|
1
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
John B, Enright AJ, Aravin A, Tuschl T,
Sander C and Marks DS: Human MicroRNA targets. PLoS Biol.
2:e3632004. View Article : Google Scholar
|
|
3
|
Houbaviy HB, Murray MF and Sharp PA:
Embryonic stem cell-specific microRNAs. Dev Cell. 5:351–358. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lim LP, Glasner ME, Yekta S, Burge CB and
Bartel DP: Vertebrate microRNA genes. Science. 299:15402003.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Leung AK and Sharp PA: MicroRNA functions
in stress responses. Mol Cell. 40:205–215. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Marsit CJ, Eddy K and Kelsey KT: MicroRNA
responses to cellular stress. Cancer Res. 66:10843–10848. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ng HH and Surani MA: The transcriptional
and signalling networks of pluripotency. Nat Cell Biol. 13:490–496.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Calin GA, Dumitru CD, Shimizu M, et al:
Frequent deletions and down-regulation of micro-RNA genes miR15 and
miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci
USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Calin GA, Ferracin M, Cimmino A, et al: A
MicroRNA signature associated with prognosis and progression in
chronic lymphocytic leukemia. N Engl J Med. 353:1793–1801. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Cerchia L and De Franciscis V: Noncoding
RNAs in cancer medicine. J Biomed Biotechnol. 2006:1–8. 2006.
View Article : Google Scholar
|
|
11
|
Cummins JM, He Y, Leary RJ, et al: The
colorectal microRNAome. Proc Natl Acad Sci USA. 103:3687–3692.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wijnhoven B, Michael MZ and Watson DI:
MicroRNAs and cancer. Br J Surg. 94:23–30. 2007. View Article : Google Scholar
|
|
13
|
Davis RL, Weintraub H and Lassar AB:
Expression of a single transfected cDNA converts fibroblasts to
myoblasts. Cell. 51:987–1000. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Xie H, Ye M, Feng R and Graf T: Stepwise
reprogramming of B cells into macrophages. Cell. 117:663–676. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhou Q, Brown J, Kanarek A, Rajagopal J
and Melton DA: In vivo reprogramming of adult pancreatic exocrine
cells to beta-cells. Nature. 455:627–632. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
French SW, Hoyer KK, Shen RR and Teitell
MA: Transdifferentiation and nuclear reprogramming in hematopoietic
development and neoplasia. Immunol Rev. 187:22–39. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ungefroren H and Fändrich F: The
programmable cell of monocytic origin (PCMO): a potential adult
stem/progenitor cell source for the generation of islet cells. Adv
Exp Med Biol. 654:667–682. 2010.PubMed/NCBI
|
|
18
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Takahashi K, Tanabe K, Ohnuki M, Narita M,
Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem
cells from adult human fibroblasts by defined factors. Cell.
131:861–872. 2007. View Article : Google Scholar
|
|
20
|
Yamanaka S: Elite and stochastic models
for induced pluripotent stem cell generation. Nature. 460:49–52.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar
|
|
22
|
McKenna ES and Roberts CW: Epigenetics and
cancer without genomic instability. Cell Cycle. 8:23–26. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Rodríguez-Paredes M and Esteller M: Cancer
epigenetics reaches mainstream oncology. Nat Med. 17:330–339.
2011.
|
|
25
|
Cavenee W, Dryja TP, Phillips RA, et al:
Expression of recessive alleles by chromosomal mechanisms in
retinoblastoma. Nature. 305:779–784. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Weinberg R: Tumor suppressor genes.
Science. 254:1138–1146. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Weinberg RA: The retinoblastoma protein
and cell cycle control. Cell. 81:323–330. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang JY: Cellular responses to DNA damage.
Curr Opin Cell Biol. 10:240–247. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Solinas G, Marchesi F, Garlanda C,
Mantovani A and Allavena P: Inflammation-mediated promotion of
invasion and metastasis. Cancer Metastasis Rev. 29:243–248. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Vogelstein B and Kinzler KW: The multistep
nature of cancer. Trends Genet. 9:138–141. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Bonavia R, Inda MD, Cavenee WK and Furnari
FB: Heterogeneity maintenance in glioblastoma: a social network.
