endocrine and immune systems, and gut microbiota (GM). With the continuous development of modern medical research, the association between GM and OP has emerged as a hotspot in the field of orthopedics in recent years. Current evidence confirms that GM can influence systemic regulation through various metabolic pathways, either directly or indirectly, employing a multi‑channel, multi‑target effect on both preventing and controlling OP. However, current research still faces limitations such as the homogeneity of animal models, insufficient investigation of multi‑pathway interactions, and inadequate clinical translational evidence. Future studies should leverage multi‑omics technologies to elucidate the GM‑bone axis mechanisms in depth, thereby advancing the clinical application of traditional Chinese medicine (TCM) in the prevention and treatment of OP. The present review summarizes the associations between GM and the development of OP, as well as the application of TCM, probiotics and prebiotics in regulating GM for OP management, aiming to provide novel therapeutic strategies for its clinical prevention and treatment.
View Figures

Figure 1

Relationship between GM and BM. GM
affects bone formation and resorption by acting on the nervous,
immune, and endocrine systems, thereby regulating BM. GM, gut
microbiota; BM, bone metabolism; Th17, type helper 17; 5-HT,
5-hydroxytryptamine; IGF-1, insulin-like growth factor-1; SCFAs,
short-chain fatty acids; RANKL, receptor activator of nuclear
factor-κB ligand; OPG, osteoprotegerin.

Figure 2

Relevant mechanisms of GM in the
regulation of osteoporosis. GM mainly regulates the immune system,
produces beneficial metabolites such as SCFAs, regulates the
absorption of minerals such as calcium and phosphorus, affects the
gut-brain axis and hormone secretion, and affects bile acid
metabolism through multiple mechanisms that affect bone metabolism
and maintain bone health. GM, gut microbiota; SCFAs, short chain
fatty acids; PTH, parathyroid hormone; TMA, trimethylamine; TMAO,
Trimetlylamine oxide; 5HTR1, 5-hydroxytryptamine receptor 1; IGF-1,
insulin like growth factor-1; TGF-β, transforming growth factor-β;
FXR, farnesoid X receptor; VD, vitamin D; LCA, lithocholic acid;
Th1, type helper 1; GLP-1, glucagon-like peptide-1; TGR5, Takeda G
protein-coupled receptor 5; AMPK, adenosine 5-monophosphate
(AMP)-activated protein kinase; ROS, reactive oxygen species; PH,
potential of hydrogen; 5-HT, 5-hydroxytryptamine; TNF-α, tumor
necrosis factor-α; VDRs, Vitamin D Receptors; PKA, protein kinase
A; Cat K, Cathepsin K; IL-1, interleukin-1; ERK,
extracellular-regulated protein kinase; NFAT1, nuclear factor of
activated T-cells 1.

Figure 3

TCM regulates GM in the treatment of
osteoporosis. TCM, including single herbs, single herbs, and
compound formulas, acts on GM and its metabolites, playing a role
in anti-inflammatory effects, improving mucosal barriers, enhancing
immunity, and regulating metabolism. TCM, traditional Chinese
medicine; GM, gut microbiota.
View References

1 

Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM and Cooper C: The epidemiology of osteoporosis. Br Med Bull. 133:105–117. 2020.PubMed/NCBI View Article : Google Scholar

2 

Harris K, Zagar CA and Lawrence KV: Osteoporosis: Common questions and answers. Am Fam Physician. 107:238–246. 2023.PubMed/NCBI

3 

Rachner TD, Khosla S and Hofbauer LC: Osteoporosis: Now and the future. Lancet. 377:1276–1287. 2011.PubMed/NCBI View Article : Google Scholar

4 

Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S and Lindsay R: National Osteoporosis Foundation. Clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int. 25:2359–2381. 2014.PubMed/NCBI View Article : Google Scholar

5 

Health Quality Ontario. Vertebral augmentation involving vertebroplasty or kyphoplasty for cancer-related vertebral compression fractures: A systematic review. Ont Health Technol Assess Ser. 16:1–202. 2016.PubMed/NCBI

6 

Brzozowska MM, Sainsbury A, Eisman JA, Baldock PA and Center JR: Bariatric surgery, bone loss, obesity and possible mechanisms. Obes Rev. 14:52–67. 2013.PubMed/NCBI View Article : Google Scholar

7 

Goulet O: Potential role of the intestinal microbiota in programming health and disease. Nutr Rev. 73 (Suppl 1):S32–S40. 2015.PubMed/NCBI View Article : Google Scholar

8 

Maynard CL, Elson CO, Hatton RD and Weaver CT: Reciprocal interactions of the intestinal microbiota and immune system. Nature. 489:231–241. 2012.PubMed/NCBI View Article : Google Scholar

9 

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al: A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 464:59–65. 2010.PubMed/NCBI View Article : Google Scholar

10 

Costea PI, Hildebrand F, Arumugam M, Bäckhed F, Blaser MJ, Bushman FD, de Vos WM, Ehrlich SD, Fraser CM, Hattori M, et al: Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 3:8–16. 2018.PubMed/NCBI View Article : Google Scholar

11 

Kau AL, Ahern PP, Griffin NW, Goodman AL and Gordon JI: Human nutrition, the gut microbiome and the immune system. Nature. 474:327–336. 2011.PubMed/NCBI View Article : Google Scholar

12 

Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Bäckhed F and Ohlsson C: The gut microbiota regulates bone mass in mice. J Bone Miner Res. 27:1357–1367. 2012.PubMed/NCBI View Article : Google Scholar

13 

Ohlsson C and Sjögren K: Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 26:69–74. 2015.PubMed/NCBI View Article : Google Scholar

14 

Espinoza JL, Elbadry MI and Nakao S: An altered gut microbiota may trigger autoimmune-mediated acquired bone marrow failure syndromes. Clin Immunol. 171:62–64. 2016.PubMed/NCBI View Article : Google Scholar

15 

Fransen F, van Beek AA, Borghuis T, Aidy SE, Hugenholtz F, van der Gaast-de Jongh C, Savelkoul HFJ, De Jonge MI, Boekschoten MV, Smidt H, et al: Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol. 8(1385)2017.PubMed/NCBI View Article : Google Scholar

16 

Lerner A, Neidhöfer S and Matthias T: The gut microbiome feelings of the brain: A perspective for non-microbiologists. Microorganisms. 5(66)2017.PubMed/NCBI View Article : Google Scholar

17 

McCabe L, Britton RA and Parameswaran N: Prebiotic and probiotic regulation of bone health: Role of the intestine and its microbiome. Curr Osteoporos Rep. 13:363–371. 2015.PubMed/NCBI View Article : Google Scholar

