|
1
|
Clynes MA, Harvey NC, Curtis EM, Fuggle
NR, Dennison EM and Cooper C: The epidemiology of osteoporosis. Br
Med Bull. 133:105–117. 2020.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Harris K, Zagar CA and Lawrence KV:
Osteoporosis: Common questions and answers. Am Fam Physician.
107:238–246. 2023.PubMed/NCBI
|
|
3
|
Rachner TD, Khosla S and Hofbauer LC:
Osteoporosis: Now and the future. Lancet. 377:1276–1287.
2011.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Cosman F, de Beur SJ, LeBoff MS, Lewiecki
EM, Tanner B, Randall S and Lindsay R: National Osteoporosis
Foundation. Clinician's guide to prevention and treatment of
osteoporosis. Osteoporos Int. 25:2359–2381. 2014.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Health Quality Ontario. Vertebral
augmentation involving vertebroplasty or kyphoplasty for
cancer-related vertebral compression fractures: A systematic
review. Ont Health Technol Assess Ser. 16:1–202. 2016.PubMed/NCBI
|
|
6
|
Brzozowska MM, Sainsbury A, Eisman JA,
Baldock PA and Center JR: Bariatric surgery, bone loss, obesity and
possible mechanisms. Obes Rev. 14:52–67. 2013.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Goulet O: Potential role of the intestinal
microbiota in programming health and disease. Nutr Rev. 73 (Suppl
1):S32–S40. 2015.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Maynard CL, Elson CO, Hatton RD and Weaver
CT: Reciprocal interactions of the intestinal microbiota and immune
system. Nature. 489:231–241. 2012.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Qin J, Li R, Raes J, Arumugam M, Burgdorf
KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al: A
human gut microbial gene catalogue established by metagenomic
sequencing. Nature. 464:59–65. 2010.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Costea PI, Hildebrand F, Arumugam M,
Bäckhed F, Blaser MJ, Bushman FD, de Vos WM, Ehrlich SD, Fraser CM,
Hattori M, et al: Enterotypes in the landscape of gut microbial
community composition. Nat Microbiol. 3:8–16. 2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Kau AL, Ahern PP, Griffin NW, Goodman AL
and Gordon JI: Human nutrition, the gut microbiome and the immune
system. Nature. 474:327–336. 2011.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Sjögren K, Engdahl C, Henning P, Lerner
UH, Tremaroli V, Lagerquist MK, Bäckhed F and Ohlsson C: The gut
microbiota regulates bone mass in mice. J Bone Miner Res.
27:1357–1367. 2012.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Ohlsson C and Sjögren K: Effects of the
gut microbiota on bone mass. Trends Endocrinol Metab. 26:69–74.
2015.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Espinoza JL, Elbadry MI and Nakao S: An
altered gut microbiota may trigger autoimmune-mediated acquired
bone marrow failure syndromes. Clin Immunol. 171:62–64.
2016.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Fransen F, van Beek AA, Borghuis T, Aidy
SE, Hugenholtz F, van der Gaast-de Jongh C, Savelkoul HFJ, De Jonge
MI, Boekschoten MV, Smidt H, et al: Aged gut microbiota contributes
to systemical inflammaging after transfer to germ-free mice. Front
Immunol. 8(1385)2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Lerner A, Neidhöfer S and Matthias T: The
gut microbiome feelings of the brain: A perspective for
non-microbiologists. Microorganisms. 5(66)2017.PubMed/NCBI View Article : Google Scholar
|
|
17
|
McCabe L, Britton RA and Parameswaran N:
Prebiotic and probiotic regulation of bone health: Role of the
intestine and its microbiome. Curr Osteoporos Rep. 13:363–371.
2015.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Villa CR, Ward WE and Comelli EM: Gut
microbiota-bone axis. Crit Rev Food Sci Nutr. 57:1664–1672.
2017.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Donohoe DR, Garge N, Zhang X, Sun W,
O'Connell TM, Bunger MK and Bultman SJ: The microbiome and butyrate
regulate energy metabolism and autophagy in the mammalian colon.
Cell Metab. 13:517–526. 2011.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Weaver CM: Diet, gut microbiome, and bone
health. Curr Osteoporos Rep. 13:125–130. 2015.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Anantharaju A and Klamut M: Small
intestinal bacterial overgrowth: A possible risk factor for
metabolic bone disease. Nutr Rev. 61:132–135. 2003.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Stotzer PO, Johansson C, Mellström D,
Lindstedt G and Kilander AF: Bone mineral density in patients with
small intestinal bacterial overgrowth. Hepatogastroenterology.
50:1415–1418. 2003.PubMed/NCBI
|
|
23
|
Ma S, Qin J, Hao Y and Fu L: Association
of gut microbiota composition and function with an aged rat model
of senile osteoporosis using 16s rrna and metagenomic sequencing
analysis. Aging (Albany NY). 12:10795–10808. 2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Ma S, Qin J, Hao Y, Shi Y and Fu L:
Structural and functional changes of gut microbiota in
ovariectomized rats and their correlations with altered bone mass.
Aging (Albany NY). 12:10736–10753. 2020.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Lin H, Liu T, Li X, Gao X, Wu T and Li P:
The role of gut microbiota metabolite trimethylamine N-oxide in
functional impairment of bone marrow mesenchymal stem cells in
osteoporosis disease. Ann Transl Med. 8(1009)2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Li JY, Chassaing B, Tyagi AM, Vaccaro C,
Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, et
al: Sex steroid deficiency-associated bone loss is microbiota
dependent and prevented by probiotics. J Clin Invest.
126:2049–2063. 2016.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Nzakizwanayo J, Dedi C, Standen G,
Macfarlane WM, Patel BA and Jones BV: Escherichia coli nissle 1917
enhances bioavailability of serotonin in gut tissues through
modulation of synthesis and clearance. Sci Rep.
