|
1.
|
Zhou LJ, Schwarting R, Smith HM and Tedder
TF: A novel cell-surface molecule expressed by human
interdigitating reticulum cells, Langerhans cells, and activated
lymphocytes is a new member of the Ig superfamily. J Immunol.
149:735–742. 1992.PubMed/NCBI
|
|
2.
|
Breloer M: CD83: regulator of central T
cell maturation and peripheral immune response. Immunol Lett.
115:16–17. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3.
|
Prazma CM and Tedder TF: Dendritic cell
CD83: a therapeutic target or innocent bystander? Immunol Lett.
115:1–8. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
4.
|
Chen L, Zhu Y, Zhang G, Gao C, Zhong W and
Zhang X: CD83-stimulated monocytes suppress T-cell immune responses
through production of prostaglandin E2. Proc Natl Acad Sci USA.
108:18778–18783. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5.
|
Ferrara JL, Levine JE, Reddy P and Holler
E: Graft-versus-host disease. Lancet. 373:1550–1561. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
6.
|
Shlomchik WD, Couzens MS, Tang CB, et al:
Prevention of graft versus host disease by inactivation of host
antigen-presenting cells. Science. 285:412–415. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Matte CC, Liu J, Cormier J, et al: Donor
APCs are required for maximal GVHD but not for GVL. Nat Med.
10:987–992. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
8.
|
Reddy P, Maeda Y, Liu C, Krijanovski OI,
Korngold R and Ferrara JL: A crucial role for antigen-presenting
cells and alloantigen expression in graft-versus-leukemia
responses. Nat Med. 11:1244–1249. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9.
|
Merad M, Hoffmann P, Ranheim E, et al:
Depletion of host Langerhans cells before transplantation of donor
alloreactive T cells prevents skin graft-versus-host disease. Nat
Med. 10:510–517. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Markey KA, Banovic T, Kuns RD, et al:
Conventional dendritic cells are the critical donor APC presenting
alloantigen after experimental bone marrow transplantation. Blood.
113:5644–5649. 2009. View Article : Google Scholar
|
|
11.
|
Strober S and Lowsky R: Rare cells predict
GVHD. Blood. 119:4820–4821. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12.
|
Gowdy KM, Cardona DM, Nugent JL, et al:
Novel role for surfactant protein A in gastrointestinal
graft-versus-host disease. J Immunol. 188:4897–4905. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
13.
|
Banovic T, Markey KA, Kuns RD, et al:
Graft-versus-host disease prevents the maturation of plasmacytoid
dendritic cells. J Immunol. 182:912–920. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14.
|
Horváth R, Budinský V, Kayserová J, et al:
Kinetics of dendritic cells reconstitution and costimulatory
molecules expression after myeloablative allogeneic haematopoetic
stem cell transplantation: implications for the development of
acute graft-versus host disease. Clin Immunol. 131:60–69. 2009.
|
|
15.
|
Reshef R, Luger SM, Hexner EO, et al:
Blockade of lymphocyte chemotaxis in visceral graft-versus-host
disease. N Engl J Med. 367:135–145. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16.
|
Levine JE, Logan BR, Wu J, et al: Acute
graft-versus-host disease biomarkers measured during therapy can
predict treatment outcomes: a Blood and Marrow Transplant Clinical
Trials Network study. Blood. 119:3854–3860. 2012. View Article : Google Scholar
|
|
17.
|
MacMillan ML, DeFor TE and Weisdorf DJ:
What predicts high risk acute graft-versus-host disease (GVHD) at
onset?: identification of those at highest risk by a novel acute
GVHD risk score. Br J Haematol. 157:732–741. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18.
|
Xu J, Racke MK and Drew PD: Peroxisome
proliferator-activated receptor-alpha agonist fenofibrate regulates
IL-12 family cytokine expression in the CNS: relevance to multiple
sclerosis. J Neurochem. 103:1801–1810. 2007. View Article : Google Scholar
|
|
19.
|
Lechmann M, Kremmer E, Sticht H and
Steinkasserer A: Overexpression, purification, and biochemical
characterization of the extracellular human CD83 domain and
generation of monoclonal antibodies. Protein Expr Purif.
24:445–452. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
20.
|
Cao W, Lee SH and Lu J: CD83 is preformed
inside monocytes, macrophages and dendritic cells, but it is only
stably expressed on activated dendritic cells. Biochem J.