18 

Villa CR, Ward WE and Comelli EM: Gut microbiota-bone axis. Crit Rev Food Sci Nutr. 57:1664–1672. 2017.PubMed/NCBI View Article : Google Scholar

19 

Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK and Bultman SJ: The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13:517–526. 2011.PubMed/NCBI View Article : Google Scholar

20 

Weaver CM: Diet, gut microbiome, and bone health. Curr Osteoporos Rep. 13:125–130. 2015.PubMed/NCBI View Article : Google Scholar

21 

Anantharaju A and Klamut M: Small intestinal bacterial overgrowth: A possible risk factor for metabolic bone disease. Nutr Rev. 61:132–135. 2003.PubMed/NCBI View Article : Google Scholar

22 

Stotzer PO, Johansson C, Mellström D, Lindstedt G and Kilander AF: Bone mineral density in patients with small intestinal bacterial overgrowth. Hepatogastroenterology. 50:1415–1418. 2003.PubMed/NCBI

23 

Ma S, Qin J, Hao Y and Fu L: Association of gut microbiota composition and function with an aged rat model of senile osteoporosis using 16s rrna and metagenomic sequencing analysis. Aging (Albany NY). 12:10795–10808. 2020.PubMed/NCBI View Article : Google Scholar

24 

Ma S, Qin J, Hao Y, Shi Y and Fu L: Structural and functional changes of gut microbiota in ovariectomized rats and their correlations with altered bone mass. Aging (Albany NY). 12:10736–10753. 2020.PubMed/NCBI View Article : Google Scholar

25 

Lin H, Liu T, Li X, Gao X, Wu T and Li P: The role of gut microbiota metabolite trimethylamine N-oxide in functional impairment of bone marrow mesenchymal stem cells in osteoporosis disease. Ann Transl Med. 8(1009)2020.PubMed/NCBI View Article : Google Scholar

26 

Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, et al: Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 126:2049–2063. 2016.PubMed/NCBI View Article : Google Scholar

27 

Nzakizwanayo J, Dedi C, Standen G, Macfarlane WM, Patel BA and Jones BV: Escherichia coli nissle 1917 enhances bioavailability of serotonin in gut tissues through modulation of synthesis and clearance. Sci Rep. 5(17324)2015.PubMed/NCBI View Article : Google Scholar

28 

Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, Parameswaran N and McCabe LR: Probiotic l. Reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 229:1822–1830. 2014.PubMed/NCBI View Article : Google Scholar

29 

Zhang J, Motyl KJ, Irwin R, MacDougald OA, Britton RA and McCabe LR: Loss of bone and wnt10b expression in male type 1 diabetic mice is blocked by the probiotic lactobacillus reuteri. Endocrinology. 156:3169–3182. 2015.PubMed/NCBI View Article : Google Scholar

30 

He J, Xu S, Zhang B, Xiao C, Chen Z, Si F, Fu J, Lin X, Zheng G, Yu G and Chen J: Gut microbiota and metabolite alterations associated with reduced bone mineral density or bone metabolic indexes in postmenopausal osteoporosis. Aging (Albany NY). 12:8583–8604. 2020.PubMed/NCBI View Article : Google Scholar

31 

Wang J, Wang Y, Gao W, Wang B, Zhao H, Zeng Y, Ji Y and Hao D: Diversity analysis of gut microbiota in osteoporosis and osteopenia patients. PeerJ. 5(e3450)2017.PubMed/NCBI View Article : Google Scholar

32 

Huang R, Liu P, Bai Y, Huang J, Pan R, Li H, Su Y, Zhou Q, Ma R, Zong S and Zeng G: Changes in the gut microbiota of osteoporosis patients based on 16SrRNA gene sequencing:a systematic review and meta-analysis. J Zhejiang Univ Sci B. 23:1002–1022. 2022.PubMed/NCBI View Article : Google Scholar

33 

Li C, Huang Q, Yang R, Dai Y, Zeng Y, Tao L, Li X, Zeng J and Wang Q: Gut microbiota composition and bone mineral loss-epidemiologic evidence from individuals in Wuhan, China. Osteoporos Int. 30:1003–1013. 2019.PubMed/NCBI View Article : Google Scholar

34 

Sun M, Liu Y, Tang S, Li Y, Zhang R and Mao L: Characterization of intestinal flora in osteoporosis patients based on 16S rDNA sequencing. Int J Gen Med. 17:4311–4324. 2024.PubMed/NCBI View Article : Google Scholar

35 

Das M, Cronin O, Keohane DM, Cormac EM, Nugent H, Nugent M, Molloy C, O'Toole PW, Shanahan F, Molloy MG and Jeffery IB: Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatology (Oxford). 58:2295–2304. 2019.PubMed/NCBI View Article : Google Scholar

36 

Ling CW, Miao ZL, Xiao ML, Zhou H, Jiang Z, Fu Y, Xiong F, Zuo LS, Liu YP, Wu YY, et al: The association of gut microbiota with osteoporosis is mediated by amino acid metabolism: multiomics in a large cohort. J Clin Endocrinol Metab. 106:e3852–e3864. 2021.PubMed/NCBI View Article : Google Scholar

37 

Ni JJ, Yang XL, Zhang H, Xu Q, Wei XT, Feng GJ, Zhao M, Pei YF and Zhang L: Assessing causal relationship from gut microbiota to heel bone mineral density. Bone. 143(115652)2021.PubMed/NCBI View Article : Google Scholar

38 

Zeng HQ, Li G, Zhou KX, Li AD, Liu W and Zhang Y: Causal link between gut microbiota and osteoporosis analyzed via Mendelian randomization. Eur Rev Med Pharmacol Sci. 28:542–555. 2024.PubMed/NCBI View Article : Google Scholar

39 

Wei M, Li C, Dai Y, Zhou H, Cui Y, Zeng Y, Huang Q and Wang Q: High-throughput absolute quantification sequencing revealed osteoporosis-related gut microbiota alterations in Han Chinese elderly. Front Cell infect Microbiol. 11(630372)2021.PubMed/NCBI View Article : Google Scholar

40 

Rettedal EA, Ilesanmi-Oyelere BL, Roy NC, Coad J and Kruger MC: The gut microbiome is altered in postmenopausal women with osteoporosis and osteopenia. JBMR Plus. 5(e10452)2021.PubMed/NCBI View Article : Google Scholar

41 

Yang X, Chang T, Yuan Q, Wei W, Wang P, Song X and Yuan H: Changes in the composition of gut and vaginal microbiota in patients with postmenopausal osteoporosis. Front Immunol. 13(930244)2022.PubMed/NCBI View Article : Google Scholar

42 

Xu X, Jia X, Mo L, Liu C, Zheng L, Yuan Q and Zhou X: Intestinal microbiota: A potential target for the treatment of postmenopausal osteoporosis. Bone Res. 5(17046)2017.PubMed/NCBI View Article : Google Scholar