5(17324)2015.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Britton RA, Irwin R, Quach D, Schaefer L,
Zhang J, Lee T, Parameswaran N and McCabe LR: Probiotic l. Reuteri
treatment prevents bone loss in a menopausal ovariectomized mouse
model. J Cell Physiol. 229:1822–1830. 2014.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Zhang J, Motyl KJ, Irwin R, MacDougald OA,
Britton RA and McCabe LR: Loss of bone and wnt10b expression in
male type 1 diabetic mice is blocked by the probiotic lactobacillus
reuteri. Endocrinology. 156:3169–3182. 2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
He J, Xu S, Zhang B, Xiao C, Chen Z, Si F,
Fu J, Lin X, Zheng G, Yu G and Chen J: Gut microbiota and
metabolite alterations associated with reduced bone mineral density
or bone metabolic indexes in postmenopausal osteoporosis. Aging
(Albany NY). 12:8583–8604. 2020.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Wang J, Wang Y, Gao W, Wang B, Zhao H,
Zeng Y, Ji Y and Hao D: Diversity analysis of gut microbiota in
osteoporosis and osteopenia patients. PeerJ.
5(e3450)2017.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Huang R, Liu P, Bai Y, Huang J, Pan R, Li
H, Su Y, Zhou Q, Ma R, Zong S and Zeng G: Changes in the gut
microbiota of osteoporosis patients based on 16SrRNA gene
sequencing:a systematic review and meta-analysis. J Zhejiang Univ
Sci B. 23:1002–1022. 2022.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Li C, Huang Q, Yang R, Dai Y, Zeng Y, Tao
L, Li X, Zeng J and Wang Q: Gut microbiota composition and bone
mineral loss-epidemiologic evidence from individuals in Wuhan,
China. Osteoporos Int. 30:1003–1013. 2019.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Sun M, Liu Y, Tang S, Li Y, Zhang R and
Mao L: Characterization of intestinal flora in osteoporosis
patients based on 16S rDNA sequencing. Int J Gen Med. 17:4311–4324.
2024.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Das M, Cronin O, Keohane DM, Cormac EM,
Nugent H, Nugent M, Molloy C, O'Toole PW, Shanahan F, Molloy MG and
Jeffery IB: Gut microbiota alterations associated with reduced bone
mineral density in older adults. Rheumatology (Oxford).
58:2295–2304. 2019.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Ling CW, Miao ZL, Xiao ML, Zhou H, Jiang
Z, Fu Y, Xiong F, Zuo LS, Liu YP, Wu YY, et al: The association of
gut microbiota with osteoporosis is mediated by amino acid
metabolism: multiomics in a large cohort. J Clin Endocrinol Metab.
106:e3852–e3864. 2021.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ni JJ, Yang XL, Zhang H, Xu Q, Wei XT,
Feng GJ, Zhao M, Pei YF and Zhang L: Assessing causal relationship
from gut microbiota to heel bone mineral density. Bone.
143(115652)2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Zeng HQ, Li G, Zhou KX, Li AD, Liu W and
Zhang Y: Causal link between gut microbiota and osteoporosis
analyzed via Mendelian randomization. Eur Rev Med Pharmacol Sci.
28:542–555. 2024.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Wei M, Li C, Dai Y, Zhou H, Cui Y, Zeng Y,
Huang Q and Wang Q: High-throughput absolute quantification
sequencing revealed osteoporosis-related gut microbiota alterations
in Han Chinese elderly. Front Cell infect Microbiol.
11(630372)2021.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Rettedal EA, Ilesanmi-Oyelere BL, Roy NC,
Coad J and Kruger MC: The gut microbiome is altered in
postmenopausal women with osteoporosis and osteopenia. JBMR Plus.
5(e10452)2021.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Yang X, Chang T, Yuan Q, Wei W, Wang P,
Song X and Yuan H: Changes in the composition of gut and vaginal
microbiota in patients with postmenopausal osteoporosis. Front
Immunol. 13(930244)2022.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Xu X, Jia X, Mo L, Liu C, Zheng L, Yuan Q
and Zhou X: Intestinal microbiota: A potential target for the
treatment of postmenopausal osteoporosis. Bone Res.
5(17046)2017.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Kuo YJ, Chen CJ, Hussain B, Tsai HC, Hsu
GJ, Chen JS, Asif A, Fan CW and Hsu BM: Inferring associated with
osteopenia and osteoporosis in Taiwanese postmenopausal bacterial
community interactions and functionalities women. Microorganisms.
11(234)2023.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Zhang YW, Li YJ, Lu PP, Dai GC, Chen XX
and Rui YF: The modulatory effect and implication of gut microbiota
on osteoporosis: from the perspective of ‘brain-gut-bone’ axis.
Food Funct. 12:5703–5718. 2021.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Li K, Jiang Y, Wang N, Lai L, Xu S, Xia T,
Yue X and Xin H: Traditional Chinese medicine in osteoporosis
intervention and the related regulatory mechanismof gut microbiome.
Am J Chin Med. 51:1957–1981. 2023.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Report of the dietary guidelines advisory
committee dietary guidelines for americans, 1995. Nutr Rev.
53:376–379. 1995.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Hirata Y, Egea L, Dann SM, Eckmann L and
Kagnoff MF: Gm-csf-facilitated dendritic cell recruitment and
survival govern the intestinal mucosal response to a mouse enteric
bacterial pathogen. Cell Host Microbe. 7:151–163. 2010.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Ohta A, Motohashi Y, Sakai K, Hirayama M,
Adachi T and Sakuma K: Dietary fructooligosaccharides increase
calcium absorption and levels of mucosal calbindin-d9k in the large
intestine of gastrectomized rats. Scand J Gastroenterol.
