|
1.
|
Chien KR and Olson EN: Converging pathways
and principles in heart development and disease: CV@CSH. Cell.
110:153–162. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
2.
|
MacLellan WR and Schneider MD: Genetic
dissection of cardiac growth control pathways. Annu Rev Physiol.
62:289–319. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
3.
|
Anversa P, Rota M, Urbanek K, et al:
Myocardial aging - a stem cell problem. Basic Res Cardiol.
100:482–493. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4.
|
Beltrami AP, Barlucchi L, Torella D, et
al: Adult cardiac stem cells are multipotent and support myocardial
regeneration. Cell. 114:763–776. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
5.
|
Martin CM, Meeson AP, Robertson SM, et al:
Persistent expression of the ATP-binding cassette transporter,
Abcg2, identifies cardiac SP cells in the developing and adult
heart. Dev Biol. 265:262–275. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6.
|
Matsuura K, Nagai T, Nishigaki N, et al:
Adult cardiac Sca-1-positive cells differentiate into beating
cardiomyocytes. J Biol Chem. 279:11384–11391. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Oh H, Bradfute SB, Gallardo TD, et al:
Cardiac progenitor cells from adult myocardium: homing,
differentiation, and fusion after infarction. Proc Natl Acad Sci
USA. 100:12313–12318. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8.
|
Linke A, Müller P, Nurzynska D, et al:
Stem cells in the dog heart are self-renewing, clonogenic, and
multipotent and regenerate infarcted myocardium, improving cardiac
function. Proc Natl Acad Sci USA. 102:8966–8971. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9.
|
Messina E, De Angelis L, Frati G, et al:
Isolation and expansion of adult cardiac stem cells from human and
murine heart. Circ Res. 95:911–921. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Balsam LB, Wagers AJ, Christensen JL, et
al: Haematopoietic stem cells adopt mature haematopoietic fates in
ischaemic myocardium. Nature. 428:668–673. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
11.
|
Fuchs S, Baffour R, Zhou YF, et al:
Transendocardial delivery of autologous bone marrow enhances
collateral perfusion and regional function in pigs with chronic
experimental myocardial ischemia. J Am Coll Cardiol. 37:1726–1732.
2001. View Article : Google Scholar
|
|
12.
|
Kamihata H, Matsubara H, Nishiue T, et al:
Implantation of bone marrow mononuclear cells into ischemic
myocardium enhances collateral perfusion and regional function via
side supply of angioblasts, angiogenic ligands, and cytokines.
Circulation. 104:1046–1052. 2001. View Article : Google Scholar
|
|
13.
|
Kocher AA, Schuster MD, Szabolcs MJ, et
al: Neovascularization of ischemic myocardium by human
bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis,
reduces remodeling and improves cardiac function. Nat Med.
7:430–436. 2001. View
Article : Google Scholar
|
|
14.
|
Orlic D, Kajstura J, Chimenti S, et al:
Bone marrow cells regenerate infarcted myocardium. Nature.
410:701–705. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
15.
|
Schuster MD, Kocher AA, Seki T, et al:
Myocardial neovascularization by bone marrow angioblasts results in
cardiomyocyte regeneration. Am J Physiol Heart Circ Physiol.
287:H525–H532. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16.
|
Beltrami AP, Urbanek K, Kajstura J, et al:
Evidence that human cardiac myocytes divide after myocardial
infarction. N Engl J Med. 344:1750–1757. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
17.
|
Kajstura J, Leri A, Finato N, et al:
Myocyte proliferation in end-stage cardiac failure in humans. Proc
Natl Acad Sci USA. 95:8801–8805. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
18.
|
Quaini F, Cigola E, Lagrasta C, et al:
End-stage cardiac failure in humans is coupled with the induction
of proliferating cell nuclear antigen and nuclear mitotic division
in ventricular myocytes. Circ Res. 75:1050–1063. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
19.
|
Urbanek K, Quaini F, Tasca G, et al:
Intense myocyte formation from cardiac stem cells in human cardiac
hypertrophy. Proc Natl Acad Sci USA. 100:10440–10445. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
20.
|
Anversa P, Leri A, Rota M, et al: Concise
review: stem cells, myocardial regeneration, and methodological
artifacts. Stem Cells. 25:589–601. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Olivetti G, Cigola E, Maestri R, et al:
Aging, cardiac hypertrophy and ischemic cardiomyopathy do not
affect the proportion of mononucleated and multinucleated myocytes
in the human heart. J Mol Cell Cardiol. 28:1463–1477. 1996.
View Article : Google Scholar
|
|
22.
|
Anversa P, Kajstura J, Leri A and Bolli R:
Life and death of cardiac stem cells: a paradigm shift in cardiac
biology. Circulation. 113:1451–1463. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23.
|
Urbanek K, Cesselli D, Rota M, et al: Stem
cell niches in the adult mouse heart. Proc Natl Acad Sci USA.
