Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
July 2012 Volume 4 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July 2012 Volume 4 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

microRNA-based cancer cell reprogramming technology (Review)

  • Authors:
    • Shimpei Nishikawa
    • Hideshi Ishii
    • Naotsugu Haraguchi
    • Yoshihiro Kano
    • Takahito Fukusumi
    • Katsuya Ohta
    • Miyuki Ozaki
    • Dyah Laksmi Dewi
    • Daisuke Sakai
    • Taroh Satoh
    • Hiroaki Nagano
    • Yuichiro Doki
    • Masaki Mori
  • View Affiliations / Copyright

    Affiliations: Department of Frontier Science for Cancer and Chemotherapy, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871, Japan, Department of Gastroenterological Surgery, Osaka University, Graduate School of Medicine, Suita, Osaka 565-0871, Japan
  • Pages: 8-14
    |
    Published online on: April 23, 2012
       https://doi.org/10.3892/etm.2012.558
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Epigenetic modifications play crucial roles in cancer initiation and development. Complete reprogramming can be achieved through the introduction of defined biological factors such as Oct4, Sox2, Klf4, and cMyc into mouse and human fibroblasts. Introduction of these transcription factors resulted in the modification of malignant phenotype behavior. Recent studies have shown that human and mouse somatic cells can be reprogrammed to become induced pluripotent stem cells using forced expression of microRNAs, which completely eliminates the need for ectopic protein expression. Considering the usefulness of RNA molecules, microRNA-based reprogramming technology may have future applications in regenerative and cancer medicine.
View Figures
View References

1 

Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI

2 

John B, Enright AJ, Aravin A, Tuschl T, Sander C and Marks DS: Human MicroRNA targets. PLoS Biol. 2:e3632004. View Article : Google Scholar

3 

Houbaviy HB, Murray MF and Sharp PA: Embryonic stem cell-specific microRNAs. Dev Cell. 5:351–358. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Lim LP, Glasner ME, Yekta S, Burge CB and Bartel DP: Vertebrate microRNA genes. Science. 299:15402003. View Article : Google Scholar : PubMed/NCBI

5 

Leung AK and Sharp PA: MicroRNA functions in stress responses. Mol Cell. 40:205–215. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Marsit CJ, Eddy K and Kelsey KT: MicroRNA responses to cellular stress. Cancer Res. 66:10843–10848. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Ng HH and Surani MA: The transcriptional and signalling networks of pluripotency. Nat Cell Biol. 13:490–496. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Calin GA, Dumitru CD, Shimizu M, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Calin GA, Ferracin M, Cimmino A, et al: A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 353:1793–1801. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Cerchia L and De Franciscis V: Noncoding RNAs in cancer medicine. J Biomed Biotechnol. 2006:1–8. 2006. View Article : Google Scholar

11 

Cummins JM, He Y, Leary RJ, et al: The colorectal microRNAome. Proc Natl Acad Sci USA. 103:3687–3692. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Wijnhoven B, Michael MZ and Watson DI: MicroRNAs and cancer. Br J Surg. 94:23–30. 2007. View Article : Google Scholar

13 

Davis RL, Weintraub H and Lassar AB: Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 51:987–1000. 1987. View Article : Google Scholar : PubMed/NCBI

14 

Xie H, Ye M, Feng R and Graf T: Stepwise reprogramming of B cells into macrophages. Cell. 117:663–676. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Zhou Q, Brown J, Kanarek A, Rajagopal J and Melton DA: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 455:627–632. 2008. View Article : Google Scholar : PubMed/NCBI

16 

French SW, Hoyer KK, Shen RR and Teitell MA: Transdifferentiation and nuclear reprogramming in hematopoietic development and neoplasia. Immunol Rev. 187:22–39. 2002. View Article : Google Scholar : PubMed/NCBI

17 

Ungefroren H and Fändrich F: The programmable cell of monocytic origin (PCMO): a potential adult stem/progenitor cell source for the generation of islet cells. Adv Exp Med Biol. 654:667–682. 2010.PubMed/NCBI

18 

Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar

20 

Yamanaka S: Elite and stochastic models for induced pluripotent stem cell generation. Nature. 460:49–52. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar

22 

McKenna ES and Roberts CW: Epigenetics and cancer without genomic instability. Cell Cycle. 8:23–26. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Hanahan D and Weinberg RA: Hallmarks of cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Rodríguez-Paredes M and Esteller M: Cancer epigenetics reaches mainstream oncology. Nat Med. 17:330–339. 2011.