33:1062–1068. 1998.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Raveschot C, Coutte F, Frémont M,
Vaeremans M, Dugersuren J, Demberel S, Drider D, Dhulster P,
Flahaut C and Cudennec B: Probiotic lactobacillus strains from
mongolia improve calcium transport and uptake by intestinal cells
in vitro. Food Res Int. 133(109201)2020.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Rillaerts K, Verlinden L, Doms S,
Carmeliet G and Verstuyf A: A comprehensive perspective on the role
of vitamin D signaling in maintaining bone homeostasis: Lessons
from animal models. J Steroid Biochem Mol Biol.
250(106732)2025.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Lin HR, Xu F, Chen D, Xie K, Yang Y, Hu W,
Li BY, Jiang Z, Liang Y, Tang XY, et al: The gut microbiota-bile
acid axis mediates the beneficial associations between plasma
vitamin d and metabolic syndrome in chinese adults: A prospective
study. Clin Nutr. 42:887–898. 2023.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Castaneda M, Strong JM, Alabi DA and
Hernandez CJ: The gut microbiome and bone strength. Curr Osteoporos
Rep. 18:677–683. 2020.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Schoultz I and Keita ÅV: The intestinal
barrier and current techniques for the assessment of gut
permeability. Cells. 9(1909)2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Cardoso-Silva D, Delbue D, Itzlinger A,
Moerkens R, Withoff S, Branchi F and Schumann M: Intestinal barrier
function in gluten-related disorders. Nutrients.
11(2325)2019.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Smith BJ, Lerner MR, Bu SY, Lucas EA,
Hanas JS, Lightfoot SA, Postier RG, Bronze MS and Brackett DJ:
Systemic bone loss and induction of coronary vessel disease in a
rat model of chronic inflammation. Bone. 38:378–386.
2006.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Park OJ, Kim J, Yang J, Yun CH and Han SH:
Muramyl dipeptide, a shared structural motif of peptidoglycans, is
a novel inducer of bone formation through induction of Runx2. J
Bone Miner Res. 34(975)2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Ma S, Wang N, Zhang P, Wu W and Fu L:
Fecal microbiota transplantation mitigates bone loss by improving
gut microbiome composition and gut barrier function in aged rats.
PeerJ. 9(e12293)2021.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Xiao HH, Lu L, Poon CC, Chan CO, Wang LJ,
Zhu YX, Zhou LP, Cao S, Yu WX, Wong KY, et al: The lignan-rich
fraction from sambucus williamsii hance ameliorates dyslipidemia
and insulin resistance and modulates gut microbiota composition in
ovariectomized rats. Biomed Pharmacother.
137(111372)2021.PubMed/NCBI View Article : Google Scholar
|
|
59
|
AlQranei MS, Senbanjo LT, Aljohani H,
Hamza T and Chellaiah MA: Lipopolysaccharide-tlr-4 axis regulates
osteoclastogenesis independent of rankl/rank signaling. BMC
Immunol. 22(23)2021.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Yuan S and Shen J: Bacteroides vulgatus
diminishes colonic microbiota dysbiosis ameliorating lumbar bone
loss in ovariectomized mice. Bone. 142(115710)2021.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Schepper JD, Collins F, Rios-Arce ND, Kang
HJ, Schaefer L, Gardinier JD, Raghuvanshi R, Quinn RA, Britton R,
Parameswaran N and McCabe LR: Involvement of the gut microbiota and
barrier function in glucocorticoid-induced osteoporosis. J Bone
Miner Res. 35:801–820. 2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Locantore P, Del Gatto V, Gelli S,
Paragliola RM and Pontecorvi A: The interplay between immune system
and microbiota in osteoporosis. Mediators Inflamm.
2020(3686749)2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Cline-Smith A, Axelbaum A, Shashkova E,
Chakraborty M, Sanford J, Panesar P, Peterson M, Cox L, Baldan A,
Veis D and Aurora R: Ovariectomy activates chronic low-grade
inflammation mediated by memory T cells, which promotes
osteoporosis in mice. J Bone Miner Res. 35:1174–1187.
2020.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Tsukasaki M and Takayanagi H:
Osteoimmunology: Evolving concepts in bone-immune interactions in
health and disease. Nat Rev Immunol. 19:626–642. 2019.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Charles JF and Nakamura MC: Bone and the
innate immune system. Curr Osteoporos Rep. 12:1–8. 2014.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Hao ML, Wang GY, Zuo XQ, Qu CJ, Yao BC and
Wang DL: Gut microbiota: An overlooked factor that plays a
significant role in osteoporosis. J Int Med Res. 47:4095–4103.
2019.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Uluçkan Ö, Jimenez M, Karbach S, Jeschke
A, Graña O, Keller J, Busse B, Croxford AL, Finzel S, Koenders M,
et al: Chronic skin inflammation leads to bone loss by
il-17-mediated inhibition of wnt signaling in osteoblasts. Sci
Transl Med. 8(330ra37)2016.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Quach D and Britton RA: Gut microbiota and
bone health. Adv Exp Med Biol. 1033:47–58. 2017.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Campbell JE and Drucker DJ: Pharmacology,
physiology, and mechanisms of incretin hormone action. Cell Metab.
17:819–837. 2013.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Mabilleau G: Incretins and bone: Friend or
foe? Curr Opin Pharmacol. 22:72–78. 2015.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Baker JM, Al-Nakkash L and
Herbst-Kralovetz MM: Estrogen-gut microbiome axis: Physiological
and clinical implications. Maturitas. 103:45–53. 2017.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Wang Y, Cheng Z, Elalieh HZ, Nakamura E,
Nguyen MT, Mackem S, Clemens TL, Bikle DD and Chang W: Igf-1r
signaling in chondrocytes modulates growth plate development by
interacting with the pthrp/ihh pathway. J Bone Miner Res.
26:1437–1446. 2011.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Guo X, Zhong K, Zhang J, Hui L, Zou L, Xue
H, Guo J, Zheng S, Huang D and Tan M: Gut microbiota can affect
bone quality by regulating serum estrogen levels. Am J Transl Res.
14:6043–6055. 2022.PubMed/NCBI
|
|
74
|
Ren H, Sun R and Wang J: Relationship of
melatonin level, oxidative stress and inflammatory status with
osteoporosis in maintenance hemodialysis of chronic renal failure.