103:9226–9231. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24.
|
Nadal-Ginard B, Kajstura J, Leri A and
Anversa P: Myocyte death, growth, and regeneration in cardiac
hypertrophy and failure. Circ Res. 92:139–150. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Bayes-Genis A, Salido M, Solé Ristol F, et
al: Host cell-derived cardiomyocytes in sex-mismatch cardiac
allografts. Cardiovasc Res. 56:404–410. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
26.
|
Deb A, Wang S, Skelding KA, et al: Bone
marrow-derived cardiomyocytes are present in adult human heart: A
study of gender-mismatched bone marrow transplantation patients.
Circulation. 107:1247–1249. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
27.
|
Glaser R, Lu MM, Narula N and Epstein JA:
Smooth muscle cells, but not myocytes, of host origin in
transplanted human hearts. Circulation. 106:17–19. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
28.
|
Quaini F, Urbanek K, Beltrami AP, et al:
Chimerism of the transplanted heart. N Engl J Med. 346:5–15. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
29.
|
Rosenthal N: Prometheus’s vulture and the
stem-cell promise. N Engl J Med. 349:267–274. 2003.
|
|
30.
|
Kondo M, Wagers AJ, Manz MG, et al:
Biology of hematopoietic stem cells and progenitors: implications
for clinical application. Annu Rev Immunol. 21:759–806. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
31.
|
Morrison SJ, Wandycz AM, Akashi K, et al:
The aging of hematopoietic stem cells. Nat Med. 2:1011–1016. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
32.
|
Smart N and Riley PR: The stem cell
movement. Circ Res. 102:1155–1168. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33.
|
Sellers SE, Tisdale JF, Agricola BA, et
al: The effect of multidrug-resistance 1 gene versus neo
transduction on ex vivo and in vivo expansion of rhesus macaque
hematopoietic repopulating cells. Blood. 97:1888–1891. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
34.
|
Moretti A, Lam J, Evans SM and Laugwitz
KL: Biology of Isl1+ cardiac progenitor cells in development and
disease. Cell Mol Life Sci. 64:674–682. 2007.
|
|
35.
|
Moretti A, Caron L, Nakano A, et al:
Multipotent embryonic isl1+ progenitor cells lead to cardiac,
smooth muscle and endothelial cell diversification. Cell.
127:1151–1165. 2006.
|
|
36.
|
Lev S, Yarden Y and Givol D: Dimerization
and activation of the kit receptor by monovalent and bivalent
binding of the stem cell factor. J Biol Chem. 267:15970–15977.
1992.PubMed/NCBI
|
|
37.
|
van de Rijn M, Heimfeld S, Spangrude GJ
and Weissman IL: Mouse hematopoietic stem-cell antigen Sca-1 is a
member of the Ly-6 antigen family. Proc Natl Acad Sci USA.
86:4634–4638. 1989.PubMed/NCBI
|
|
38.
|
Durocher D, Charron F, Warren R, et al:
The cardiac transcription factors Nkx2-5 and GATA-4 are mutual
cofactors. EMBO J. 16:5687–5696. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
Grépin C, Robitaille L, Antakly T and
Nemer M: Inhibition of transcription factor GATA-4 expression
blocks in vitro cardiac muscle differentiation. Mol Cell Biol.
15:4095–4102. 1995.PubMed/NCBI
|
|
40.
|
Yamamoto K, Burnett JC Jr, Jougasaki M, et
al: Superiority of brain natriuretic peptide as a hormonal marker
of ventricular systolic and diastolic dysfunction and ventricular
hypertrophy. Hypertension. 28:988–994. 1996. View Article : Google Scholar
|
|
41.
|
Sheng Z, Pennica D, Wood WI and Chien KR:
Cardiotrophin-1 displays early expression in the murine heart tube
and promotes cardiac myocyte survival. Development. 122:419–428.
1996.PubMed/NCBI
|
|
42.
|
Asai S, Saito Y, Kuwahara K, et al: The
heart is a source of circulating cardiotrophin-1 in humans. Biochem
Biophys Res Commun. 279:320–323. 2000.PubMed/NCBI
|
|
43.
|
Mahdavi V, Periasamy M and Nadal-Ginard B:
Molecular characterization of two myosin heavy chain genes
expressed in the adult heart. Nature. 297:659–664. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
44.
|
Michel T and Feron O: Nitric oxide
synthases: which, where, how, and why? J Clin Invest.
100:2146–2152. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Bearzi C, Rota M, Hosoda T, et al: Human
cardiac stem cells. Proc Natl Acad Sci USA. 104:14068–14073. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
46.
|
Urbanek K, Rota M, Cascapera S, et al:
Cardiac stem cells possess growth factor-receptor systems that
after activation regenerate the infarcted myocardium, improving
ventricular function and long-term survival. Circ Res. 97:663–673.