385:85–93. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Lechmann M, Krooshoop DJ, Dudziak D, et
al: The extracellular domain of CD83 inhibits dendritic
cell-mediated T cell stimulation and binds to a ligand on dendritic
cells. J Exp Med. 194:1813–1821. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
22.
|
Davis SJ, Davies EA, Barclay AN, et al:
Ligand binding by the immunoglobulin superfamily recognition
molecule CD2 is glycosylation-independent. J Biol Chem.
270:369–375. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
23.
|
Su LL, Iwai H, Lin JT and Fathman CG: The
transmembrane E3 ligase GRAIL ubiquitinates and degrades CD83 on
CD4 T cells. J Immunol. 183:438–444. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24.
|
Piper RC and Luzio JP: Ubiquitin-dependent
sorting of integral membrane proteins for degradation in lysosomes.
Curr Opin Cell Biol. 19:459–465. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Hegde AN and DiAntonio A: Ubiquitin and
the synapse. Nat Rev Neurosci. 3:854–861. 2002. View Article : Google Scholar
|
|
26.
|
Kretschmer B, Lüthje K, Schneider S,
Fleischer B and Breloer M: Engagement of CD83 on B cells modulates
B cell function in vivo. J Immunol. 182:2827–2834. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27.
|
Hock BD, Kato M, McKenzie JL and Hart DN:
A soluble form of CD83 is released from activated dendritic cells
and B lymphocytes, and is detectable in normal human sera. Int
Immunol. 13:959–967. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28.
|
Dudziak D, Nimmerjahn F, Bornkamm GW and
Laux G: Alternative splicing generates putative soluble CD83
proteins that inhibit T cell proliferation. J Immunol.
174:6672–6676. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29.
|
Colonna M, Nakajima H, Navarro F and
López-Botet M: A novel family of Ig-like receptors for HLA class I
molecules that modulate function of lymphoid and myeloid cells. J
Leukoc Biol. 66:375–381. 1999.PubMed/NCBI
|
|
30.
|
Arulanandam AR, Withka JM, Wyss DF, et al:
The CD58 (LFA-3) binding site is a localized and highly charged
surface area on the AGFCC’C” face of the human CD2 adhesion domain.
Proc Natl Acad Sci USA. 90:11613–11617. 1993.PubMed/NCBI
|
|
31.
|
Nakaishi A, Hirose M, Yoshimura M, et al:
Structural insight into the specific interaction between murine
SHPS-1/SIRP alpha and its ligand CD47. J Mol Biol. 375:650–660.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
32.
|
Reinwald S, Wiethe C, Westendorf AM, et
al: CD83 expression in CD4+ T cells modulates inflammation and
autoimmunity. J Immunol. 180:5890–5897. 2008.
|
|
33.
|
Fujimoto Y, Tu L, Miller AS, et al: CD83
expression influences CD4+ T cell development in the thymus. Cell.
108:755–767. 2002.
|
|
34.
|
Garcia-Martinez LF, Appleby MW,
Staehling-Hampton K, et al: A novel mutation in CD83 results in the
development of a unique population of CD4+ T cells. J
Immunol. 173:2995–3001. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
35.
|
Lüthje K, Cramer SO, Ehrlich S, et al:
Transgenic expression of a CD83-immunoglobulin fusion protein
impairs the development of immune-competent CD4-positive T cells.
Eur J Immunol. 36:2035–2045. 2006.
|
|
36.
|
Prazma CM, Yazawa N, Fujimoto Y, Fujimoto
M and Tedder TF: CD83 expression is a sensitive marker of
activation required for B cell and CD4+ T cell longevity
in vivo. J Immunol. 179:4550–4562. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37.
|
Kretschmer B, Kuhl S, Fleischer B and
Breloer M: Activated T cells induce rapid CD83 expression on B
cells by engagement of CD40. Immunol Lett. 136:221–227. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
38.
|
Kretschmer B, Lüthje K, Ehrlich S, et al:
CD83 on murine APC does not function as a costimulatory receptor
for T cells. Immunol Lett. 120:87–95. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
Prechtel AT, Turza NM, Theodoridis AA and
Steinkasserer A: CD83 knockdown in monocyte-derived dendritic cells
by small interfering RNA leads to a diminished T cell stimulation.