Cancer Res. 71:4055–4060. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Miyoshi N, Ishii H, Nagai K, et al:
Defined factors induce reprogramming of gastrointestinal cancer
cells. Proc Natl Acad Sci USA. 107:40–45. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Friedlander SYG, Chu GC, Snyder EL, et al:
Context-dependent transformation of adult pancreatic cells by
oncogenic K-Ras. Cancer Cell. 16:379–389. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Orkin SH and Hochedlinger K: Chromatin
connections to pluripotency and cellular reprogramming. Cell.
145:835–850. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gurdon JB and Wilmut I: Nuclear transfer
to eggs and oocytes. Cold Spring Harb Perspect Biol. 3:1–14. 2011.
View Article : Google Scholar
|
|
36
|
Maekawa M, Yamaguchi K, Nakamura T, et al:
Direct reprogramming of somatic cells is promoted by maternal
transcription factor Glis1. Nature. 474:225–229. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Nilsen TW: Endo-siRNAs: Yet another layer
of complexity in RNA silencing. Nat Struct Mol Biol. 15:546–548.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Golden DE, Gerbasi VR and Sontheimer EJ:
An inside job for siRNAs. Mol Cell. 31:309–312. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Okamura K and Lai EC: Endogenous small
interfering RNAs in animals. Nat Rev Mol Cell Biol. 9:673–678.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Suh N and Blelloch R: Small RNAs in early
mammalian development: from gametes to gastrulation. Development.
138:1653–1661. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Watanabe T, Totoki Y, Toyoda A, et al:
Endogenous siRNAs from naturally formed dsRNAs regulate transcripts
in mouse oocytes. Nature. 453:539–543. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Watanabe T, Tomizawa S, Mitsuya K, et al:
Role for piRNAs and noncoding RNA in de novo DNA methylation of the
imprinted mouse Rasgrf1 locus. Science. 332:848–852. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Song R, Hennig GW, Wu Q, Jose C, Zheng H
and Yan W: Male germ cells express abundant endogenous siRNAs. Proc
Natl Acad Sci USA. 108:13159–13164. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Suh N, Baehner L, Moltzahn F, Melton C,
Shenoy A, Chen J and Blelloch R: MicroRNA function is globally
suppressed in mouse oocytes and early embryos. Curr Biol.
20:271–277. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ma J, Flemr M, Stein P, et al: MicroRNA
activity is suppressed in mouse oocytes. Curr Biol. 20:265–270.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Anokye-Danso F, Trivedi CM, Juhr D, et al:
Highly efficient miRNA-mediated reprogramming of mouse and human
somatic cells to pluripotency. Cell Stem Cell. 8:376–388. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Miyoshi N, Ishii H, Nagano H, et al:
Reprogramming of mouse and human cells to pluripotency using mature
microRNAs. Cell Stem Cell. 8:633–638. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu
DT, Chen DT and Ying SY: Mir-302 reprograms human skin cancer cells
into a pluripotent ES-cell-like state. RNA. 14:2115–2124. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lin SL, Chang DC, Ying SY, Leu D and Wu
DT: MicroRNA miR-302 inhibits the tumorigenicity of human
pluripotent stem cells by coordinate suppression of the CDK2 and
CDK4/6 cell cycle pathways. Cancer Res. 70:9473–9482. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sozzi G, Huebner K and Croce CM: FHIT in
human cancer. Adv Cancer Res. 74:141–166. 1998. View Article : Google Scholar
|
|
51
|
Huebner K and Croce CM: FRA3B and other
common fragile sites: the weakest link. Nat Rev Cancer. 1:214–221.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Arlt MF, Casper AM and Glover TW: Common
fragile sites. Cytogenet Genome Res. 100:92–100. 2003. View Article : Google Scholar
|
|
53
|
Cimprich KA: Fragile sites: breaking up
over a slowdown. Curr Biol. 13:R231–R233. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Durkin SG and Glover TW: Chromosome
fragile sites. Annu Rev Genet. 41:169–192. 2007. View Article : Google Scholar
|
|
55
|
Sutherland GR: Rare fragile sites.