43 

Kuo YJ, Chen CJ, Hussain B, Tsai HC, Hsu GJ, Chen JS, Asif A, Fan CW and Hsu BM: Inferring associated with osteopenia and osteoporosis in Taiwanese postmenopausal bacterial community interactions and functionalities women. Microorganisms. 11(234)2023.PubMed/NCBI View Article : Google Scholar

44 

Zhang YW, Li YJ, Lu PP, Dai GC, Chen XX and Rui YF: The modulatory effect and implication of gut microbiota on osteoporosis: from the perspective of ‘brain-gut-bone’ axis. Food Funct. 12:5703–5718. 2021.PubMed/NCBI View Article : Google Scholar

45 

Li K, Jiang Y, Wang N, Lai L, Xu S, Xia T, Yue X and Xin H: Traditional Chinese medicine in osteoporosis intervention and the related regulatory mechanismof gut microbiome. Am J Chin Med. 51:1957–1981. 2023.PubMed/NCBI View Article : Google Scholar

46 

Report of the dietary guidelines advisory committee dietary guidelines for americans, 1995. Nutr Rev. 53:376–379. 1995.PubMed/NCBI View Article : Google Scholar

47 

Hirata Y, Egea L, Dann SM, Eckmann L and Kagnoff MF: Gm-csf-facilitated dendritic cell recruitment and survival govern the intestinal mucosal response to a mouse enteric bacterial pathogen. Cell Host Microbe. 7:151–163. 2010.PubMed/NCBI View Article : Google Scholar

48 

Ohta A, Motohashi Y, Sakai K, Hirayama M, Adachi T and Sakuma K: Dietary fructooligosaccharides increase calcium absorption and levels of mucosal calbindin-d9k in the large intestine of gastrectomized rats. Scand J Gastroenterol. 33:1062–1068. 1998.PubMed/NCBI View Article : Google Scholar

49 

Raveschot C, Coutte F, Frémont M, Vaeremans M, Dugersuren J, Demberel S, Drider D, Dhulster P, Flahaut C and Cudennec B: Probiotic lactobacillus strains from mongolia improve calcium transport and uptake by intestinal cells in vitro. Food Res Int. 133(109201)2020.PubMed/NCBI View Article : Google Scholar

50 

Rillaerts K, Verlinden L, Doms S, Carmeliet G and Verstuyf A: A comprehensive perspective on the role of vitamin D signaling in maintaining bone homeostasis: Lessons from animal models. J Steroid Biochem Mol Biol. 250(106732)2025.PubMed/NCBI View Article : Google Scholar

51 

Lin HR, Xu F, Chen D, Xie K, Yang Y, Hu W, Li BY, Jiang Z, Liang Y, Tang XY, et al: The gut microbiota-bile acid axis mediates the beneficial associations between plasma vitamin d and metabolic syndrome in chinese adults: A prospective study. Clin Nutr. 42:887–898. 2023.PubMed/NCBI View Article : Google Scholar

52 

Castaneda M, Strong JM, Alabi DA and Hernandez CJ: The gut microbiome and bone strength. Curr Osteoporos Rep. 18:677–683. 2020.PubMed/NCBI View Article : Google Scholar

53 

Schoultz I and Keita ÅV: The intestinal barrier and current techniques for the assessment of gut permeability. Cells. 9(1909)2020.PubMed/NCBI View Article : Google Scholar

54 

Cardoso-Silva D, Delbue D, Itzlinger A, Moerkens R, Withoff S, Branchi F and Schumann M: Intestinal barrier function in gluten-related disorders. Nutrients. 11(2325)2019.PubMed/NCBI View Article : Google Scholar

55 

Smith BJ, Lerner MR, Bu SY, Lucas EA, Hanas JS, Lightfoot SA, Postier RG, Bronze MS and Brackett DJ: Systemic bone loss and induction of coronary vessel disease in a rat model of chronic inflammation. Bone. 38:378–386. 2006.PubMed/NCBI View Article : Google Scholar

56 

Park OJ, Kim J, Yang J, Yun CH and Han SH: Muramyl dipeptide, a shared structural motif of peptidoglycans, is a novel inducer of bone formation through induction of Runx2. J Bone Miner Res. 34(975)2019.PubMed/NCBI View Article : Google Scholar

57 

Ma S, Wang N, Zhang P, Wu W and Fu L: Fecal microbiota transplantation mitigates bone loss by improving gut microbiome composition and gut barrier function in aged rats. PeerJ. 9(e12293)2021.PubMed/NCBI View Article : Google Scholar

58 

Xiao HH, Lu L, Poon CC, Chan CO, Wang LJ, Zhu YX, Zhou LP, Cao S, Yu WX, Wong KY, et al: The lignan-rich fraction from sambucus williamsii hance ameliorates dyslipidemia and insulin resistance and modulates gut microbiota composition in ovariectomized rats. Biomed Pharmacother. 137(111372)2021.PubMed/NCBI View Article : Google Scholar

59 

AlQranei MS, Senbanjo LT, Aljohani H, Hamza T and Chellaiah MA: Lipopolysaccharide-tlr-4 axis regulates osteoclastogenesis independent of rankl/rank signaling. BMC Immunol. 22(23)2021.PubMed/NCBI View Article : Google Scholar

60 

Yuan S and Shen J: Bacteroides vulgatus diminishes colonic microbiota dysbiosis ameliorating lumbar bone loss in ovariectomized mice. Bone. 142(115710)2021.PubMed/NCBI View Article : Google Scholar

61 

Schepper JD, Collins F, Rios-Arce ND, Kang HJ, Schaefer L, Gardinier JD, Raghuvanshi R, Quinn RA, Britton R, Parameswaran N and McCabe LR: Involvement of the gut microbiota and barrier function in glucocorticoid-induced osteoporosis. J Bone Miner Res. 35:801–820. 2020.PubMed/NCBI View Article : Google Scholar

62 

Locantore P, Del Gatto V, Gelli S, Paragliola RM and Pontecorvi A: The interplay between immune system and microbiota in osteoporosis. Mediators Inflamm. 2020(3686749)2020.PubMed/NCBI View Article : Google Scholar

63 

Cline-Smith A, Axelbaum A, Shashkova E, Chakraborty M, Sanford J, Panesar P, Peterson M, Cox L, Baldan A, Veis D and Aurora R: Ovariectomy activates chronic low-grade inflammation mediated by memory T cells, which promotes osteoporosis in mice. J Bone Miner Res. 35:1174–1187. 2020.PubMed/NCBI View Article : Google Scholar