J Immunol. 178:5454–5464. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
40.
|
Aerts-Toegaert C, Heirman C, Tuyaerts S,
et al: CD83 expression on dendritic cells and T cells: correlation
with effective immune responses. Eur J Immunol. 37:686–695. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
41.
|
Lechmann M, Shuman N, Wakeham A and Mak
TW: The CD83 reporter mouse elucidates the activity of the CD83
promoter in B, T, and dendritic cell populations in vivo. Proc Natl
Acad Sci USA. 105:11887–11892. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Hock BD, O’Donnell JL, Taylor K, et al:
Levels of the soluble forms of CD80, CD86, and CD83 are elevated in
the synovial fluid of rheumatoid arthritis patients. Tissue
Antigens. 67:57–60. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43.
|
Sénéchal B, Boruchov AM, Reagan JL, Hart
DN and Young JW: Infection of mature monocyte-derived dendritic
cells with human cytomegalovirus inhibits stimulation of T-cell
proliferation via the release of soluble CD83. Blood.
103:4207–4215. 2004.PubMed/NCBI
|
|
44.
|
Kruse M, Rosorius O, Krätzer F, et al:
Inhibition of CD83 cell surface expression during dendritic cell
maturation by interference with nuclear export of CD83 mRNA. J Exp
Med. 191:1581–1590. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Zinser E and Steinkasserer A: Published
studies reporting the efficacy of soluble CD83 in vitro as well as
in vivo. Immunol Lett. 115:18–19. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46.
|
Scholler N, Hayden-Ledbetter M, Dahlin A,
Hellstrom I, Hellstrom KE and Ledbetter JA: Cutting edge: CD83
regulates the development of cellular immunity. J Immunol.
168:2599–2602. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
47.
|
Ge W, Arp J, Lian D, et al:
Immunosuppression involving soluble CD83 induces tolerogenic
dendritic cells that prevent cardiac allograft rejection.
Transplantation. 90:1145–1156. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48.
|
Lan Z, Ge W, Arp J, et al: Induction of
kidney allograft tolerance by soluble CD83 associated with
prevalence of tolerogenic dendritic cells and indoleamine
2,3-dioxygenase. Transplantation. 90:1286–1293. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49.
|
Villares R, Cadenas V, Lozano M, et al:
CCR6 regulates EAE pathogenesis by controlling regulatory
CD4+ T-cell recruitment to target tissues. Eur J
Immunol. 39:1671–1681. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
50.
|
Zinser E, Lechmann M, Golka A, Lutz MB and
Steinkasserer A: Prevention and treatment of experimental
autoimmune encephalomyelitis by soluble CD83. J Exp Med.
200:345–351. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51.
|
Ma-Krupa W, Jeon MS, Spoerl S, Tedder TF,
Goronzy JJ and Weyand CM: Activation of arterial wall dendritic
cells and breakdown of self-tolerance in giant cell arteritis. J
Exp Med. 199:173–183. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52.
|
Wilson J, Cullup H, Lourie R, et al:
Antibody to the dendritic cell surface activation antigen CD83
prevents acute graft-versus-host disease. J Exp Med. 206:387–398.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
53.
|
Holler E, Rogler G, Brenmoehl J, et al:
Prognostic significance of NOD2/CARD15 variants in HLA-identical
sibling hematopoietic stem cell transplantation: effect on
long-term outcome is confirmed in 2 independent cohorts and may be
modulated by the type of gastrointestinal decontamination. Blood.
107:4189–4193. 2006. View Article : Google Scholar
|
|
54.
|
Munster DJ, MacDonald KP, Kato M and Hart
DJ: Human T lymphoblasts and activated dendritic cells in the
allogeneic mixed leukocyte reaction are susceptible to NK
cell-mediated anti-CD83-dependent cytotoxicity. Int Immunol.
16:33–42. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55.
|
Jonuleit H, Tüting T, Steitz J, et al:
Efficient transduction of mature CD83+ dendritic cells
using recombinant adenovirus suppressed T cell stimulatory
capacity. Gene Ther. 7:249–254. 2000.
|
|
56.
|
Chen J and Liu XS: Development and
function of IL-10 IFN-gamma-secreting CD4(+) T cells. J Leukoc
Biol. 86:1305–1310. 2009.
|
|
57.
|
Delisle JS, Gaboury L, Bélanger MP, Tassé
E, Yagita H and Perreault C: Graft-versus-host disease causes
failure of donor hematopoiesis and lymphopoiesis in
interferon-gamma receptor-deficient hosts. Blood. 112:2111–2119.
2008. View Article : Google Scholar : PubMed/NCBI
|