Cytogenet Genome Res. 100:77–84. 2003. View Article : Google Scholar
|
|
56
|
Croce CM, Sozzi G and Huebner K: Role of
FHIT in human cancer. J Clin Oncol. 17:1618–1624. 1999.PubMed/NCBI
|
|
57
|
Dillon LW, Burrow AA and Wang YH: DNA
instability at chromosomal fragile sites in cancer. Curr Genomics.
11:326–337. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Casper AM, Nghiem P, Arlt MF and Glover
TW: ATR regulates fragile site stability. Cell. 111:779–789. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cirombella R, Montrone G, Stoppacciaro A,
et al: Fhit loss in lung preneoplasia: relation to DNA damage
response checkpoint activation. Cancer Lett. 291:230–236. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Calin GA, Sevignani C, Dumitru CD, et al:
Human microRNA genes are frequently located at fragile sites and
genomic regions involved in cancers. Proc Natl Acad Sci USA.
101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hu B, Wang H, Wang X, et al: Fhit and CHK1
have opposing effects on homologous recombination repair. Cancer
Res. 65:8613–8616. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ishii H, Mimori K, Inoue H, et al: Fhit
modulates the DNA damage checkpoint response. Cancer Res.
66:11287–11292. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Okumura H, Ishii H, Pichiorri F, Croce CM,
Mori M and Huebner K: Fragile gene product, Fhit, in oxidative and
replicative stress responses. Cancer Sci. 100:1145–1150. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ishii H, Mimori K, Ishikawa K, et al:
Fhit-deficient hematopoietic stem cells survive hydroquinone
treatment long-term, carrying precancerous alterations. Cancer Res.
68:3662–3670. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rossi S, Sevignani C, Nnadi SC, Siracusa
LD and Calin GA: Cancer-associated genomic regions (CAGRs) and
noncoding RNAs: bioinformatics and therapeutic implications. Mamm
Genome. 19:526–540. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang Z, Li Y, Ahmad A, Azmi AS, Kong D,
Banerjee S and Sarkar FH: Targeting miRNAs involved in cancer stem
cell and EMT regulation: An emerging concept in overcoming drug
resistance. Drug Resist Updat. 13:109–118. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zimmerman AL and Wu S: MicroRNAs, cancer
and cancer stem cells. Cancer Lett. 300:10–19. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cortez MA, Ivan C, Zhou P, Wu X, Ivan M
and Calin GA: microRNAs in cancer: from bench to bedside. Adv
Cancer Res. 108:113–157. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Garzon R, Marcucci G and Croce CM:
Targeting microRNAs in cancer: Rationale, strategies and
challenges. Nat Rev Drug Discov. 9:775–789. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
White NM, Fatoohi E, Metias M, Jung K,
Stephan C and Yousef GM: Metastamirs: a stepping stone towards
improved cancer management. Nat Rev Clin Oncol. 8:75–84. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kasemeier-Kulesa JC, Teddy JM, Postovit
LM, Seftor EA, Seftor RE, Hendrix MJ and Kulesa PM: Reprogramming
multipotent tumor cells with the embryonic neural crest
micro-environment. Dev Dyn. 237:2657–2666. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang J, Emadali A, Le Bescont A, Callanan
M, Rousseaux S and Khochbin S: Induced malignant genome
reprogramming in somatic cells by testis-specific factors. Biochim
Biophys Acta. 1809:221–225. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yu J, Vodyanik MA, Smuga-Otto K, et al:
Induced pluripotent stem cell lines derived from human somatic
cells. Science. 318:1917–1920. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Okita K, Nakagawa M, Hyenjong H, Ichisaka
T and Yamanaka S: Generation of mouse induced pluripotent stem
cells without viral vectors. Science. 322:949–953. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Stadtfeld M, Nagaya M, Utikal J, Weir G
and Hochedlinger K: Induced pluripotent stem cells generated
without viral integration. Science. 322:945–949. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Aoi T, Yae K, Nakagawa M, et al:
Generation of pluripotent stem cells from adult mouse liver and
stomach cells. Science. 321:699–702. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kim JB, Zaehres H, Wu G, Gentile L, et al:
Pluripotent stem cells induced from adult neural stem cells by
reprogramming with two factors. Nature. 454:646–650. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Huangfu D, Maehr R, Guo W, Eijkelenboom A,
Snitow M, Chen AE and Melton DA: Induction of pluripotent stem
cells by defined factors is greatly improved by small-molecule
compounds. Nat Biotechnol. 26:795–797. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wernig M, Lengner CJ, Hanna J, et al: A
drug-inducible transgenic system for direct reprogramming of
multiple somatic cell types. Nat Biotechnol. 26:916–924. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sun N, Panetta NJ, Gupta DM, et al:
Feeder-free derivation of induced pluripotent stem cells from adult
human adipose stem cells. Proc Natl Acad Sci USA. 106:15720–15725.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhou H, Wu S, Joo JY, et al: Generation of
induced pluripotent stem cells using recombinant proteins. Cell
Stem Cell. 4:381–384. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Shi Y, Do JT, Desponts C, Hahm HS, Schöler
HR and Ding S: A combined chemical and genetic approach for the
generation of induced pluripotent stem cells. Cell Stem Cell.
