|
1.
|
Herrling T, Jung K and Fuchs J:
Measurements of UV-generated free radicals/reactive oxygen species
(ROS) in skin. Spectrochim Acta A Mol Biomol Spectrosc. 63:840–845.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
2.
|
Haywood R, Rogge F and Lee M: Protein,
lipid, and DNA radicals to measure skin UVA damage and modulation
by melanin. Free Radic Biol Med. 44:990–1000. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3.
|
Bak H, Hong SP, Jeong SK, et al: Altered
epidermal lipid layers induced by long-term exposure to
suberythemal-dose ultraviolet. Int J Dermatol. 50:832–837. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
4.
|
McAuliffe DJ and Blank IH: Effects of UVA
(320–400 nm) on the barrier characteristics of the skin. J Invest
Dermatol. 96:758–762. 1991.
|
|
5.
|
Abe T and Mayuzumi J: The change and
recovery of human skin barrier functions after ultraviolet light
irradiation. Chem Pharm Bull (Tokyo). 27:458–462. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
6.
|
Solomon AE and Lowe NJ: Percutaneous
absorption in experimental epidermal disease. Br J Dermatol.
100:717–722. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
7.
|
Lamaud E and Schalla W: Influence of UV
irradiation on penetration of hydrocortisone. In vivo study in
hairless rat skin. Br J Dermatol. 111(Suppl 27): S152–S157. 1984.
View Article : Google Scholar : PubMed/NCBI
|
|
8.
|
Valkova S and Velkova A: UVA/UVB
phototherapy for atopic dermatitis revisited. J Dermatolog Treat.
15:239–244. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
9.
|
Jekler J and Larkö O: UVB phototherapy of
atopic dermatitis. Br J Dermatol. 119:697–705. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
10.
|
Wulf HC and Bech-Thomsen N: A UVB
phototherapy protocol with very low dose increments as a treatment
of atopic dermatitis. Photodermatol Photoimmunol Photomed. 14:1–6.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
11.
|
Elias PM: The stratum corneum as an organ
of protection: old and new concepts. Curr Probl Dermatol. 18:10–21.
1989.PubMed/NCBI
|
|
12.
|
Feingold KR: Thematic review series: skin
lipids. The role of epidermal lipids in cutaneous permeability
barrier homeostasis. J Lipid Res. 48:2531–2546. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13.
|
Proksch E, Brandner JM and Jensen JM: The
skin: an indispensable barrier. Exp Dermatol. 17:1063–1072. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
14.
|
Nilsson GE: Measurement of water exchange
through skin. Med Biol Eng Comput. 15:209–218. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
15.
|
Pinnagoda J, Tupker RA, Agner T and Serup
J: Guidelines for transepidermal water loss (TEWL) measurement. A
report from the Standardization Group of the European Society of
Contact Dermatitis. Contact Dermatitis. 22:164–178. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
16.
|
Elias PM and Feingold KR: Skin Barrier.
Taylor & Francis; New York: 2006
|
|
17.
|
Wertz PW: Epidermal lipids. Semin
Dermatol. 11:106–113. 1992.
|
|
18.
|
Rassner U, Feingold KR, Crumrine DA and
Elias PM: Coordinate assembly of lipids and enzyme proteins into
epidermal lamellar bodies. Tissue Cell. 31:489–498. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
19.
|
Menon GK, Grayson S and Elias PM: Ionic
calcium reservoirs in mammalian epidermis: ultrastructural
localization by ion-capture cytochemistry. J Invest Dermatol.
84:508–512. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
20.
|
Menon GK, Elias PM, Lee SH and Feingold
KR: Localization of calcium in murine epidermis following
disruption and repair of the permeability barrier. Cell Tissue Res.
270:503–512. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
21.
|
Menon GK and Elias PM: Ultrastructural
localization of calcium in psoriatic and normal human epidermis.