Exp Ther Med. 15:5183–5188. 2018.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Gilbert L, He X, Farmer P, Boden S,
Kozlowski M, Rubin J and Nanes MS: Inhibition of osteoblast
differentiation by tumor necrosis factor-alpha. Endocrinology.
141:3956–3964. 2000.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Guo M, Liu H, Yu Y, Zhu X, Xie H, Wei C,
Mei C, Shi Y, Zhou N, Qin K and Li W: Lactobacillus rhamnosus GG
ameliorates osteoporosis in ovariectomized rats by regulating the
Th17/Treg balance and gut microbiota structure. Gut Microbes.
15(2190304)2023.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Yang X, Zhou F, Yuan P, Dou G, Liu X, Liu
S, Wang X, Jin R, Dong Y, Zhou J, et al: T cell-depleting
nanoparticles ameliorate bone loss by reducing activated T cells
and regulating the Treg/Th17 balance. Bioact Mater. 6:3150–3163.
2021.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Lorenzo J: From the gut to bone:
Connecting the gut microbiota with Th17 T lymphocytes and
postmenopausal osteoporosis. J Clin Invest.
131(e146619)2021.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Ohara TE and Hsiao EY:
Microbiota-neuroepithelial signalling across the gut-brain axis.
Nat Rev Microbiol. 23:371–384. 2025.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Mayer EA, Nance K and Chen S: The
gut-brain axis. Annu Rev Med. 73:439–453. 2022.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Hayes CL, Dong J, Galipeau HJ, Jury J,
McCarville J, Huang X, Wang XY, Naidoo A, Anbazhagan AN, Libertucci
J, et al: Commensal microbiota induces colonic barrier structure
and functions that contribute to homeostasis. Sci Rep.
8(14184)2018.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Treangen TJ, Wagner J, Burns MP and
Villapol S: Traumatic brain injury in mice induces acute bacterial
dysbiosis within the fecal microbiome. Front Immunol.
9(2757)2018.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Queipo-Ortuño MI, Seoane LM, Murri M,
Pardo M, Gomez-Zumaquero JM, Cardona F, Casanueva F and Tinahones
FJ: Gut microbiota composition in male rat models under different
nutritional status and physical activity and its association with
serum leptin and ghrelin levels. PLoS One. 8(e65465)2013.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Yadav VK, Oury F, Suda N, Liu ZW, Gao XB,
Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, et
al: A serotonin-dependent mechanism explains the leptin regulation
of bone mass, appetite, and energy expenditure. Cell. 138:976–989.
2009.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Bliziotes M, Eshleman A, Burt-Pichat B,
Zhang XW, Hashimoto J, Wiren K and Chenu C: Serotonin transporter
and receptor expression in osteocytic MLO-Y4 cells. Bone.
39:1313–1321. 2006.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Yadav VK, Balaji S, Suresh PS, Liu XS, Lu
X, Li Z, Guo XE, Mann JJ, Balapure AK, Gershon MD, et al:
Pharmacological inhibition of gut-derived serotonin synthesis is a
potential bone anabolic treatment for osteoporosis. Nat Med.
16:308–312. 2010.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Chabbi-Achengli Y, Coudert AE, Callebert
J, Geoffroy V, Côté F, Collet C and de Vernejoul MC: Decreased
osteoclastogenesis in serotonin-deficient mice. Proc Natl Acad Sci
USA. 109:2567–2572. 2012.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Westbroek I, van der Plas A, de Rooij KE,
Klein-Nulend J and Nijweide PJ: Expression of serotonin receptors
in bone. J Biol Chem. 276:28961–28968. 2001.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Mödder UI, Achenbach SJ, Amin S, Riggs BL,
Melton LJ III and Khosla S: Relation of serum serotonin levels to
bone density and structural parameters in women. J Bone Miner Res.
25:415–422. 2010.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Cummings JH and Macfarlane GT: The control
and consequences of bacterial fermentation in the human colon. J
Appl Bacteriol. 70:443–459. 1991.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Nagpal R, Kumar M, Yadav AK, Hemalatha R,
Yadav H, Marotta F and Yamashiro Y: Gut microbiota in health and
disease: An overview focused on metabolic inflammation. Benef
Microbes. 7:181–194. 2016.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Montalvany-Antonucci CC, Duffles LF, de
Arruda JAA, Zicker MC, de Oliveira S, Macari S, Garlet GP, Madeira
MFM, Fukada SY, Andrade I Jr, et al: Short-chain fatty acids and
FFAR2 as suppressors of bone resorption. Bone. 125:112–121.
2019.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Smith PM, Howitt MR, Panikov N, Michaud M,
Gallini CA, Bohlooly-Y M, Glickman JN and Garrett WS: The microbial
metabolites, short-chain fatty acids, regulate colonic Treg cell
homeostasis. Science. 341:569–573. 2013.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Feng B, Lu J, Han Y, Han Y, Qiu X and Zeng
Z: The role of short-chain fatty acids in the regulation of
osteoporosis: New perspectives from gut microbiota to bone health:
A review. Medicine (Baltimore). 103(e39471)2024.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Charles JF, Ermann J and Aliprantis AO:
The intestinal microbiome and skeletal fitness: Connecting bugs and
bones. Clin Immunol. 159:163–169. 2015.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Lucas S, Omata Y, Hofmann J, Böttcher M,
Iljazovic A, Sarter K, Albrecht O, Schulz O, Krishnacoumar B,
Krönke G, et al: Short-chain fatty acids regulate systemic bone
mass and protect from pathological bone loss. Nat Commun.
9(55)2018.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Yonezawa T, Kobayashi Y and Obara Y:
Short-chain fatty acids induce acute phosphorylation of the p38
mitogen-activated protein kinase/heat shock protein 27 pathway via
gpr43 in the mcf-7 human breast cancer cell line. Cell Signal.