25 

Cavenee W, Dryja TP, Phillips RA, et al: Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature. 305:779–784. 1983. View Article : Google Scholar : PubMed/NCBI

26 

Weinberg R: Tumor suppressor genes. Science. 254:1138–1146. 1991. View Article : Google Scholar : PubMed/NCBI

27 

Weinberg RA: The retinoblastoma protein and cell cycle control. Cell. 81:323–330. 1995. View Article : Google Scholar : PubMed/NCBI

28 

Wang JY: Cellular responses to DNA damage. Curr Opin Cell Biol. 10:240–247. 1998. View Article : Google Scholar : PubMed/NCBI

29 

Solinas G, Marchesi F, Garlanda C, Mantovani A and Allavena P: Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev. 29:243–248. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Vogelstein B and Kinzler KW: The multistep nature of cancer. Trends Genet. 9:138–141. 1993. View Article : Google Scholar : PubMed/NCBI

31 

Bonavia R, Inda MD, Cavenee WK and Furnari FB: Heterogeneity maintenance in glioblastoma: a social network. Cancer Res. 71:4055–4060. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Miyoshi N, Ishii H, Nagai K, et al: Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci USA. 107:40–45. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Friedlander SYG, Chu GC, Snyder EL, et al: Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell. 16:379–389. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Orkin SH and Hochedlinger K: Chromatin connections to pluripotency and cellular reprogramming. Cell. 145:835–850. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Gurdon JB and Wilmut I: Nuclear transfer to eggs and oocytes. Cold Spring Harb Perspect Biol. 3:1–14. 2011. View Article : Google Scholar

36 

Maekawa M, Yamaguchi K, Nakamura T, et al: Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature. 474:225–229. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Nilsen TW: Endo-siRNAs: Yet another layer of complexity in RNA silencing. Nat Struct Mol Biol. 15:546–548. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Golden DE, Gerbasi VR and Sontheimer EJ: An inside job for siRNAs. Mol Cell. 31:309–312. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Okamura K and Lai EC: Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol. 9:673–678. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Suh N and Blelloch R: Small RNAs in early mammalian development: from gametes to gastrulation. Development. 138:1653–1661. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Watanabe T, Totoki Y, Toyoda A, et al: Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 453:539–543. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Watanabe T, Tomizawa S, Mitsuya K, et al: Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science. 332:848–852. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Song R, Hennig GW, Wu Q, Jose C, Zheng H and Yan W: Male germ cells express abundant endogenous siRNAs. Proc Natl Acad Sci USA. 108:13159–13164. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J and Blelloch R: MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol. 20:271–277. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Ma J, Flemr M, Stein P, et al: MicroRNA activity is suppressed in mouse oocytes. Curr Biol. 20:265–270. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Anokye-Danso F, Trivedi CM, Juhr D, et al: Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 8:376–388. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Miyoshi N, Ishii H, Nagano H, et al: Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell. 8:633–638. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DT, Chen DT and Ying SY: Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA. 14:2115–2124. 2008. View Article : Google Scholar : PubMed/NCBI

49 

Lin SL, Chang DC, Ying SY, Leu D and Wu DT: MicroRNA miR-302 inhibits the tumorigenicity of human pluripotent stem cells by coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways. Cancer Res. 70:9473–9482. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Sozzi G, Huebner K and Croce CM: FHIT in human cancer. Adv Cancer Res. 74:141–166. 1998. View Article : Google Scholar

51 

Huebner K and Croce CM: FRA3B and other common fragile sites: the weakest link. Nat Rev Cancer. 1:214–221. 2001. View Article : Google Scholar : PubMed/NCBI

52 

Arlt MF, Casper AM and Glover TW: Common fragile sites. Cytogenet Genome Res. 100:92–100. 2003. View Article : Google Scholar

53 

Cimprich KA: Fragile sites: breaking up over a slowdown. Curr Biol. 13:R231–R233. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Durkin SG and Glover TW: Chromosome fragile sites. Annu Rev Genet. 41:169–192. 2007. View Article : Google Scholar

55 

Sutherland GR: Rare fragile sites. Cytogenet Genome Res. 100:77–84. 2003. View Article : Google Scholar

56 

Croce CM, Sozzi G and Huebner K: Role of FHIT in human cancer. J Clin Oncol. 17:1618–1624. 1999.PubMed/NCBI

57 

Dillon LW, Burrow AA and Wang YH: DNA instability at chromosomal fragile sites in cancer. Curr Genomics. 11:326–337. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Casper AM, Nghiem P, Arlt MF and Glover TW: ATR regulates fragile site stability. Cell. 111:779–789. 2002. View Article : Google Scholar : PubMed/NCBI