Arch Dermatol. 127:57–63. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
22.
|
Freinkel RK and Traczyk TN: Lipid
composition and acid hydrolase content of lamellar granules of
fetal rat epidermis. J Invest Dermatol. 85:295–298. 1985.
View Article : Google Scholar : PubMed/NCBI
|
|
23.
|
Grayson S, Johnson-Winegar AG, Wintroub
BU, Isseroff RR, Epstein EH Jr and Elias PM: Lamellar body-enriched
fractions from neonatal mice: preparative techniques and partial
characterization. J Invest Dermatol. 85:289–294. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
24.
|
Wertz PW, Downing DT, Freinkel RK and
Traczyk TN: Sphingolipids of the stratum corneum and lamellar
granules of fetal rat epidermis. J Invest Dermatol. 83:193–195.
1984. View Article : Google Scholar : PubMed/NCBI
|
|
25.
|
Holleran WM, Ginns EI, Menon GK, et al:
Consequences of beta-glucocerebrosidase deficiency in epidermis.
Ultrastructure and permeability barrier alterations in Gaucher
disease. J Clin Invest. 93:1756–1764. 1994. View Article : Google Scholar
|
|
26.
|
Holleran WM, Takagi Y, Menon GK, Legler G,
Feingold KR and Elias PM: Processing of epidermal glucosylceramides
is required for optimal mammalian cutaneous permeability barrier
function. J Clin Invest. 91:1656–1664. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
27.
|
Hedberg CL, Wertz PW and Downing DT: The
time course of lipid biosynthesis in pig epidermis. J Invest
Dermatol. 91:169–174. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
28.
|
Swartzendruber DC, Wertz PW, Madison KC
and Downing DT: Evidence that the corneocyte has a chemically bound
lipid envelope. J Invest Dermatol. 88:709–713. 1987. View Article : Google Scholar
|
|
29.
|
Wertz PW, Madison KC and Downing DT:
Covalently bound lipids of human stratum corneum. J Invest
Dermatol. 92:109–111. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
30.
|
Marekov LN and Steinert PM: Ceramides are
bound to structural proteins of the human foreskin epidermal
cornified cell envelope. J Biol Chem. 273:17763–17770. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
31.
|
Behne M, Uchida Y, Seki T, de Montellano
PO, Elias PM and Holleran WM: Omega-hydroxyceramides are required
for corneocyte lipid envelope (CLE) formation and normal epidermal
permeability barrier function. J Invest Dermatol. 114:185–192.
2000. View Article : Google Scholar
|
|
32.
|
Nemes Z, Marekov LN, Fésüs L and Steinert
PM: A novel function for transglutaminase 1: attachment of
long-chain omega-hydroxyceramides to involucrin by ester bond
formation. Proc Natl Acad Sci USA. 96:8402–8407. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
33.
|
Fitzpatrick TB, Eisen AZ, Wolff K,
Freedburg IM and Austen KF: Dermatology in General Medicine. 4th
edition. McGraw-Hill, Health Professions Division; New York:
1993
|
|
34.
|
Cole CA, Forbes PD and Davies RE: An
action spectrum for UV photocarcinogenesis. Photochem Photobiol.
43:275–284. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
35.
|
Sterenborg HJ, de Gruijl FR, Kelfkens G
and van der Leun JC: Evaluation of skin cancer risk resulting from
long term occupational exposure to radiation from ultraviolet
lasers in the range from 190 to 400 nm. Photochem Photobiol.