2:525–528. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Woltjen K, Michael IP, Mohseni P, et al:
piggyBac transposition reprograms fibroblasts to induced
pluripotent stem cells. Nature. 458:766–770. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Judson RL, Babiarz JE, Venere M and
Blelloch R: Embryonic stem cell-specific microRNAs promote induced
pluripotency. Nat Biotechnol. 27:459–461. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kaji K, Norrby K, Paca A, Mileikovsky M,
Mohseni P and Woltjen K: Virus-free induction of pluripotency and
subsequent excision of reprogramming factors. Nature. 458:771–775.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Seki T, Yuasa S, Oda M, et al: Generation
of induced pluripotent stem cells from human terminally
differentiated circulating T cells. Cell Stem Cell. 7:11–14. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Warren L, Manos PD, Ahfeldt T, et al:
Highly efficient reprogramming to pluripotency and directed
differentiation of human cells with synthetic modified mRNA. Cell
Stem Cell. 7:618–630. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhu S, Li W, Zhou H, et al: Reprogramming
of human primary somatic cells by OCT4 and chemical compounds. Cell
Stem Cell. 7:651–655. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Li Z, Yang CS, Nakashima K and Rana TM:
Small RNA-mediated regulation of iPS cell generation. EMBO J.
30:823–834. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Subramanyam D, Lamouille S, Judson RL, Liu
JY, Bucay N, Derynck R and Blelloch R: Multiple targets of miR-302
and miR-372 promote reprogramming of human fibroblasts to induced
pluripotent stem cells. Nat Biotechnol. 29:443–448. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Li L, Connelly MC, Wetmore C, Curran T and
Morgan JI: Mouse embryos cloned from brain tumors. Cancer Res.
63:2733–2736. 2003.PubMed/NCBI
|
|
92
|
Hochedlinger K, Blelloch R, Brennan C,
Yamada Y, Kim M, Chin L and Jaenisch R: Reprogramming of a melanoma
genome by nuclear transplantation. Genes Dev. 18:1875–1885. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Blelloch RH, Hochedlinger K, Yamada Y, et
al: Nuclear cloning of embryonal carcinoma cells. Proc Natl Acad
Sci USA. 101:13985–13990. 2004.PubMed/NCBI
|
|
94
|
Postovit LM, Margaryan NV, Seftor EA, et
al: Human embryonic stem cell microenvironment suppresses the
tumorigenic phenotype of aggressive cancer cells. Proc Natl Acad
Sci USA. 105:4329–4334. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Utikal J, Maherali N, Kulalert W and
Hochedlinger K: Sox2 is dispensable for the reprogramming of
melanocytes and melanoma cells into induced pluripotent stem cells.
J Cell Sci. 122:3502–3510. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Carette JE, Pruszak J, Varadarajan M,
Blomen VA and Gokhale S: Generation of iPSCs from cultured human
malignant cells. Blood. 115:4039–4042. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Mathieu J, Zhang Z, Zhou W, Wang AJ and
Heddleston JM: HIF induces human embryonic stem cell markers in
cancer cells. Cancer Res. 71:4640–4652. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Allegrucci C, Rushton MD, Dixon JE, et al:
Epigenetic reprogramming of breast cancer cells with oocyte
extracts. Mol Cancer. 10:72011.PubMed/NCBI
|