Biocompatibility study of a silk fibroin‑chitosan scaffold with adipose tissue‑derived stem cells in vitro

  • Authors:
    • Wenchen Ji
    • Yuelin Zhang
    • Shouye Hu
    • Yongtao Zhang
  • View Affiliations

  • Published online on: June 26, 2013     https://doi.org/10.3892/etm.2013.1185
  • Pages: 513-518
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The use of tissue engineering technology in the repair of spinal cord injury (SCI) is a topic of current interest. The success of the repair of the SCI is directly affected by the selection of suitable seed cells and scaffold materials with an acceptable biocompatibility. In this study, adipose tissue‑derived stem cells (ADSCs) were incorporated into a silk fibroin-chitosan scaffold (SFCS), which was constructed using a freeze-drying method, in order to assess the biocompatibility of the ADSCs and the SFCS and to provide a foundation for the use of tissue engineering technology in the repair of SCI. Following the seeding of the cells onto the scaffold, the adhesion characteristics of the ADSCs and the SFCS were assessed. A significant difference was observed between the experimental group (a composite of the ADSCs with the SFCS) and the control group (ADSCs without the scaffold) following a culture period of 6 h (P<0.05). The differences in the results at the following time-points were statistically insignificant (P>0.05). The use of an MTT assay to assess the proliferation of the cells on the scaffold revealed that there were significant differences between the experimental and control groups following culture periods of 2 and 4 days (P<0.05). However, the results at the subsequent time-points were not statistically significantly different (P>0.05). Scanning electron microscopy (SEM), using hematoxylin and eosin (H&E) staining, was used to observe the cellular morphology following seeding, and this revealed that the cells displayed the desired morphology. The results indicate that ADSCs have a good biocompatibility with a SFCS and thus provide a foundation for further studies using tissue engineering methods for the repair of SCI.
View Figures
View References

Related Articles

Journal Cover

August 2013
Volume 6 Issue 2

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Ji W, Zhang Y, Hu S and Zhang Y: Biocompatibility study of a silk fibroin‑chitosan scaffold with adipose tissue‑derived stem cells in vitro. Exp Ther Med 6: 513-518, 2013
APA
Ji, W., Zhang, Y., Hu, S., & Zhang, Y. (2013). Biocompatibility study of a silk fibroin‑chitosan scaffold with adipose tissue‑derived stem cells in vitro. Experimental and Therapeutic Medicine, 6, 513-518. https://doi.org/10.3892/etm.2013.1185
MLA
Ji, W., Zhang, Y., Hu, S., Zhang, Y."Biocompatibility study of a silk fibroin‑chitosan scaffold with adipose tissue‑derived stem cells in vitro". Experimental and Therapeutic Medicine 6.2 (2013): 513-518.
Chicago
Ji, W., Zhang, Y., Hu, S., Zhang, Y."Biocompatibility study of a silk fibroin‑chitosan scaffold with adipose tissue‑derived stem cells in vitro". Experimental and Therapeutic Medicine 6, no. 2 (2013): 513-518. https://doi.org/10.3892/etm.2013.1185