2005. View Article : Google Scholar
|
|
47.
|
Anderson CD, Heydarkhan-Hagvall S,
Schenke-Layland K, et al: The role of cytoprotective cytokines in
cardiac ischemia/reperfusion injury. J Surg Res. 148:164–171. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
48.
|
Rota M, Padin-Iruegas ME, Misao Y, et al:
Local activation or implantation of cardiac progenitor cells
rescues scarred infarcted myocardium improving cardiac function.
Circ Res. 103:107–116. 2008. View Article : Google Scholar
|
|
49.
|
Chimenti I, Smith RR, Li TS, et al:
Relative roles of direct regeneration versus paracrine effects of
human cardiosphere-derived cells transplanted into infarcted mice.
Circ Res. 106:971–980. 2010. View Article : Google Scholar
|
|
50.
|
Markel TA, Wang Y, Herrmann JL, et al:
VEGF is critical for stem cell-mediated cardioprotection and a
crucial paracrine factor for defining the age threshold in adult
and neonatal stem cell function. Am J Physiol Heart Circ Physiol.
295:H2308–H2314. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
51.
|
Matsuura K, Honda A, Nagai T, et al:
Transplantation of cardiac progenitor cells ameliorates cardiac
dysfunction after myocardial infarction in mice. J Clin Invest.
119:2204–2217. 2009.PubMed/NCBI
|
|
52.
|
Burchfield JS, Iwasaki M, Koyanagi M, et
al: Interleukin-10 from transplanted bone marrow mononuclear cells
contributes to cardiac protection after myocardial infarction. Circ
Res. 103:203–211. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53.
|
Gnecchi M, Zhang Z, Ni A and Dzau VJ:
Paracrine mechanisms in adult stem cell signaling and therapy. Circ
Res. 103:1204–1219. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
54.
|
Morimoto H, Takahashi M, Izawa A, et al:
Cardiac overexpression of monocyte chemoattractant protein-1 in
transgenic mice prevents cardiac dysfunction and remodeling after
myocardial infarction. Circ Res. 99:891–899. 2006. View Article : Google Scholar
|
|
55.
|
Sadat S, Gehmert S, Song YH, et al: The
cardioprotective effect of mesenchymal stem cells is mediated by
IGF-I and VEGF. Biochem Biophys Res Commun. 363:674–679. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
56.
|
Zohlnhöfer D, Dibra A, Koppara T, et al:
Stem cell mobilization by granulocyte colony-stimulating factor for
myocardial recovery after acute myocardial infarction: a
meta-analysis. J Am Coll Cardiol. 51:1429–1437. 2008.
|
|
57.
|
Ballard VL: Stem cells for heart failure
in the aging heart. Heart Fail Rev. 15:447–456. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58.
|
Kretlow JD, Jin YQ, Liu W, et al: Donor
age and cell passage affects differentiation potential of murine
bone marrow-derived stem cells. BMC Cell Biol. 9:602008. View Article : Google Scholar : PubMed/NCBI
|
|
59.
|
Smith AL, Ellison FM, McCoy JP Jr and Chen
J: c-Kit expression and stem cell factor-induced hematopoietic cell
proliferation are up-regulated in aged B6D2F1 mice. J Gerontol A
Biol Sci Med Sci. 60:448–456. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
60.
|
Joulin O, Petillot P, Labalette M, et al:
Cytokine profile of human septic shock serum inducing cardiomyocyte
contractile dysfunction. Physiol Res. 56:291–297. 2007.PubMed/NCBI
|
|
61.
|
Müller AC: Wirkung auf Herzmuskelzellen
aus spontan hypertensiven Ratten und nach antihypertensiver
Therapie. Die parakrine Wirkung kardialer Progenitorzellen auf die
kontraktile Funktion von Kardiomyozyten. VVB Laufersweiler Verlag
Publishing; Germany: pp. 81–84. 2010, (In German).
|
|
62.
|
Leri A, Kajstura J and Anversa P: Role of
Cardiac Stem Cells in Cardiac Pathophysiology: Role of cardiac stem
cells in cardiac pathophysiology: a paradigm shift in human
myocardial biology. Circ Res. 109:941–961. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
63.
|
Schächinger V, Erbs S, Elsässer A, et al:
Intracoronary bone marrow-derived progenitor cells in acute
myocardial infarction. N Engl J Med. 355:1210–1221. 2006.
|
|
64.
|
Wollert KC, Meyer GP, Lotz J, et al:
Intracoronary autologous bone-marrow cell transfer after myocardial
infarction: the BOOST randomised controlled clinical trial. Lancet.
364:141–148. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
65.
|
Perin EC, Dohmann HF, Borojevic R, et al:
Transendocardial, autologous bone marrow cell transplantation for
severe, chronic ischemic heart failure. Circulation. 107:2294–2302.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
66.
|
Dimmeler S, Burchfield J and Zeiher AM:
Cell-based therapy of myocardial infarction. Arterioscler Thromb
Vasc Biol. 28:208–216. 2008. View Article : Google Scholar : PubMed/NCBI
|