|
1.
|
Adams HP Jr, del Zoppo G, Alberts MJ, et
al: Guidelines for the early management of adults with ischemic
stroke: a guideline from the American Heart Association/American
Stroke Association Stroke Council, Clinical Cardiology Council,
Cardiovascular Radiology and Intervention Council, and the
Atherosclerotic Peripheral Vascular Disease and Quality of Care
Outcomes in Research Interdisciplinary Working Groups: the American
Academy of Neurology affirms the value of this guideline as an
educational tool for neurologists. Stroke. 38:1655–1711. 2007.
|
|
2.
|
Kikuchi K, Kawahara K, Tancharoen S, et
al: The free radical scavenger edaravone rescues rats from cerebral
infarction by attenuating the release of high-mobility group box-1
in neuronal cells. J Pharmacol Exp Ther. 329:865–874. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
3.
|
Kikuchi K, Tancharoen S, Matsuda F, et al:
Edaravone attenuates cerebral ischemic injury by suppressing
aquaporin-4. Biochem Biophys Res Commun. 390:1121–1125. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
4.
|
Higashi Y, Jitsuiki D, Chayama K and
Yoshizumi M: Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a
novel free radical scavenger for treatment of cardiovascular
diseases. Recent Pat Cardiovasc Drug Discov. 1:85–93. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
5.
|
Lapchak PA and Zivin JA: The lipophilic
multifunctional antioxidant edaravone (Radicut) improves behavior
following embolic strokes in rabbits: a combination therapy study
with tissue plasminogen activator. Exp Neurol. 215:95–100. 2009.
View Article : Google Scholar
|
|
6.
|
Wang CX and Shuaib A: Neuroprotective
effects of free radical scavengers in stroke. Drugs Aging.
24:537–546. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Green AR and Shuaib A: Therapeutic
strategies for the treatment of stroke. Drug Discov Today.
11:681–693. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
8.
|
Van der Worp HB, Kappelle LJ, Algra A, et
al: The effect of tirilazad mesylate on infarct volume of patients
with acute ischemic stroke. Neurology. 58:133–135. 2002.PubMed/NCBI
|
|
9.
|
Shuaib A, Lees KR, Lyden P, et al: NXY-059
for the treatment of acute ischemic stroke. N Engl J Med.
357:562–571. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Edaravone Acute Infarction Study Group:
Effect of a novel free radical scavenger, edaravone (MCI-186), on
acute brain infarction. Randomized, placebo-controlled,
double-blind study at multicenters. Cerebrovasc Dis. 15:222–229.
2003. View Article : Google Scholar
|
|
11.
|
Zhang N, Komine-Kobayashi M, Tanaka R, Liu
M, Mizuno Y and Urabe T: Edaravone reduces early accumulation of
oxidative products and sequential inflammatory responses after
transient focal ischemia in mice brain. Stroke. 36:2220–2225. 2005.
View Article : Google Scholar
|
|
12.
|
Unno Y, Katayama M and Shimizu H: Does
functional outcome in acute ischaemic stroke patients correlate
with the amount of free-radical scavenger treatment? A
retrospective study of edaravone therapy. Clin Drug Investig.
30:143–155. 2010. View Article : Google Scholar
|
|
13.
|
Papadopoulos MC, Krishna S and Verkman AS:
Aquaporin water channels and brain edema. Mt Sinai J Med.
69:242–248. 2002.PubMed/NCBI
|
|
14.
|
Yagi K, Kitazato KT, Uno M, et al:
Edaravone, a free radical scavenger, inhibits MMP-9-related brain
hemorrhage in rats treated with tissue plasminogen activator.
Stroke. 40:626–631. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15.
|
Yoshida H, Yanai H, Namiki Y,
Fukatsu-Sasaki K, Furutani N and Tada N: Neuroprotective effects of
edaravone: a novel free radical scavenger in cerebrovascular
injury. CNS Drug Rev. 12:9–20. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
16.
|
Feigin VL and Findlay M: Advances in
subarachnoid hemorrhage. Stroke. 37:305–308. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17.
|
Van Gijn J, Kerr RS and Rinkel GJ:
Subarachnoid haemorrhage. Lancet. 369:306–318. 2007.
|
|
18.
|
Wiebers DO, Whisnant JP, Huston J III, et
al: Unruptured intracranial aneurysms: natural history, clinical
outcome, and risks of surgical and endovascular treatment. Lancet.
362:103–110. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
19.
|
Aoki T, Nishimura M, Kataoka H, Ishibashi
R, Nozaki K and Hashimoto N: Reactive oxygen species modulate
growth of cerebral aneurysms: a study using the free radical
scavenger edaravone and p47phox(−/−) mice. Lab Invest. 89:730–741.