19:185–193. 2007.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Li P, Ji B, Luo H, Sundh D, Lorentzon M
and Nielsen J: One-year supplementation with lactobacillus reuteri
atcc pta 6475 counteracts a degradation of gut microbiota in older
women with low bone mineral density. NPJ Biofilms Microbiomes.
8(84)2022.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Winston JA and Theriot CM: Diversification
of host bile acids by members of the gut microbiota. Gut Microbes.
11:158–171. 2020.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Zheng XQ, Wang DB, Jiang YR and Song CL:
Gut microbiota and microbial metabolites for osteoporosis. Gut
Microbes. 17(2437247)2025.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Hernandez CJ, Guss JD, Luna M and Goldring
SR: Links between the microbiome and bone. J Bone Miner Res.
31:1638–1646. 2016.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Zou W and Bar-Shavit Z: Dual modulation of
osteoclast differentiation by lipopolysaccharide. J Bone Miner Res.
17:1211–1218. 2002.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Yang K, Xu J, Fan M, Tu F, Wang X, Ha T,
Williams DL and Li C: Lactate suppresses macrophage
pro-inflammatory response to LPS stimulation by inhibition of YAP
and NF-κB activation via GPR81-mediated signaling. Front Immunol.
11(587913)2020.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Huang J, Yuan L, Wang X, Zhang TL and Wang
K: Icaritin and its glycosides enhance osteoblastic, but suppress
osteoclastic, differentiation and activity in vitro. Life Sci.
81:832–840. 2007.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Li L, Chen B, Zhu R, Tian Y, Liu C, Jia Q,
Wang L, Tang J, Zhao D, Mo F, et al: Fructus ligustri lucidi
preserves bone quality through the regulation of gut microbiota
diversity, oxidative stress, TMAO and sirt6 levels in aging mice.
Aging (Albany NY). 11:9348–9368. 2019.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Zhao X, Wang Y, Nie Z, Han L, Zhong X, Yan
X and Gao X: Eucommia ulmoides leaf extract alters gut microbiota
composition, enhances short-chain fatty acids production, and
ameliorates osteoporosis in the senescence-accelerated mouse p6
(samp6) model. Food Sci Nutr. 8:4897–4906. 2020.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Zhao X, Ai J, Mao H and Gao X: Effects of
Eclipta prostrata on gut microbiota of SAMP6 mice with
osteoporosis. J Med Microbiol. 68:402–416. 2019.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Kerezoudi EN, Mitsou EK, Gioti K, Terzi E,
Avgousti I, Panagiotou A, Koutrotsios G, Zervakis GI, Mountzouris
KC, Tenta R and Kyriacou A: Fermentation of pleurotus ostreatus and
ganoderma lucidum mushrooms and their extracts by the gut
microbiota of healthy and osteopenic women: Potential prebiotic
effect and impact of mushroom fermentation products on human
osteoblasts. Food Funct. 12:1529–1546. 2021.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Liu J, Liu J, Liu L, Zhang G and Peng X:
Reprogrammed intestinal functions in astragalus
polysaccharide-alleviated osteoporosis: Combined analysis of
transcriptomics and DNA methylomics demonstrates the significance
of the gut-bone axis in treating osteoporosis. Food Funct.
12:4458–4470. 2021.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Li ZX, Zhuo JL, Yang N, Gao MB, Qu ZH and
Han T: Effect of Lycium barbarum polysaccharide on osteoblast
proliferation and differentiation in postmenopausal osteoporosis.
Int J Biol Macromol. 271(132415)2024.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Jin S, Liu X, Zheng Y, Zhu T, Tong D,
Zhang R and Liu Y: Genistein supplementation alleviates bone damage
by regulating gut microbiota composition and metabolism in obesity
and estrogen decline. Food Funct. 16:7900–7918. 2025.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Li B, Liu M, Wang Y, Gong S, Yao W, Li W,
Gao H and Wei M: Puerarin improves the bone micro-environment to
inhibit OVX-induced osteoporosis via modulating SCFAs released by
the gut microbiota and repairing intestinal mucosal integrity.
Biomed Pharmacother. 132(110923)2020.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Mei F, Meng K, Gu Z, Yun Y, Zhang W, Zhang
C, Zhong Q, Pan F, Shen X, Xia G and Chen H: Arecanut (areca
catechu l.) seed polyphenol-ameliorated osteoporosis by altering
gut microbiome via LYZ and the immune system in estrogen-deficient
rats. J Agric Food Chem. 69:246–258. 2021.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Zhang Z, Chen Y, Xiang L, Wang Z, Xiao GG
and Hu J: Effect of curcumin on the diversity of gut microbiota in
ovariectomized rats. Nutrients. 9(1146)2017.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Jia X, Jia L, Mo L, Yuan S, Zheng X, He J,
Chen V, Guo Q, Zheng L, Yuan Q, et al: Berberine ameliorates
periodontal bone loss by regulating gut microbiota. J Dent Res.
98:107–116. 2019.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Wang N, Yang H, Tong X, Xu T, Zhao J and
Li YK: Ginkgolide B modulates the gut-bone axis to ameliorate bone
loss in ovariectomized mice. J Orthop Surg Res.