64 

Tsukasaki M and Takayanagi H: Osteoimmunology: Evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol. 19:626–642. 2019.PubMed/NCBI View Article : Google Scholar

65 

Charles JF and Nakamura MC: Bone and the innate immune system. Curr Osteoporos Rep. 12:1–8. 2014.PubMed/NCBI View Article : Google Scholar

66 

Hao ML, Wang GY, Zuo XQ, Qu CJ, Yao BC and Wang DL: Gut microbiota: An overlooked factor that plays a significant role in osteoporosis. J Int Med Res. 47:4095–4103. 2019.PubMed/NCBI View Article : Google Scholar

67 

Uluçkan Ö, Jimenez M, Karbach S, Jeschke A, Graña O, Keller J, Busse B, Croxford AL, Finzel S, Koenders M, et al: Chronic skin inflammation leads to bone loss by il-17-mediated inhibition of wnt signaling in osteoblasts. Sci Transl Med. 8(330ra37)2016.PubMed/NCBI View Article : Google Scholar

68 

Quach D and Britton RA: Gut microbiota and bone health. Adv Exp Med Biol. 1033:47–58. 2017.PubMed/NCBI View Article : Google Scholar

69 

Campbell JE and Drucker DJ: Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17:819–837. 2013.PubMed/NCBI View Article : Google Scholar

70 

Mabilleau G: Incretins and bone: Friend or foe? Curr Opin Pharmacol. 22:72–78. 2015.PubMed/NCBI View Article : Google Scholar

71 

Baker JM, Al-Nakkash L and Herbst-Kralovetz MM: Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas. 103:45–53. 2017.PubMed/NCBI View Article : Google Scholar

72 

Wang Y, Cheng Z, Elalieh HZ, Nakamura E, Nguyen MT, Mackem S, Clemens TL, Bikle DD and Chang W: Igf-1r signaling in chondrocytes modulates growth plate development by interacting with the pthrp/ihh pathway. J Bone Miner Res. 26:1437–1446. 2011.PubMed/NCBI View Article : Google Scholar

73 

Guo X, Zhong K, Zhang J, Hui L, Zou L, Xue H, Guo J, Zheng S, Huang D and Tan M: Gut microbiota can affect bone quality by regulating serum estrogen levels. Am J Transl Res. 14:6043–6055. 2022.PubMed/NCBI

74 

Ren H, Sun R and Wang J: Relationship of melatonin level, oxidative stress and inflammatory status with osteoporosis in maintenance hemodialysis of chronic renal failure. Exp Ther Med. 15:5183–5188. 2018.PubMed/NCBI View Article : Google Scholar

75 

Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J and Nanes MS: Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology. 141:3956–3964. 2000.PubMed/NCBI View Article : Google Scholar

76 

Guo M, Liu H, Yu Y, Zhu X, Xie H, Wei C, Mei C, Shi Y, Zhou N, Qin K and Li W: Lactobacillus rhamnosus GG ameliorates osteoporosis in ovariectomized rats by regulating the Th17/Treg balance and gut microbiota structure. Gut Microbes. 15(2190304)2023.PubMed/NCBI View Article : Google Scholar

77 

Yang X, Zhou F, Yuan P, Dou G, Liu X, Liu S, Wang X, Jin R, Dong Y, Zhou J, et al: T cell-depleting nanoparticles ameliorate bone loss by reducing activated T cells and regulating the Treg/Th17 balance. Bioact Mater. 6:3150–3163. 2021.PubMed/NCBI View Article : Google Scholar

78 

Lorenzo J: From the gut to bone: Connecting the gut microbiota with Th17 T lymphocytes and postmenopausal osteoporosis. J Clin Invest. 131(e146619)2021.PubMed/NCBI View Article : Google Scholar

79 

Ohara TE and Hsiao EY: Microbiota-neuroepithelial signalling across the gut-brain axis. Nat Rev Microbiol. 23:371–384. 2025.PubMed/NCBI View Article : Google Scholar

80 

Mayer EA, Nance K and Chen S: The gut-brain axis. Annu Rev Med. 73:439–453. 2022.PubMed/NCBI View Article : Google Scholar

81 

Hayes CL, Dong J, Galipeau HJ, Jury J, McCarville J, Huang X, Wang XY, Naidoo A, Anbazhagan AN, Libertucci J, et al: Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci Rep. 8(14184)2018.PubMed/NCBI View Article : Google Scholar

82 

Treangen TJ, Wagner J, Burns MP and Villapol S: Traumatic brain injury in mice induces acute bacterial dysbiosis within the fecal microbiome. Front Immunol. 9(2757)2018.PubMed/NCBI View Article : Google Scholar

83 

Queipo-Ortuño MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM, Cardona F, Casanueva F and Tinahones FJ: Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One. 8(e65465)2013.PubMed/NCBI View Article : Google Scholar

84 

Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, et al: A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 138:976–989. 2009.PubMed/NCBI View Article : Google Scholar

85 

Bliziotes M, Eshleman A, Burt-Pichat B, Zhang XW, Hashimoto J, Wiren K and Chenu C: Serotonin transporter and receptor expression in osteocytic MLO-Y4 cells. Bone. 39:1313–1321. 2006.PubMed/NCBI View Article : Google Scholar

86 

Yadav VK, Balaji S, Suresh PS, Liu XS, Lu X, Li Z, Guo XE, Mann JJ, Balapure AK, Gershon MD, et al: Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med. 16:308–312. 2010.PubMed/NCBI View Article : Google Scholar

87 

Chabbi-Achengli Y, Coudert AE, Callebert J, Geoffroy V, Côté F, Collet C and de Vernejoul MC: Decreased osteoclastogenesis in serotonin-deficient mice. Proc Natl Acad Sci USA. 109:2567–2572. 2012.PubMed/NCBI View Article : Google Scholar

88 

Westbroek I, van der Plas A, de Rooij KE, Klein-Nulend J and Nijweide PJ: Expression of serotonin receptors in bone. J Biol Chem. 276:28961–28968. 2001.PubMed/NCBI View Article : Google Scholar

89 

Mödder UI, Achenbach SJ, Amin S, Riggs BL, Melton LJ III and Khosla S: Relation of serum serotonin levels to bone density and structural parameters in women. J Bone Miner Res. 25:415–422. 2010.PubMed/NCBI View Article : Google Scholar

90 

Cummings JH and Macfarlane GT: The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol. 70:443–459. 1991.PubMed/NCBI View Article : Google Scholar

91 

Nagpal R, Kumar M, Yadav AK, Hemalatha R, Yadav H, Marotta F and Yamashiro Y: Gut microbiota in health and disease: An overview focused on metabolic inflammation. Benef Microbes. 7:181–194. 2016.PubMed/NCBI View Article : Google Scholar