2009.PubMed/NCBI
|
|
20.
|
Dorsch NW and King MT: A review of
cerebral vasospasm in aneurysmal subarachnoid haemorrhage Part I:
incidence and effects. J Clin Neurosci. 1:19–26. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Nakagomi T, Yamakawa K, Sasaki T, Saito I
and Takakura K: Effect of edaravone on cerebral vasospasm following
experimental subarachnoid hemorrhage. J Stroke Cerebrovasc Dis.
12:17–21. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
22.
|
Munakata A, Ohkuma H, Nakano T, Shimamura
N, Asano K and Naraoka M: Effect of a free radical scavenger,
edaravone, in the treatment of patients with aneurysmal
subarachnoid hemorrhage. Neurosurgery. 64:423–429. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23.
|
Tosaka M, Hashiba Y, Saito N, Imai H,
Shimizu T and Sasaki T: Contractile responses to reactive oxygen
species in the canine basilar artery in vitro: selective inhibitory
effect of MCI-186, a new hydroxyl radical scavenger. Acta
Neurochir. 144:1305–1310. 2002. View Article : Google Scholar
|
|
24.
|
Nakamura T, Kuroda Y, Yamashita S, et al:
Edaravone attenuates brain edema and neurologic deficits in a rat
model of acute intracerebral hemorrhage. Stroke. 39:463–469. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Fayad PB and Awad IA: Surgery for
intracerebral hemorrhage. Neurology. 51:S69–S73. 1998. View Article : Google Scholar
|
|
26.
|
McDonald JW and Sadowsky C: Spinal-cord
injury. Lancet. 359:417–425. 2002. View Article : Google Scholar
|
|
27.
|
Andersson U, Wang H, Palmblad K, et al:
High mobility group 1 protein (HMG-1) stimulates proinflammatory
cytokine synthesis in human monocytes. J Exp Med. 192:565–570.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
28.
|
Ao Q, Wang AJ, Chen GQ, Wang SJ, Zuo HC
and Zhang XF: Combined transplantation of neural stem cells and
olfactory ensheathing cells for the repair of spinal cord injuries.
Med Hypotheses. 69:1234–1237. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29.
|
Rosenfeld JV, Bandopadhayay P,
Goldschlager T and Brown DJ: The ethics of the treatment of spinal
cord injury: stem cell transplants, motor neuroprosthetics, and
social equity. Top Spinal Cord Inj Rehabil. 14:76–88. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
30.
|
Aoyama T, Hida K, Kuroda S, et al:
Edaravone (MCI-186) scavenges reactive oxygen species and
ameliorates tissue damage in the murine spinal cord injury model.
Neurol Med Chir. 48:539–545. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
31.
|
Suzuki K, Kazui T, Terada H, et al:
Experimental study on the protective effects of edaravone against
ischemic spinal cord injury. J Thorac Cardiovasc Surg.
130:1586–1592. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32.
|
Takahashi G, Sakurai M, Abe K, Itoyama Y
and Tabayashi K: MCI-186 prevents spinal cord damage and affects
enzyme levels of nitric oxide synthase and Cu/Zn superoxide
dismutase after transient ischemia in rabbits. J Thorac Cardiovasc
Surg. 126:1461–1466. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
33.
|
Takahashi G, Sakurai M, Abe K, Itoyama Y
and Tabayashi K: MCI-186 reduces oxidative cellular damage and
increases DNA repair function in the rabbit spinal cord after
transient ischemia. Ann Thorac Surg. 78:602–607. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
34.
|
Ohta S, Iwashita Y, Takada H, Kuno S and
Nakamura T: Neuroprotection and enhanced recovery with edaravone
after acute spinal cord injury in rats. Spine. 30:1154–1158. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
35.
|
Maas AI, Stocchetti N and Bullock R:
Moderate and severe traumatic brain injury in adults. Lancet
Neurol. 7:728–741. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36.
|
Greenwald BD, Burnett DM and Miller MA:
Congenital and acquired brain injury. 1 Brain injury: epidemiology
and pathophysiology. Arch Phys Med Rehabil. 84:S3–S7. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
37.
|
Chirumamilla S, Sun D, Bullock MR and
Colello RJ: Traumatic brain injury induced cell proliferation in
the adult mammalian central nervous system. J Neurotrauma.
19:693–703. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
38.
|
Rice AC, Khaldi A, Harvey HB, et al:
Proliferation and neuronal differentiation of mitotically active
cells following traumatic brain injury. Exp Neurol. 183:406–417.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
Itoh T, Satou T, Nishida S, et al:
Edaravone protects against apoptotic neuronal cell death and
improves cerebral function after traumatic brain injury in rats.