20(804)2025.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Dou J, Liang Z, Liu J, Liu N, Hu X, Tao S,
Zhen X, Yang L, Zhang J and Jiang G: Quinoa alleviates osteoporosis
in ovariectomized rats by regulating gut microbiota imbalance. J
Sci Food Agric. 104:5052–5063. 2024.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Hao F, Guo M, Zhao Y, Zhu X, Hu X, Zhu W,
Mei C, Zhou N, Qin K, Zhu H and Li W: Qing'e Pills ameliorates
osteoporosis by regulating gut microbiota and Th17/Treg balance in
ovariectomized rats. J Inflamm Res. 18:7611–7629. 2025.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Xie H, Hua Z, Guo M, Lin S, Zhou Y, Weng
Z, Wu L, Chen Z, Xu Z and Li W: Gut microbiota and metabonomics
used to explore the mechanism of Qing'e Pills in alleviating
osteoporosis. Pharm Biol. 60:785–800. 2022.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Sun P, Zhang C, Huang Y, Yang J, Zhou F,
Zeng J and Lin Y: Jiangu granule ameliorated OVX rats bone loss by
modulating gut microbiota-SCFAs-Treg/Th17 axis. Biomed
Pharmacother. 150(112975)2022.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Li J, HaomingYou Hu Y, Li R, Ouyang T, Ran
Q, Zhang G and Huang Y: Effects of traditional Chinese medicine
Zuo-Gui-Wan on gut microbiota in an osteoporotic mouse model. J
Orthop Surg Res. 20(128)2025.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Chen J, Ng S, Xu P, Chen S, Li S, Chen X,
Xie L and Ge J: Herbal formula xuling-jiangu improves bone
metabolic balance in rats with ovariectomy-induced osteoporosis via
the gut-bone axis. Front Pharmacol. 15(1505231)2024.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Li X, Li N, Pei H, Ren Y, Li L, Sun L, Wu
Y, Yuan J and Ma Y: Zhuanggu Shubi ointment mediated the
characteristic bacteria-intestinal mucosal barrier-bone metabolism
axis to intervene in postmenopausal osteoporosis. Front Cell Infect
Microbiol. 14(1500111)2024.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Gao MX, Tang XY, Zhang FX, Yao ZH, Yao XS
and Dai Y: Biotransformation and metabolic profile of
Xian-Ling-Gu-Bao capsule, a traditional chinese medicine
prescription, with rat intestinal microflora by ultra-performance
liquid chromatography coupled with quadrupole time-of-flight tandem
mass spectrometry analysis. Biomed Chromatogr. 32:2018.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Tang XY, Gao MX, Xiao HH, Dai ZQ, Yao ZH,
Dai Y and Yao XS: Effects of Xian-Ling-Gu-Bao capsule on the gut
microbiota in ovariectomized rats: Metabolism and modulation. J
Chromatogr B Analyt Technol Biomed Life Sci.
1176(122771)2021.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Liang Q, Du H, Wang Y, Lai Y, Ren M, Wei X
and Xiong Z: Integrated metabolomics and gut microbiota analysis to
explore the protective effects of Gushudan on postmenopausal
osteoporosis rats via gut-bone axis. J Pharm Biomed Anal.
263(116942)2025.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Chen XC, Li WJ, Zeng JY, Dong YP, Qiu JM,
Zhang B, Wang DY, Liu J and Lyu ZH: Shengu granules ameliorate
ovariectomy-induced osteoporosis by the gut-bone-immune axis. Front
Microbiol. 15(1320500)2024.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Ko CH, Siu WS, Lau CP, Lau CB, Fung KP and
Leung PC: Osteoprotective effects of fructus ligustri lucidi
aqueous extract in aged ovariectomized rats. Chin Med.
5(39)2010.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Zhang Y, Leung PC, Che CT, Chow HK, Wu CF
and Wong MS: Improvement of bone properties and enhancement of
mineralization by ethanol extract of fructus ligustri lucidi. Br J
Nutr. 99:494–502. 2008.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Chen B, Wei J, Zhu R, Zhang H, Xia B, Liu
Y, Dai X, Ye Z, Tian Y, Li R, et al: Fructus Ligustri Lucidi
aqueous extract promotes calcium balance and short-chain fatty
acids production in ovariectomized rats. J Ethnopharmacol.
279(114348)2021.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Li XL, Wang L, Bi XL, Chen BB and Zhang Y:
Gushukang exerts osteopreserve effects by regulating vitamin D and
calcium metabolism in ovariectomized mice. J Bone Miner Metab.
37:224–234. 2019.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Sang H, Xie Y, Su X, Zhang M, Zhang Y, Liu
K and Wang J: Mushroom bulgaria inquinans modulates host
immunological response and gut microbiota in mice. Front Nutr.
7(144)2020.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Tyagi AM, Yu M, Darby TM, Vaccaro C, Li
JY, Owens JA, Hsu E, Adams J, Weitzmann MN, Jones RM and Pacifici
R: The microbial metabolite butyrate stimulates bone formation via
t regulatory cell-mediated regulation of WNT10B expression.
Immunity. 49:1116–1131.e7. 2018.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Xiao HH, Zhu YX, Lu L, Zhou LP, Poon CC,
Chan CO, Wang LJ, Cao S, Yu WX, Wong KY, et al: The lignan-rich
fraction from sambucus williamsii hance exerts bone protective
effects via altering circulating serotonin and gut microbiota in
rats. Nutrients. 14(4718)2022.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Lei M, Hua LM and Wang DW: The effect of
probiotic treatment on elderly patients with distal radius
fracture: A prospective double-blind, placebo-controlled randomised
clinical trial. Benef Microbes. 7:631–637. 2016.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Takimoto T, Hatanaka M, Hoshino T, Takara
T, Tanaka K, Shimizu A, Morita H and Nakamura T: Effect of bacillus
subtilis c-3102 on bone mineral density in healthy postmenopausal
japanese women: A randomized, placebo-controlled, double-blind
clinical trial. Biosci Microbiota Food Health. 37:87–96.
2018.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Ohlsson C, Engdahl C, Fåk F, Andersson A,
Windahl SH, Farman HH, Movérare-Skrtic S, Islander U and Sjögren K:
Probiotics protect mice from ovariectomy-induced cortical bone
loss. PLoS One. 9(e92368)2014.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Schwarzer M, Makki K, Storelli G,
Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S,
Hudcovic T, Heddi A, et al: Lactobacillus plantarum strain
maintains growth of infant mice during chronic undernutrition.