92 

Montalvany-Antonucci CC, Duffles LF, de Arruda JAA, Zicker MC, de Oliveira S, Macari S, Garlet GP, Madeira MFM, Fukada SY, Andrade I Jr, et al: Short-chain fatty acids and FFAR2 as suppressors of bone resorption. Bone. 125:112–121. 2019.PubMed/NCBI View Article : Google Scholar

93 

Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN and Garrett WS: The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 341:569–573. 2013.PubMed/NCBI View Article : Google Scholar

94 

Feng B, Lu J, Han Y, Han Y, Qiu X and Zeng Z: The role of short-chain fatty acids in the regulation of osteoporosis: New perspectives from gut microbiota to bone health: A review. Medicine (Baltimore). 103(e39471)2024.PubMed/NCBI View Article : Google Scholar

95 

Charles JF, Ermann J and Aliprantis AO: The intestinal microbiome and skeletal fitness: Connecting bugs and bones. Clin Immunol. 159:163–169. 2015.PubMed/NCBI View Article : Google Scholar

96 

Lucas S, Omata Y, Hofmann J, Böttcher M, Iljazovic A, Sarter K, Albrecht O, Schulz O, Krishnacoumar B, Krönke G, et al: Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun. 9(55)2018.PubMed/NCBI View Article : Google Scholar

97 

Yonezawa T, Kobayashi Y and Obara Y: Short-chain fatty acids induce acute phosphorylation of the p38 mitogen-activated protein kinase/heat shock protein 27 pathway via gpr43 in the mcf-7 human breast cancer cell line. Cell Signal. 19:185–193. 2007.PubMed/NCBI View Article : Google Scholar

98 

Li P, Ji B, Luo H, Sundh D, Lorentzon M and Nielsen J: One-year supplementation with lactobacillus reuteri atcc pta 6475 counteracts a degradation of gut microbiota in older women with low bone mineral density. NPJ Biofilms Microbiomes. 8(84)2022.PubMed/NCBI View Article : Google Scholar

99 

Winston JA and Theriot CM: Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 11:158–171. 2020.PubMed/NCBI View Article : Google Scholar

100 

Zheng XQ, Wang DB, Jiang YR and Song CL: Gut microbiota and microbial metabolites for osteoporosis. Gut Microbes. 17(2437247)2025.PubMed/NCBI View Article : Google Scholar

101 

Hernandez CJ, Guss JD, Luna M and Goldring SR: Links between the microbiome and bone. J Bone Miner Res. 31:1638–1646. 2016.PubMed/NCBI View Article : Google Scholar

102 

Zou W and Bar-Shavit Z: Dual modulation of osteoclast differentiation by lipopolysaccharide. J Bone Miner Res. 17:1211–1218. 2002.PubMed/NCBI View Article : Google Scholar

103 

Yang K, Xu J, Fan M, Tu F, Wang X, Ha T, Williams DL and Li C: Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-κB activation via GPR81-mediated signaling. Front Immunol. 11(587913)2020.PubMed/NCBI View Article : Google Scholar

104 

Huang J, Yuan L, Wang X, Zhang TL and Wang K: Icaritin and its glycosides enhance osteoblastic, but suppress osteoclastic, differentiation and activity in vitro. Life Sci. 81:832–840. 2007.PubMed/NCBI View Article : Google Scholar

105 

Li L, Chen B, Zhu R, Tian Y, Liu C, Jia Q, Wang L, Tang J, Zhao D, Mo F, et al: Fructus ligustri lucidi preserves bone quality through the regulation of gut microbiota diversity, oxidative stress, TMAO and sirt6 levels in aging mice. Aging (Albany NY). 11:9348–9368. 2019.PubMed/NCBI View Article : Google Scholar

106 

Zhao X, Wang Y, Nie Z, Han L, Zhong X, Yan X and Gao X: Eucommia ulmoides leaf extract alters gut microbiota composition, enhances short-chain fatty acids production, and ameliorates osteoporosis in the senescence-accelerated mouse p6 (samp6) model. Food Sci Nutr. 8:4897–4906. 2020.PubMed/NCBI View Article : Google Scholar

107 

Zhao X, Ai J, Mao H and Gao X: Effects of Eclipta prostrata on gut microbiota of SAMP6 mice with osteoporosis. J Med Microbiol. 68:402–416. 2019.PubMed/NCBI View Article : Google Scholar

108 

Kerezoudi EN, Mitsou EK, Gioti K, Terzi E, Avgousti I, Panagiotou A, Koutrotsios G, Zervakis GI, Mountzouris KC, Tenta R and Kyriacou A: Fermentation of pleurotus ostreatus and ganoderma lucidum mushrooms and their extracts by the gut microbiota of healthy and osteopenic women: Potential prebiotic effect and impact of mushroom fermentation products on human osteoblasts. Food Funct. 12:1529–1546. 2021.PubMed/NCBI View Article : Google Scholar

109 

Liu J, Liu J, Liu L, Zhang G and Peng X: Reprogrammed intestinal functions in astragalus polysaccharide-alleviated osteoporosis: Combined analysis of transcriptomics and DNA methylomics demonstrates the significance of the gut-bone axis in treating osteoporosis. Food Funct. 12:4458–4470. 2021.PubMed/NCBI View Article : Google Scholar

110 

Li ZX, Zhuo JL, Yang N, Gao MB, Qu ZH and Han T: Effect of Lycium barbarum polysaccharide on osteoblast proliferation and differentiation in postmenopausal osteoporosis. Int J Biol Macromol. 271(132415)2024.PubMed/NCBI View Article : Google Scholar

111 

Jin S, Liu X, Zheng Y, Zhu T, Tong D, Zhang R and Liu Y: Genistein supplementation alleviates bone damage by regulating gut microbiota composition and metabolism in obesity and estrogen decline. Food Funct. 16:7900–7918. 2025.PubMed/NCBI View Article : Google Scholar

112 

Li B, Liu M, Wang Y, Gong S, Yao W, Li W, Gao H and Wei M: Puerarin improves the bone micro-environment to inhibit OVX-induced osteoporosis via modulating SCFAs released by the gut microbiota and repairing intestinal mucosal integrity. Biomed Pharmacother. 132(110923)2020.PubMed/NCBI View Article : Google Scholar

113 

Mei F, Meng K, Gu Z, Yun Y, Zhang W, Zhang C, Zhong Q, Pan F, Shen X, Xia G and Chen H: Arecanut (areca catechu l.) seed polyphenol-ameliorated osteoporosis by altering gut microbiome via LYZ and the immune system in estrogen-deficient rats. J Agric Food Chem. 69:246–258. 2021.PubMed/NCBI View Article : Google Scholar