Neurochem Res. 35:348–355. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40.
|
Itoh T, Satou T, Nishida S, Tsubaki M,
Hashimoto S and Ito H: The novel free radical scavenger, edaravone,
increases neural stem cell number around the area of damage
following rat traumatic brain injury. Neurotox Res. 16:378–389.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
41.
|
Dohi K, Satoh K, Mihara Y, et al: Alkoxyl
radical-scavenging activity of edaravone in patients with traumatic
brain injury. J Neurotrauma. 23:1591–1599. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Dohi K, Satoh K, Nakamachi T, et al: Does
edaravone (MCI-186) act as an antioxidant and a neuroprotector in
experimental traumatic brain injury? Antioxid Redox Signal.
9:281–287. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43.
|
Raibon E, Todd LM and Moller T: Glial
cells in ALS: the missing link? Phys Med Rehabil Clin N Am.
19:441–459. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44.
|
Mitchell JD and Borasio GD: Amyotrophic
lateral sclerosis. Lancet. 369:2031–2041. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Rosen DR, Siddique T, Patterson D, et al:
Mutations in Cu/Zn superoxide dismutase gene are associated with
familial amyotrophic lateral sclerosis. Nature. 362:59–62. 1993.
View Article : Google Scholar
|
|
46.
|
Ito H, Wate R, Zhang J, et al: Treatment
with edaravone, initiated at symptom onset, slows motor decline and
decreases SOD1 deposition in ALS mice. Exp Neurol. 213:448–455.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
47.
|
Kabashi E and Durham HD: Failure of
protein quality control in amyotrophic lateral sclerosis. Biochim
Biophys Acta. 1762:1038–1050. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48.
|
Valentine JS and Hart PJ: Misfolded
CuZnSOD and amyotrophic lateral sclerosis. Proc Natl Acad Sci USA.
100:3617–3622. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
49.
|
Yoshino H and Kimura A: Investigation of
the therapeutic effects of edaravone, a free radical scavenger, on
amyotrophic lateral sclerosis (Phase II study). Amyotroph Lateral
Scler. 7:241–245. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50.
|
Takahashi R: Edaravone in ALS. Exp Neurol.
217:235–236. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51.
|
De Lau LM and Breteler MM: Epidemiology of
Parkinson’s disease. Lancet Neurol. 5:525–535. 2006.
|
|
52.
|
Yuan WJ, Yasuhara T, Shingo T, et al:
Neuroprotective effects of edaravone-administration on
6-OHDA-treated dopaminergic neurons. BMC Neurosci. 9:752008.
View Article : Google Scholar : PubMed/NCBI
|
|
53.
|
Ma L, Cao TT, Kandpal G, et al:
Genome-wide microarray analysis of the differential neuroprotective
effects of antioxidants in neuroblastoma cells overexpressing the
familial Parkinson’s disease alpha-synuclein A53T mutation.
Neurochem Res. 35:130–142. 2010.PubMed/NCBI
|
|
54.
|
Rosati G: The prevalence of multiple
sclerosis in the world: an update. Neurol Sci. 22:117–139. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
55.
|
Cohen JA: Emerging therapies for relapsing
multiple sclerosis. Arch Neurol. 66:821–828. 2009. View Article : Google Scholar
|
|
56.
|
Motomura K, Ogura M, Natsume A, Yokoyama H
and Wakabayashi T: A free-radical scavenger protects the neural
progenitor cells in the dentate subgranular zone of the hippocampus
from cell death after X-irradiation. Neurosci Lett. 485:65–70.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
57.
|
Anderson VA, Godber T, Smibert E, Weiskop
S and Ekert H: Cognitive and academic outcome following cranial
irradiation and chemotherapy in children: a longitudinal study. Br
J Cancer. 82:255–262. 2000.PubMed/NCBI
|
|
58.
|
Crossen JR, Garwood D, Glatstein E and
Neuwelt EA: Neurobehavioral sequelae of cranial irradiation in
adults: a review of radiation-induced encephalopathy. J Clin Oncol.
12:627–642. 1994.PubMed/NCBI
|
|
59.
|
Monje ML and Palmer T: Radiation injury
and neurogenesis. Curr Opin Neurol. 16:129–134. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
60.
|
Ishii J, Natsume A, Wakabayashi T, et al:
The free-radical scavenger edaravone restores the differentiation
of human neural precursor cells after radiation-induced oxidative
stress. Neurosci Lett. 423:225–230. 2007. View Article : Google Scholar
|