54:775–780. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
36.
|
Bissett DL, Hannon DP and Orr TV:
Wavelength dependence of histological, physical, and visible
changes in chronically UV-irradiated hairless mouse skin. Photochem
Photobiol. 50:763–769. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
37.
|
Haratake A, Uchida Y, Schmuth M, et al:
UVB-induced alterations in permeability barrier function: roles for
epidermal hyperproliferation and thymocyte-mediated response. J
Invest Dermatol. 108:769–775. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
38.
|
Takagi Y, Nakagawa H, Kondo H, Takema Y
and Imokawa G: Decreased levels of covalently bound ceramide are
associated with ultraviolet B-induced perturbation of the skin
barrier. J Invest Dermatol. 123:1102–1109. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
39.
|
Meguro S, Arai Y, Masukawa Y, Uie K and
Tokimitsu I: Relationship between covalently bound ceramides and
transepidermal water loss (TEWL). Arch Dermatol Res. 292:463–468.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
40.
|
Bernerd F and Asselineau D: Successive
alteration and recovery of epidermal differentiation and
morphogenesis after specific UVB-damages in skin reconstructed in
vitro. Dev Biol. 183:123–138. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
41.
|
Hirao T, Denda M and Takahashi M:
Identification of immature cornified envelopes in the
barrier-impaired epidermis by characterization of their
hydrophobicity and antigenicities of the components. Exp Dermatol.
10:35–44. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
42.
|
Proksch E, Holleran WM, Menon GK, Elias PM
and Feingold KR: Barrier function regulates epidermal lipid and DNA
synthesis. Br J Dermatol. 128:473–482. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
43.
|
Grubauer G, Elias PM and Feingold KR:
Transepidermal water loss: the signal for recovery of barrier
structure and function. J Lipid Res. 30:323–333. 1989.
|
|
44.
|
Menon GK, Feingold KR, Mao-Qiang M,
Schaude M and Elias PM: Structural basis for the barrier
abnormality following inhibition of HMG CoA reductase in murine
epidermis. J Invest Dermatol. 98:209–219. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
45.
|
Meguro S, Arai Y, Masukawa K, Uie K and
Tokimitsu I: Stratum corneum lipid abnormalities in UVB-irradiated
skin. Photochem Photobiol. 69:317–321. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
46.
|
Wertz PW and Downing DT: Covalently bound
omega-hydroxyacylsphingosine in the stratum corneum. Biochim
Biophys Acta. 917:108–111. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
47.
|
Abraham W and Downing DT: Interaction
between corneocytes and stratum corneum lipid liposomes in vitro.
Biochim Biophys Acta. 1021:119–125. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
48.
|
Chang F, Swartzendruber DC, Wertz PW and
Squier CA: Covalently bound lipids in keratinizing epithelia.
Biochim Biophys Acta. 1150:98–102. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
49.
|
Takagi Y, Nakagawa H, Yaginuma T, Takema Y
and Imokawa G: An accumulation of glucosylceramide in the stratum
corneum due to attenuated activity of beta-glucocerebrosidase is
associated with the early phase of UVB-induced alteration in
cutaneous barrier function. Arch Dermatol Res. 297:18–25. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
50.
|
Haratake A, Uchida Y, Mimura K, Elias PM
and Holleran WM: Intrinsically aged epidermis displays diminished
UVB-induced alterations in barrier function associated with
decreased proliferation. J Invest Dermatol. 108:319–323. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
51.
|
Marsh NL, Elias PM and Holleran WM:
Glucosylceramides stimulate murine epidermal hyperproliferation. J
Clin Invest. 95:2903–2909. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
52.
|
Takagi Y, Kriehuber E, Imokawa G, Elias PM
and Holleran WM: Beta-glucocerebrosidase activity in mammalian
stratum corneum. J Lipid Res. 40:861–869. 1999.PubMed/NCBI
|
|
53.
|
Hamanaka S, Hara M, Nishio H, Otsuka F,
Suzuki A and Uchida Y: Human epidermal glucosylceramides are major
precursors of stratum corneum ceramides. J Invest Dermatol.