114 

Zhang Z, Chen Y, Xiang L, Wang Z, Xiao GG and Hu J: Effect of curcumin on the diversity of gut microbiota in ovariectomized rats. Nutrients. 9(1146)2017.PubMed/NCBI View Article : Google Scholar

115 

Jia X, Jia L, Mo L, Yuan S, Zheng X, He J, Chen V, Guo Q, Zheng L, Yuan Q, et al: Berberine ameliorates periodontal bone loss by regulating gut microbiota. J Dent Res. 98:107–116. 2019.PubMed/NCBI View Article : Google Scholar

116 

Wang N, Yang H, Tong X, Xu T, Zhao J and Li YK: Ginkgolide B modulates the gut-bone axis to ameliorate bone loss in ovariectomized mice. J Orthop Surg Res. 20(804)2025.PubMed/NCBI View Article : Google Scholar

117 

Dou J, Liang Z, Liu J, Liu N, Hu X, Tao S, Zhen X, Yang L, Zhang J and Jiang G: Quinoa alleviates osteoporosis in ovariectomized rats by regulating gut microbiota imbalance. J Sci Food Agric. 104:5052–5063. 2024.PubMed/NCBI View Article : Google Scholar

118 

Hao F, Guo M, Zhao Y, Zhu X, Hu X, Zhu W, Mei C, Zhou N, Qin K, Zhu H and Li W: Qing'e Pills ameliorates osteoporosis by regulating gut microbiota and Th17/Treg balance in ovariectomized rats. J Inflamm Res. 18:7611–7629. 2025.PubMed/NCBI View Article : Google Scholar

119 

Xie H, Hua Z, Guo M, Lin S, Zhou Y, Weng Z, Wu L, Chen Z, Xu Z and Li W: Gut microbiota and metabonomics used to explore the mechanism of Qing'e Pills in alleviating osteoporosis. Pharm Biol. 60:785–800. 2022.PubMed/NCBI View Article : Google Scholar

120 

Sun P, Zhang C, Huang Y, Yang J, Zhou F, Zeng J and Lin Y: Jiangu granule ameliorated OVX rats bone loss by modulating gut microbiota-SCFAs-Treg/Th17 axis. Biomed Pharmacother. 150(112975)2022.PubMed/NCBI View Article : Google Scholar

121 

Li J, HaomingYou Hu Y, Li R, Ouyang T, Ran Q, Zhang G and Huang Y: Effects of traditional Chinese medicine Zuo-Gui-Wan on gut microbiota in an osteoporotic mouse model. J Orthop Surg Res. 20(128)2025.PubMed/NCBI View Article : Google Scholar

122 

Chen J, Ng S, Xu P, Chen S, Li S, Chen X, Xie L and Ge J: Herbal formula xuling-jiangu improves bone metabolic balance in rats with ovariectomy-induced osteoporosis via the gut-bone axis. Front Pharmacol. 15(1505231)2024.PubMed/NCBI View Article : Google Scholar

123 

Li X, Li N, Pei H, Ren Y, Li L, Sun L, Wu Y, Yuan J and Ma Y: Zhuanggu Shubi ointment mediated the characteristic bacteria-intestinal mucosal barrier-bone metabolism axis to intervene in postmenopausal osteoporosis. Front Cell Infect Microbiol. 14(1500111)2024.PubMed/NCBI View Article : Google Scholar

124 

Gao MX, Tang XY, Zhang FX, Yao ZH, Yao XS and Dai Y: Biotransformation and metabolic profile of Xian-Ling-Gu-Bao capsule, a traditional chinese medicine prescription, with rat intestinal microflora by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis. Biomed Chromatogr. 32:2018.PubMed/NCBI View Article : Google Scholar

125 

Tang XY, Gao MX, Xiao HH, Dai ZQ, Yao ZH, Dai Y and Yao XS: Effects of Xian-Ling-Gu-Bao capsule on the gut microbiota in ovariectomized rats: Metabolism and modulation. J Chromatogr B Analyt Technol Biomed Life Sci. 1176(122771)2021.PubMed/NCBI View Article : Google Scholar

126 

Liang Q, Du H, Wang Y, Lai Y, Ren M, Wei X and Xiong Z: Integrated metabolomics and gut microbiota analysis to explore the protective effects of Gushudan on postmenopausal osteoporosis rats via gut-bone axis. J Pharm Biomed Anal. 263(116942)2025.PubMed/NCBI View Article : Google Scholar

127 

Chen XC, Li WJ, Zeng JY, Dong YP, Qiu JM, Zhang B, Wang DY, Liu J and Lyu ZH: Shengu granules ameliorate ovariectomy-induced osteoporosis by the gut-bone-immune axis. Front Microbiol. 15(1320500)2024.PubMed/NCBI View Article : Google Scholar

128 

Ko CH, Siu WS, Lau CP, Lau CB, Fung KP and Leung PC: Osteoprotective effects of fructus ligustri lucidi aqueous extract in aged ovariectomized rats. Chin Med. 5(39)2010.PubMed/NCBI View Article : Google Scholar

129 

Zhang Y, Leung PC, Che CT, Chow HK, Wu CF and Wong MS: Improvement of bone properties and enhancement of mineralization by ethanol extract of fructus ligustri lucidi. Br J Nutr. 99:494–502. 2008.PubMed/NCBI View Article : Google Scholar

130 

Chen B, Wei J, Zhu R, Zhang H, Xia B, Liu Y, Dai X, Ye Z, Tian Y, Li R, et al: Fructus Ligustri Lucidi aqueous extract promotes calcium balance and short-chain fatty acids production in ovariectomized rats. J Ethnopharmacol. 279(114348)2021.PubMed/NCBI View Article : Google Scholar

131 

Li XL, Wang L, Bi XL, Chen BB and Zhang Y: Gushukang exerts osteopreserve effects by regulating vitamin D and calcium metabolism in ovariectomized mice. J Bone Miner Metab. 37:224–234. 2019.PubMed/NCBI View Article : Google Scholar

132 

Sang H, Xie Y, Su X, Zhang M, Zhang Y, Liu K and Wang J: Mushroom bulgaria inquinans modulates host immunological response and gut microbiota in mice. Front Nutr. 7(144)2020.PubMed/NCBI View Article : Google Scholar

133 

Tyagi AM, Yu M, Darby TM, Vaccaro C, Li JY, Owens JA, Hsu E, Adams J, Weitzmann MN, Jones RM and Pacifici R: The microbial metabolite butyrate stimulates bone formation via t regulatory cell-mediated regulation of WNT10B expression. Immunity. 49:1116–1131.e7. 2018.PubMed/NCBI View Article : Google Scholar