59 

Cirombella R, Montrone G, Stoppacciaro A, et al: Fhit loss in lung preneoplasia: relation to DNA damage response checkpoint activation. Cancer Lett. 291:230–236. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Calin GA, Sevignani C, Dumitru CD, et al: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Hu B, Wang H, Wang X, et al: Fhit and CHK1 have opposing effects on homologous recombination repair. Cancer Res. 65:8613–8616. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Ishii H, Mimori K, Inoue H, et al: Fhit modulates the DNA damage checkpoint response. Cancer Res. 66:11287–11292. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Okumura H, Ishii H, Pichiorri F, Croce CM, Mori M and Huebner K: Fragile gene product, Fhit, in oxidative and replicative stress responses. Cancer Sci. 100:1145–1150. 2009. View Article : Google Scholar : PubMed/NCBI

64 

Ishii H, Mimori K, Ishikawa K, et al: Fhit-deficient hematopoietic stem cells survive hydroquinone treatment long-term, carrying precancerous alterations. Cancer Res. 68:3662–3670. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Rossi S, Sevignani C, Nnadi SC, Siracusa LD and Calin GA: Cancer-associated genomic regions (CAGRs) and noncoding RNAs: bioinformatics and therapeutic implications. Mamm Genome. 19:526–540. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Wang Z, Li Y, Ahmad A, Azmi AS, Kong D, Banerjee S and Sarkar FH: Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. Drug Resist Updat. 13:109–118. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Zimmerman AL and Wu S: MicroRNAs, cancer and cancer stem cells. Cancer Lett. 300:10–19. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Cortez MA, Ivan C, Zhou P, Wu X, Ivan M and Calin GA: microRNAs in cancer: from bench to bedside. Adv Cancer Res. 108:113–157. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Garzon R, Marcucci G and Croce CM: Targeting microRNAs in cancer: Rationale, strategies and challenges. Nat Rev Drug Discov. 9:775–789. 2010. View Article : Google Scholar : PubMed/NCBI

70 

White NM, Fatoohi E, Metias M, Jung K, Stephan C and Yousef GM: Metastamirs: a stepping stone towards improved cancer management. Nat Rev Clin Oncol. 8:75–84. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Kasemeier-Kulesa JC, Teddy JM, Postovit LM, Seftor EA, Seftor RE, Hendrix MJ and Kulesa PM: Reprogramming multipotent tumor cells with the embryonic neural crest micro-environment. Dev Dyn. 237:2657–2666. 2008. View Article : Google Scholar : PubMed/NCBI

72 

Wang J, Emadali A, Le Bescont A, Callanan M, Rousseaux S and Khochbin S: Induced malignant genome reprogramming in somatic cells by testis-specific factors. Biochim Biophys Acta. 1809:221–225. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Yu J, Vodyanik MA, Smuga-Otto K, et al: Induced pluripotent stem cell lines derived from human somatic cells. Science. 318:1917–1920. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Okita K, Nakagawa M, Hyenjong H, Ichisaka T and Yamanaka S: Generation of mouse induced pluripotent stem cells without viral vectors. Science. 322:949–953. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Stadtfeld M, Nagaya M, Utikal J, Weir G and Hochedlinger K: Induced pluripotent stem cells generated without viral integration. Science. 322:945–949. 2008. View Article : Google Scholar : PubMed/NCBI

76 

Aoi T, Yae K, Nakagawa M, et al: Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 321:699–702. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Kim JB, Zaehres H, Wu G, Gentile L, et al: Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 454:646–650. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE and Melton DA: Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 26:795–797. 2008. View Article : Google Scholar : PubMed/NCBI

79 

Wernig M, Lengner CJ, Hanna J, et al: A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol. 26:916–924. 2008. View Article : Google Scholar : PubMed/NCBI

80 

Sun N, Panetta NJ, Gupta DM, et al: Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci USA. 106:15720–15725. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Zhou H, Wu S, Joo JY, et al: Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 4:381–384. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Shi Y, Do JT, Desponts C, Hahm HS, Schöler HR and Ding S: A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell. 2:525–528. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Woltjen K, Michael IP, Mohseni P, et al: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 458:766–770. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Judson RL, Babiarz JE, Venere M and Blelloch R: Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 27:459–461. 2009. View Article : Google Scholar : PubMed/NCBI

85 

Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P and Woltjen K: Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 458:771–775. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Seki T, Yuasa S, Oda M, et al: Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell. 7:11–14. 2010. View Article : Google Scholar : PubMed/NCBI