Science. 351:854–857. 2016.PubMed/NCBI View Article : Google Scholar
|
|
139
|
McCabe LR, Irwin R, Schaefer L and Britton
RA: Probiotic use decreases intestinal inflammation and increases
bone density in healthy male but not female mice. J Cell Physiol.
228:1793–1798. 2013.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Avella MA, Place A, Du SJ, Williams E,
Silvi S, Zohar Y and Carnevali O: Lactobacillus rhamnosus
accelerates zebrafish backbone calcification and gonadal
differentiation through effects on the gnRH and IGF systems. PLoS
One. 7(e45572)2012.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Whisner CM, Martin BR, Schoterman MH,
Nakatsu CH, McCabe LD, McCabe GP, Wastney ME, van den Heuvel EG and
Weaver CM: Galacto-oligosaccharides increase calcium absorption and
gut bifidobacteria in young girls: A double-blind cross-over trial.
Br J Nutr. 110:1292–1303. 2013.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Abrams SA, Griffin IJ, Hawthorne KM, Liang
L, Gunn SK, Darlington G and Ellis KJ: A combination of prebiotic
short- and long-chain inulin-type fructans enhances calcium
absorption and bone mineralization in young adolescents. Am J Clin
Nutr. 82:471–476. 2005.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Whisner CM, Martin BR, Nakatsu CH, Story
JA, MacDonald-Clarke CJ, McCabe LD, McCabe GP and Weaver CM:
Soluble corn fiber increases calcium absorption associated with
shifts in the gut microbiome: A randomized dose-response trial in
free-living pubertal females. J Nutr. 146:1298–1306.
2016.PubMed/NCBI View Article : Google Scholar
|
|
144
|
García-Vieyra MI, Del Real A and López MG:
Agave fructans: Their effect on mineral absorption and bone mineral
content. J Med Food 2014. 17:1247–1255. 2014.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Weaver CM, Martin BR, Nakatsu CH,
Armstrong AP, Clavijo A, McCabe LD, McCabe GP, Duignan S,
Schoterman MH and van den Heuvel EG: Galactooligosaccharides
improve mineral absorption and bone properties in growing rats
through gut fermentation. J Agric Food Chem. 59:6501–6510.
2011.PubMed/NCBI View Article : Google Scholar
|
|
146
|
Levi YLAS, Novais GS, Dias RB, Andraus
RAC, Messora MR, Neto HB, Ervolino E, Santinoni CS and Maia LP:
Effects of the prebiotic mannan oligosaccharide on the experimental
periodontitis in rats. J Clin Periodontol. 45:1078–1089.
2018.PubMed/NCBI View Article : Google Scholar
|
|
147
|
Scholz-Ahrens KE, Açil Y and Schrezenmeir
J: Effect of oligofructose or dietary calcium on repeated calcium
and phosphorus balances, bone mineralization and trabecular
structure in ovariectomized rats. Br J Nutr. 88:365–377.
2002.PubMed/NCBI View Article : Google Scholar
|
|
148
|
Bueno-Vargas P, Manzano M, Diaz-Castro J,
López-Aliaga I, Rueda R and López-Pedrosa JM: Maternal dietary
supplementation with oligofructose-enriched inulin in
gestating/lactating rats preserves maternal bone and improves bone
microarchitecture in their offspring. PLoS One.
11(e0154120)2016.PubMed/NCBI View Article : Google Scholar
|
|
149
|
Zhang YW, Cao MM, Li YJ, Li YJ, Lu PP, Dai
GC, Zhang M, Wang H and Rui YF: Fecal microbiota transplantation
ameliorates bone loss in mice with ovariectomy-induced osteoporosis
via modulating gut microbiota and metabolic function. J Orthop
Translat. 37:46–60. 2022.PubMed/NCBI View Article : Google Scholar
|
|
150
|
Ma P, Wang R, Chen H, Zheng J, Yang W,
Meng B, Liu Y, Lu Y, Zhao J and Gao H: Fecal microbiota
transplantation alleviates lipopolysaccharide-induced osteoporosis
by modulating gut microbiota and long non-coding RNA TUG1
expression. Front Cell Infect Microbiol. 15(1535666)2025.PubMed/NCBI View Article : Google Scholar
|
|
151
|
Mazziotta C, Tognon M, Martini F,
Torreggiani E and Rotondo JC: Probiotics mechanism of action on
immune cells and beneficial effects on human health. Cells.
12(184)2023.PubMed/NCBI View Article : Google Scholar
|
|
152
|
Lu L, Chen X, Liu Y and Yu X: Gut
microbiota and bone metabolism. FASEB J. 35(e21740)2021.PubMed/NCBI View Article : Google Scholar
|
|
153
|
Abdelqader A, Irshaid R and Al-Fataftah
AR: Effects of dietary probiotic inclusion on performance, eggshell
quality, cecal microflora composition, and tibia traits of laying
hens in the late phase of production. Trop Anim Health Prod.
45:1017–1024. 2013.PubMed/NCBI View Article : Google Scholar
|
|
154
|
Sadeghi AA: Bone mineralization of broiler
chicks challenged with salmonella enteritidis fed diet containing
probiotic (bacillus subtilis). Probiotics Antimicrob Proteins.