134 

Xiao HH, Zhu YX, Lu L, Zhou LP, Poon CC, Chan CO, Wang LJ, Cao S, Yu WX, Wong KY, et al: The lignan-rich fraction from sambucus williamsii hance exerts bone protective effects via altering circulating serotonin and gut microbiota in rats. Nutrients. 14(4718)2022.PubMed/NCBI View Article : Google Scholar

135 

Lei M, Hua LM and Wang DW: The effect of probiotic treatment on elderly patients with distal radius fracture: A prospective double-blind, placebo-controlled randomised clinical trial. Benef Microbes. 7:631–637. 2016.PubMed/NCBI View Article : Google Scholar

136 

Takimoto T, Hatanaka M, Hoshino T, Takara T, Tanaka K, Shimizu A, Morita H and Nakamura T: Effect of bacillus subtilis c-3102 on bone mineral density in healthy postmenopausal japanese women: A randomized, placebo-controlled, double-blind clinical trial. Biosci Microbiota Food Health. 37:87–96. 2018.PubMed/NCBI View Article : Google Scholar

137 

Ohlsson C, Engdahl C, Fåk F, Andersson A, Windahl SH, Farman HH, Movérare-Skrtic S, Islander U and Sjögren K: Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One. 9(e92368)2014.PubMed/NCBI View Article : Google Scholar

138 

Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, et al: Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 351:854–857. 2016.PubMed/NCBI View Article : Google Scholar

139 

McCabe LR, Irwin R, Schaefer L and Britton RA: Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol. 228:1793–1798. 2013.PubMed/NCBI View Article : Google Scholar

140 

Avella MA, Place A, Du SJ, Williams E, Silvi S, Zohar Y and Carnevali O: Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the gnRH and IGF systems. PLoS One. 7(e45572)2012.PubMed/NCBI View Article : Google Scholar

141 

Whisner CM, Martin BR, Schoterman MH, Nakatsu CH, McCabe LD, McCabe GP, Wastney ME, van den Heuvel EG and Weaver CM: Galacto-oligosaccharides increase calcium absorption and gut bifidobacteria in young girls: A double-blind cross-over trial. Br J Nutr. 110:1292–1303. 2013.PubMed/NCBI View Article : Google Scholar

142 

Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G and Ellis KJ: A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr. 82:471–476. 2005.PubMed/NCBI View Article : Google Scholar

143 

Whisner CM, Martin BR, Nakatsu CH, Story JA, MacDonald-Clarke CJ, McCabe LD, McCabe GP and Weaver CM: Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: A randomized dose-response trial in free-living pubertal females. J Nutr. 146:1298–1306. 2016.PubMed/NCBI View Article : Google Scholar

144 

García-Vieyra MI, Del Real A and López MG: Agave fructans: Their effect on mineral absorption and bone mineral content. J Med Food 2014. 17:1247–1255. 2014.PubMed/NCBI View Article : Google Scholar

145 

Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A, McCabe LD, McCabe GP, Duignan S, Schoterman MH and van den Heuvel EG: Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J Agric Food Chem. 59:6501–6510. 2011.PubMed/NCBI View Article : Google Scholar

146 

Levi YLAS, Novais GS, Dias RB, Andraus RAC, Messora MR, Neto HB, Ervolino E, Santinoni CS and Maia LP: Effects of the prebiotic mannan oligosaccharide on the experimental periodontitis in rats. J Clin Periodontol. 45:1078–1089. 2018.PubMed/NCBI View Article : Google Scholar

147 

Scholz-Ahrens KE, Açil Y and Schrezenmeir J: Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats. Br J Nutr. 88:365–377. 2002.PubMed/NCBI View Article : Google Scholar

148 

Bueno-Vargas P, Manzano M, Diaz-Castro J, López-Aliaga I, Rueda R and López-Pedrosa JM: Maternal dietary supplementation with oligofructose-enriched inulin in gestating/lactating rats preserves maternal bone and improves bone microarchitecture in their offspring. PLoS One. 11(e0154120)2016.PubMed/NCBI View Article : Google Scholar

149 

Zhang YW, Cao MM, Li YJ, Li YJ, Lu PP, Dai GC, Zhang M, Wang H and Rui YF: Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function. J Orthop Translat. 37:46–60. 2022.PubMed/NCBI View Article : Google Scholar

150 

Ma P, Wang R, Chen H, Zheng J, Yang W, Meng B, Liu Y, Lu Y, Zhao J and Gao H: Fecal microbiota transplantation alleviates lipopolysaccharide-induced osteoporosis by modulating gut microbiota and long non-coding RNA TUG1 expression. Front Cell Infect Microbiol. 15(1535666)2025.PubMed/NCBI View Article : Google Scholar

151 

Mazziotta C, Tognon M, Martini F, Torreggiani E and Rotondo JC: Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells. 12(184)2023.PubMed/NCBI View Article : Google Scholar

152 

Lu L, Chen X, Liu Y and Yu X: Gut microbiota and bone metabolism. FASEB J. 35(e21740)2021.PubMed/NCBI View Article : Google Scholar

153 

Abdelqader A, Irshaid R and Al-Fataftah AR: Effects of dietary probiotic inclusion on performance, eggshell quality, cecal microflora composition, and tibia traits of laying hens in the late phase of production. Trop Anim Health Prod. 45:1017–1024. 2013.PubMed/NCBI View Article : Google Scholar

154 

Sadeghi AA: Bone mineralization of broiler chicks challenged with salmonella enteritidis fed diet containing probiotic (bacillus subtilis). Probiotics Antimicrob Proteins. 6:136–140. 2014.PubMed/NCBI View Article : Google Scholar

155 

Rodrigues FC, Castro AS, Rodrigues VC, Fernandes SA, Fontes EA, de Oliveira TT, Martino HS and de Luces Fortes Ferreira CL: Yacon flour and bifidobacterium longum modulate bone health in rats. J Med Food. 15:664–670. 2012.PubMed/NCBI View Article : Google Scholar

156 

Maradonna F, Gioacchini G, Falcinelli S, Bertotto D, Radaelli G, Olivotto I and Carnevali O: Probiotic supplementation promotes calcification in danio rerio larvae: A molecular study. PLoS One. 8(e83155)2013.PubMed/NCBI View Article : Google Scholar

157 

Parvaneh K, Ebrahimi M, Sabran MR, Karimi G, Hwei AN, Abdul-Majeed S, Ahmad Z, Ibrahim Z and Jamaluddin R: Probiotics (bifidobacterium longum) increase bone mass density and upregulate sparc and bmp-2 genes in rats with bone loss resulting from ovariectomy. Biomed Res Int. 2015(897639)2015.PubMed/NCBI View Article : Google Scholar

158 

Gibson GR and Roberfroid MB: Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr. 125:1401–1412. 1995.PubMed/NCBI View Article : Google Scholar