87 

Warren L, Manos PD, Ahfeldt T, et al: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 7:618–630. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Zhu S, Li W, Zhou H, et al: Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell. 7:651–655. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Li Z, Yang CS, Nakashima K and Rana TM: Small RNA-mediated regulation of iPS cell generation. EMBO J. 30:823–834. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R and Blelloch R: Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 29:443–448. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Li L, Connelly MC, Wetmore C, Curran T and Morgan JI: Mouse embryos cloned from brain tumors. Cancer Res. 63:2733–2736. 2003.PubMed/NCBI

92 

Hochedlinger K, Blelloch R, Brennan C, Yamada Y, Kim M, Chin L and Jaenisch R: Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 18:1875–1885. 2004. View Article : Google Scholar : PubMed/NCBI

93 

Blelloch RH, Hochedlinger K, Yamada Y, et al: Nuclear cloning of embryonal carcinoma cells. Proc Natl Acad Sci USA. 101:13985–13990. 2004.PubMed/NCBI

94 

Postovit LM, Margaryan NV, Seftor EA, et al: Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc Natl Acad Sci USA. 105:4329–4334. 2008. View Article : Google Scholar : PubMed/NCBI

95 

Utikal J, Maherali N, Kulalert W and Hochedlinger K: Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci. 122:3502–3510. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Carette JE, Pruszak J, Varadarajan M, Blomen VA and Gokhale S: Generation of iPSCs from cultured human malignant cells. Blood. 115:4039–4042. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Mathieu J, Zhang Z, Zhou W, Wang AJ and Heddleston JM: HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 71:4640–4652. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Allegrucci C, Rushton MD, Dixon JE, et al: Epigenetic reprogramming of breast cancer cells with oocyte extracts. Mol Cancer. 10:72011.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Nishikawa S, Ishii H, Haraguchi N, Kano Y, Fukusumi T, Ohta K, Ozaki M, Dewi D, Sakai D, Satoh T, Satoh T, et al: microRNA-based cancer cell reprogramming technology (Review). Exp Ther Med 4: 8-14, 2012.
APA
Nishikawa, S., Ishii, H., Haraguchi, N., Kano, Y., Fukusumi, T., Ohta, K. ... Mori, M. (2012). microRNA-based cancer cell reprogramming technology (Review). Experimental and Therapeutic Medicine, 4, 8-14. https://doi.org/10.3892/etm.2012.558
MLA
Nishikawa, S., Ishii, H., Haraguchi, N., Kano, Y., Fukusumi, T., Ohta, K., Ozaki, M., Dewi, D., Sakai, D., Satoh, T., Nagano, H., Doki, Y., Mori, M."microRNA-based cancer cell reprogramming technology (Review)". Experimental and Therapeutic Medicine 4.1 (2012): 8-14.
Chicago
Nishikawa, S., Ishii, H., Haraguchi, N., Kano, Y., Fukusumi, T., Ohta, K., Ozaki, M., Dewi, D., Sakai, D., Satoh, T., Nagano, H., Doki, Y., Mori, M."microRNA-based cancer cell reprogramming technology (Review)". Experimental and Therapeutic Medicine 4, no. 1 (2012): 8-14. https://doi.org/10.3892/etm.2012.558
Copy and paste a formatted citation
x
Spandidos Publications style
Nishikawa S, Ishii H, Haraguchi N, Kano Y, Fukusumi T, Ohta K, Ozaki M, Dewi D, Sakai D, Satoh T, Satoh T, et al: microRNA-based cancer cell reprogramming technology (Review). Exp Ther Med 4: 8-14, 2012.
APA
Nishikawa, S., Ishii, H., Haraguchi, N., Kano, Y., Fukusumi, T., Ohta, K. ... Mori, M. (2012). microRNA-based cancer cell reprogramming technology (Review). Experimental and Therapeutic Medicine, 4, 8-14. https://doi.org/10.3892/etm.2012.558
MLA
Nishikawa, S., Ishii, H., Haraguchi, N., Kano, Y., Fukusumi, T., Ohta, K., Ozaki, M., Dewi, D., Sakai, D., Satoh, T., Nagano, H., Doki, Y., Mori, M."microRNA-based cancer cell reprogramming technology (Review)". Experimental and Therapeutic Medicine 4.1 (2012): 8-14.
Chicago
Nishikawa, S., Ishii, H., Haraguchi, N., Kano, Y., Fukusumi, T., Ohta, K., Ozaki, M., Dewi, D., Sakai, D., Satoh, T., Nagano, H., Doki, Y., Mori, M."microRNA-based cancer cell reprogramming technology (Review)". Experimental and Therapeutic Medicine 4, no. 1 (2012): 8-14. https://doi.org/10.3892/etm.2012.558
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team