6:136–140. 2014.PubMed/NCBI View Article : Google Scholar
|
|
155
|
Rodrigues FC, Castro AS, Rodrigues VC,
Fernandes SA, Fontes EA, de Oliveira TT, Martino HS and de Luces
Fortes Ferreira CL: Yacon flour and bifidobacterium longum modulate
bone health in rats. J Med Food. 15:664–670. 2012.PubMed/NCBI View Article : Google Scholar
|
|
156
|
Maradonna F, Gioacchini G, Falcinelli S,
Bertotto D, Radaelli G, Olivotto I and Carnevali O: Probiotic
supplementation promotes calcification in danio rerio larvae: A
molecular study. PLoS One. 8(e83155)2013.PubMed/NCBI View Article : Google Scholar
|
|
157
|
Parvaneh K, Ebrahimi M, Sabran MR, Karimi
G, Hwei AN, Abdul-Majeed S, Ahmad Z, Ibrahim Z and Jamaluddin R:
Probiotics (bifidobacterium longum) increase bone mass density and
upregulate sparc and bmp-2 genes in rats with bone loss resulting
from ovariectomy. Biomed Res Int. 2015(897639)2015.PubMed/NCBI View Article : Google Scholar
|
|
158
|
Gibson GR and Roberfroid MB: Dietary
modulation of the human colonic microbiota: Introducing the concept
of prebiotics. J Nutr. 125:1401–1412. 1995.PubMed/NCBI View Article : Google Scholar
|
|
159
|
Bryk G, Coronel MZ, Pellegrini G,
Mandalunis P, Rio ME, de Portela ML and Zeni SN: Effect of a
combination GOS/FOS® prebiotic mixture and interaction with calcium
intake on mineral absorption and bone parameters in growing rats.
Eur J Nutr. 54:913–923. 2015.PubMed/NCBI View Article : Google Scholar
|
|
160
|
Slevin MM, Allsopp PJ, Magee PJ, Bonham
MP, Naughton VR, Strain JJ, Duffy ME, Wallace JM and Mc Sorley EM:
Supplementation with calcium and short-chain
fructo-oligosaccharides affects markers of bone turnover but not
bone mineral density in postmenopausal women. J Nutr. 144:297–304.
2014.PubMed/NCBI View Article : Google Scholar
|
|
161
|
Bass EF, Baile CA, Lewis RD and Giraudo
SQ: Bone quality and strength are greater in growing male rats fed
fructose compared with glucose. Nutr Res. 33:1063–1071.
2013.PubMed/NCBI View Article : Google Scholar
|
|
162
|
Yang LC, Wu JB, Lu TJ and Lin WC: The
prebiotic effect of anoectochilus formosanus and its consequences
on bone health. Br J Nutr. 109:1779–1788. 2013.PubMed/NCBI View Article : Google Scholar
|
|
163
|
Vindigni SM and Surawicz CM: Fecal
microbiota transplantation. Gastroenterol Clin North Am.
46:171–185. 2017.PubMed/NCBI View Article : Google Scholar
|
|
164
|
Rios-Arce ND, Schepper JD, Dagenais A,
Schaefer L, Daly-Seiler CS, Gardinier JD, Britton RA, McCabe LR and
Parameswaran N: Post-antibiotic gut dysbiosis-induced trabecular
bone loss is dependent on lymphocytes. Bone.
134(115269)2020.PubMed/NCBI View Article : Google Scholar
|
|
165
|
Goto Y, Panea C, Nakato G, Cebula A, Lee
C, Diez MG, Laufer TM, Ignatowicz L and Ivanov II: Segmented
filamentous bacteria antigens presented by intestinal dendritic
cells drive mucosal th17 cell differentiation. Immunity.
40:594–607. 2014.PubMed/NCBI View Article : Google Scholar
|
|
166
|
Atarashi K, Tanoue T, Shima T, Imaoka A,
Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, et al:
Induction of colonic regulatory T cells by indigenous clostridium
species. Science. 331:337–341. 2011.PubMed/NCBI View Article : Google Scholar
|
|
167
|
Li L, Rao S, Cheng Y, Zhuo X, Deng C, Xu
N, Zhang H and Yang L: Microbial osteoporosis: The interplay
between the gut microbiota and bones via host metabolism and
immunity. Microbiologyopen. 8(e00810)2019.PubMed/NCBI View Article : Google Scholar
|
|
168
|
Blanton LV, Charbonneau MR, Salih T,
Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ,
Trehan I, Jorgensen JM, et al: Gut bacteria that prevent growth
impairments transmitted by microbiota from malnourished children.
Science 351: 10.1126/science.aad3311 aad3311, 2016.
|
|
169
|
Zhang YW, Cao MM, Li YJ, Zhang RL, Wu MT,
Yu Q and Rui YF: Fecal microbiota transplantation as a promising
treatment option for osteoporosis. J Bone Miner Metab. 40:874–889.
2022.PubMed/NCBI View Article : Google Scholar
|
|
170
|
Neumann M, Steimle A, Grant ET, Wolter M,
Parrish A, Willieme S, Brenner D, Martens EC and Desai MS:
Deprivation of dietary fiber in specific-pathogen-free mice
promotes susceptibility to the intestinal mucosal pathogen
citrobacter rodentium. Gut Microbes. 13(1966263)2021.PubMed/NCBI View Article : Google Scholar
|
|
171
|
Sonnenburg ED, Smits SA, Tikhonov M,
Higginbottom SK, Wingreen NS and Sonnenburg JL: Diet-induced
extinctions in the gut microbiota compound over generations.
Nature. 529:212–215. 2016.PubMed/NCBI View Article : Google Scholar
|
|
172
|
Davis HC: Can the gastrointestinal
microbiota be modulated by dietary fibre to treat obesity? Ir J Med
Sci. 187:393–402. 2018.PubMed/NCBI View Article : Google Scholar
|
|
173
|
Matkovic V, Landoll JD, Badenhop-Stevens
NE, Ha EY, Crncevic-Orlic Z, Li B and Goel P: Nutrition influences
skeletal development from childhood to adulthood: A study of hip,
spine, and forearm in adolescent females. J Nutr. 134:701S–705S.
2004.PubMed/NCBI View Article : Google Scholar
|
|
174
|
Laird E, Molloy AM, McNulty H, Ward M,
McCarroll K, Hoey L, Hughes CF, Cunningham C, Strain JJ and Casey
MC: Greater yogurt consumption is associated with increased bone
mineral density and physical function in older adults. Osteoporos
Int. 28:2409–2419. 2017.PubMed/NCBI View Article : Google Scholar
|
|
175
|
Rizzoli R: Dairy products and bone health.
Aging Clin Exp Res. 34:9–24. 2022.PubMed/NCBI View Article : Google Scholar
|