159 

Bryk G, Coronel MZ, Pellegrini G, Mandalunis P, Rio ME, de Portela ML and Zeni SN: Effect of a combination GOS/FOS® prebiotic mixture and interaction with calcium intake on mineral absorption and bone parameters in growing rats. Eur J Nutr. 54:913–923. 2015.PubMed/NCBI View Article : Google Scholar

160 

Slevin MM, Allsopp PJ, Magee PJ, Bonham MP, Naughton VR, Strain JJ, Duffy ME, Wallace JM and Mc Sorley EM: Supplementation with calcium and short-chain fructo-oligosaccharides affects markers of bone turnover but not bone mineral density in postmenopausal women. J Nutr. 144:297–304. 2014.PubMed/NCBI View Article : Google Scholar

161 

Bass EF, Baile CA, Lewis RD and Giraudo SQ: Bone quality and strength are greater in growing male rats fed fructose compared with glucose. Nutr Res. 33:1063–1071. 2013.PubMed/NCBI View Article : Google Scholar

162 

Yang LC, Wu JB, Lu TJ and Lin WC: The prebiotic effect of anoectochilus formosanus and its consequences on bone health. Br J Nutr. 109:1779–1788. 2013.PubMed/NCBI View Article : Google Scholar

163 

Vindigni SM and Surawicz CM: Fecal microbiota transplantation. Gastroenterol Clin North Am. 46:171–185. 2017.PubMed/NCBI View Article : Google Scholar

164 

Rios-Arce ND, Schepper JD, Dagenais A, Schaefer L, Daly-Seiler CS, Gardinier JD, Britton RA, McCabe LR and Parameswaran N: Post-antibiotic gut dysbiosis-induced trabecular bone loss is dependent on lymphocytes. Bone. 134(115269)2020.PubMed/NCBI View Article : Google Scholar

165 

Goto Y, Panea C, Nakato G, Cebula A, Lee C, Diez MG, Laufer TM, Ignatowicz L and Ivanov II: Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal th17 cell differentiation. Immunity. 40:594–607. 2014.PubMed/NCBI View Article : Google Scholar

166 

Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, et al: Induction of colonic regulatory T cells by indigenous clostridium species. Science. 331:337–341. 2011.PubMed/NCBI View Article : Google Scholar

167 

Li L, Rao S, Cheng Y, Zhuo X, Deng C, Xu N, Zhang H and Yang L: Microbial osteoporosis: The interplay between the gut microbiota and bones via host metabolism and immunity. Microbiologyopen. 8(e00810)2019.PubMed/NCBI View Article : Google Scholar

168 

Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, et al: Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351: 10.1126/science.aad3311 aad3311, 2016.

169 

Zhang YW, Cao MM, Li YJ, Zhang RL, Wu MT, Yu Q and Rui YF: Fecal microbiota transplantation as a promising treatment option for osteoporosis. J Bone Miner Metab. 40:874–889. 2022.PubMed/NCBI View Article : Google Scholar

170 

Neumann M, Steimle A, Grant ET, Wolter M, Parrish A, Willieme S, Brenner D, Martens EC and Desai MS: Deprivation of dietary fiber in specific-pathogen-free mice promotes susceptibility to the intestinal mucosal pathogen citrobacter rodentium. Gut Microbes. 13(1966263)2021.PubMed/NCBI View Article : Google Scholar

171 

Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS and Sonnenburg JL: Diet-induced extinctions in the gut microbiota compound over generations. Nature. 529:212–215. 2016.PubMed/NCBI View Article : Google Scholar

172 

Davis HC: Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity? Ir J Med Sci. 187:393–402. 2018.PubMed/NCBI View Article : Google Scholar

173 

Matkovic V, Landoll JD, Badenhop-Stevens NE, Ha EY, Crncevic-Orlic Z, Li B and Goel P: Nutrition influences skeletal development from childhood to adulthood: A study of hip, spine, and forearm in adolescent females. J Nutr. 134:701S–705S. 2004.PubMed/NCBI View Article : Google Scholar

174 

Laird E, Molloy AM, McNulty H, Ward M, McCarroll K, Hoey L, Hughes CF, Cunningham C, Strain JJ and Casey MC: Greater yogurt consumption is associated with increased bone mineral density and physical function in older adults. Osteoporos Int. 28:2409–2419. 2017.PubMed/NCBI View Article : Google Scholar

175 

Rizzoli R: Dairy products and bone health. Aging Clin Exp Res. 34:9–24. 2022.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ao M, Li X, Xiao C, Liu Y, Zhang Y and Chen R: Role of the gut microbiota in the pathogenesis and therapeutic approach to osteoporosis (Review). Biomed Rep 24: 16, 2026.
APA
Ao, M., Li, X., Xiao, C., Liu, Y., Zhang, Y., & Chen, R. (2026). Role of the gut microbiota in the pathogenesis and therapeutic approach to osteoporosis (Review). Biomedical Reports, 24, 16. https://doi.org/10.3892/br.2025.2089
MLA
Ao, M., Li, X., Xiao, C., Liu, Y., Zhang, Y., Chen, R."Role of the gut microbiota in the pathogenesis and therapeutic approach to osteoporosis (Review)". Biomedical Reports 24.1 (2026): 16.
Chicago
Ao, M., Li, X., Xiao, C., Liu, Y., Zhang, Y., Chen, R."Role of the gut microbiota in the pathogenesis and therapeutic approach to osteoporosis (Review)". Biomedical Reports 24, no. 1 (2026): 16. https://doi.org/10.3892/br.2025.2089
Copy and paste a formatted citation
x
Spandidos Publications style
Ao M, Li X, Xiao C, Liu Y, Zhang Y and Chen R: Role of the gut microbiota in the pathogenesis and therapeutic approach to osteoporosis (Review). Biomed Rep 24: 16, 2026.
APA
Ao, M., Li, X., Xiao, C., Liu, Y., Zhang, Y., & Chen, R. (2026). Role of the gut microbiota in the pathogenesis and therapeutic approach to osteoporosis (Review). Biomedical Reports, 24, 16. https://doi.org/10.3892/br.2025.2089
MLA
Ao, M., Li, X., Xiao, C., Liu, Y., Zhang, Y., Chen, R."Role of the gut microbiota in the pathogenesis and therapeutic approach to osteoporosis (Review)". Biomedical Reports 24.1 (2026): 16.
Chicago
Ao, M., Li, X., Xiao, C., Liu, Y., Zhang, Y., Chen, R."Role of the gut microbiota in the pathogenesis and therapeutic approach to osteoporosis (Review)". Biomedical Reports 24, no. 1 (2026): 16. https://doi.org/10.3892/br.2025.2089
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team