119:416–423. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
54.
|
Uchida Y, Hara M, Nishio H, et al:
Epidermal sphingomyelins are precursors for selected stratum
corneum ceramides. J Lipid Res. 41:2071–2082. 2000.PubMed/NCBI
|
|
55.
|
Jiang SJ, Chu AW, Lu ZF, Pan MH, Che DF
and Zhou XJ: Ultraviolet B-induced alterations of the skin barrier
and epidermal calcium gradient. Exp Dermatol. 16:985–992. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
56.
|
Lee SH, Elias PM, Proksch E, Menon GK,
Mao-Quiang M and Feingold KR: Calcium and potassium are important
regulators of barrier homeostasis in murine epidermis. J Clin
Invest. 89:530–538. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
57.
|
Menon GK, Elias PM and Feingold KR:
Integrity of the permeability barrier is crucial for maintenance of
the epidermal calcium gradient. Br J Dermatol. 130:139–147. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
58.
|
Lee SH, Choi EH, Feingold KR, Jiang S and
Ahn SK: Iontophoresis itself on hairless mouse skin induces the
loss of the epidermal calcium gradient without skin barrier
impairment. J Invest Dermatol. 111:39–43. 1998. View Article : Google Scholar
|
|
59.
|
Menon GK, Price LF, Bommannan B, Elias PM
and Feingold KR: Selective obliteration of the epidermal calcium
gradient leads to enhanced lamellar body secretion. J Invest
Dermatol. 102:789–795. 1994. View Article : Google Scholar
|
|
60.
|
Holleran WM, Uchida Y, Halkier-Sorensen L,
et al: Structural and biochemical basis for the UVB-induced
alterations in epidermal barrier function. Photodermatol
Photoimmunol Photomed. 13:117–128. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
61.
|
Hennings H, Michael D, Cheng C, Steinert
P, Holbrook K and Yuspa SH: Calcium regulation of growth and
differentiation of mouse epidermal cells in culture. Cell.
19:245–254. 1980. View Article : Google Scholar
|
|
62.
|
Taylor SC: Skin of color: biology,
structure, function, and implications for dermatologic disease. J
Am Acad Dermatol. 46(Suppl): S41–S62. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
63.
|
Pathak MA, Nghiem P and Fitzpatrick TB:
Acute and chronic efects of the sun. Fitzpatrick’s Dermatology in
General Medicine. Freedberg IM, Eisen AZ, Wolff K, Austen LA,
Goldsmith K, Katz SI and Fitzpatrick TB: 1. 5th edition.
McGraw-Hill; New York: pp. 1598–1607. 1999
|
|
64.
|
Rigel EG, Lebwohl M, Rigel AC and Rigel
DS: Daily UVB exposure levels in high-school students measured with
digital dosimeters. J Am Acad Dermatol. 49:1112–1114. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
65.
|
Leenutaphong V, Nimkulrat P and Sudtim S:
Comparison of phototherapy two times and four times a week with low
doses of narrow-band ultraviolet B in Asian patients with
psoriasis. Photodermatol Photoimmunol Photomed. 16:202–206. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
66.
|
Murphy M, Mabruk MJ, Lenane P, et al:
Comparison of the expression of p53, p21, Bax and the induction of
apoptosis between patients with basal cell carcinoma and normal
controls in response to ultraviolet irradiation. J Clin Pathol.
55:829–833. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
67.
|
Narbutt J, Norval M, Slowik-Rylska M, et
al: Suberythemal ultraviolet B radiation alters the expression of
cell cycle-related proteins in the epidermis of human subjects
without leading to photoprotection. Br J Dermatol. 161:890–896.
2009. View Article : Google Scholar
|
|
68.
|
Hong SP, Kim MJ, Jung MY, et al:
Biopositive effects of low-dose UVB on epidermis: coordinate
upregulation of antimicrobial peptides and permeability barrier
reinforcement. J Invest Dermatol. 128:2880–2887. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
69.
|
Farrell AM, Uchida Y, Nagiec MM, et al:
UVB irradiation up-regulates serine palmitoyltransferase in
cultured human keratinocytes. J Lipid Res. 39:2031–2038. 1998.
|