|
1
|
Yancopoulos GD, Davis S, Gale NW, Rudge
JS, Wiegand SJ and Holash J: Vascular-specific growth factors and
blood vessel formation. Nature. 407:242–248. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Maynard SE and Karumanchi SA: Angiogenic
factors and preeclampsia. Semin Nephrol. 31:33–46. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gourvas V, Dalpa E, Konstantinidou A,
Vrachnis N, Spandidos DA and Sifakis S: Angiogenic factors in
placentas from pregnancies complicated by fetal growth restriction
(review). Mol Med Rep. 6:23–27. 2012.PubMed/NCBI
|
|
4
|
Chaiworapongsa T, Romero R, Korzeniewski
SJ, et al: Maternal plasma concentrations of
angiogenic/antiangiogenic factors in the third trimester of
pregnancy to identify the patient at risk for stillbirth at or near
term and severe late preeclampsia. Am J Obstet Gynecol.
208:287.e1–287.e15. 2013. View Article : Google Scholar
|
|
5
|
Gómez-Arriaga PI, Herraiz I, López-Jiménez
EA, Escribano D, Denk B and Galindo A: Uterine artery Doppler and
sFlt-1/PlGF ratio: Prognostic value in early-onset pre-eclampsia.
Ultrasound Obstet Gynecol. 43:525–532. 2014. View Article : Google Scholar
|
|
6
|
Andraweera PH, Dekker GA and Roberts CT:
The vascular endothelial growth factor family in adverse pregnancy
outcomes. Hum Reprod Update. 18:436–457. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Charnock-Jones DS: Soluble flt-1 and the
angiopoietins in the development and regulation of placental
vasculature. J Anat. 200:607–615. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Park SW, Yun JH and Kim JH, Kim KW, Cho CH
and Kim JH: Angiopoietin 2 induces pericyte apoptosis via α3β1
integrin signaling in diabetic retinopathy. Diabetes. 63:3057–3068.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Saharinen P, Eklund L, Pulkki K, Bono P
and Alitalo K: VEGF and angiopoietin signaling in tumor
angiogenesis and metastasis. Trends Mol Med. 17:347–362. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mussap M, Cibecchini F, Noto A and Fanos
V: In search of biomarkers for diagnosing and managing neonatal
sepsis: The role of angiopoietins. J Matern Fetal Neonatal Med.
26(Suppl 2): 24–26. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Thurston G: Role of Angiopoietins and Tie
receptor tyrosine kinases in angiogenesis and lymphangiogenesis.
Cell Tissue Res. 314:61–68. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Thomas M and Augustin HG: The role of the
Angiopoietins in vascular morphogenesis. Angiogenesis. 12:125–137.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Maisonpierre PC, Suri C, Jones PF, et al:
Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo
angiogenesis. Science. 277:55–60. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Davis S, Aldrich TH, Jones PF, et al:
Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by
secretion-trap expression cloning. Cell. 87:1161–1169. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Khan AA, Sandhya VK, Singh P, et al:
Signalling network map of endothelial TEK tyrosine kinase. J Signal
Transduct. 2014:1730262014. View Article : Google Scholar
|
|
16
|
Daly C, Wong V, Burova E, et al:
Angiopoietin-1 modulates endothelial cell function and gene
expression via the transcription factor FKHR (FOXO1). Genes Dev.
18:1060–1071. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Coffelt SB, Tal AO, Scholz A, et al:
Angiopoietin-2 regulates gene expression in TIE2-expressing
monocytes and augments their inherent proangiogenic functions.
Cancer Res. 70:5270–5280. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yuan HT, Venkatesha S, Chan B, Deutsch U,
Mammoto T, Sukhatme VP, Woolf AS and Karumanchi SA: Activation of
the orphan endothelial receptor Tie1 modifies Tie2-mediated
intracellular signaling and cell survival. FASEB J. 21:3171–3183.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Augustin HG, Koh GY, Thurston G and
Alitalo K: Control of vascular morphogenesis and homeostasis
through the angiopoietin-Tie system. Nat Rev Mol Cell Biol.
10:165–177. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Thurston G, Rudge JS, Ioffe E, Zhou H,
Ross L, Croll SD, Glazer N, Holash J, McDonald DM and Yancopoulos
GD: Angiopoietin-1 protects the adult vasculature against plasma
leakage. Nat Med. 6:460–463. 2000. View
Article : Google Scholar : PubMed/NCBI
|
|
21
|
Scharpfenecker M, Fiedler U, Reiss Y and
Augustin HG: The Tie-2 ligand angiopoietin-2 destabilizes quiescent
endothelium through an internal autocrine loop mechanism. J Cell
Sci. 118:771–780. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Daly C, Eichten A, Castanaro C, et al:
Angiopoietin-2 functions as a Tie2 agonist in tumor models, where
it limits the effects of VEGF inhibition. Cancer Res. 73:108–118.
2013. View Article : Google Scholar
|
|
23
|
Teichert-Kuliszewska K, Maisonpierre PC,
Jones N, Campbell AI, Master Z, Bendeck MP, Alitalo K, Dumont DJ,
Yancopoulos GD and Stewart DJ: Biological action of angiopoietin-2
in a fibrin matrix model of angiogenesis is associated with
activation of Tie2. Cardiovasc Res. 49:659–670. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Gale NW, Thurston G, Hackett SF, Renard R,
Wang Q, McClain J, Martin C, Witte C, Witte MH and Jackson D:
Angiopoietin-2 is required for postnatal angiogenesis and lymphatic
patterning, and only the latter role is rescued by Angiopoietin-1.
Dev Cell. 3:411–423. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Felcht M, Luck R, Schering A, et al:
Angiopoietin-2 differentially regulates angiogenesis through TIE2
and integrin signaling. J Clin Invest. 122:1991–2005. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Fiedler U, Reiss Y, Scharpfenecker M, et
al: Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and
has a crucial role in the induction of inflammation. Nat Med.
12:235–239. 2006. View
Article : Google Scholar : PubMed/NCBI
|
|
27
|
Dunk C, Shams M, Nijjar S, Rhaman M, Qiu
Y, Bussolati B and Ahmed A: Angiopoietin-1 and angiopoietin-2
activate trophoblast Tie-2 to promote growth and migration during
placental development. Am J Pathol. 156:2185–2199. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Shim WS, Ho IA and Wong PE: Angiopoietin:
A TIE(d) balance in tumor angiogenesis. Mol Cancer Res. 5:655–665.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Brunckhorst MK, Xu Y, Lu R and Yu Q:
Angiopoietins promote ovarian cancer progression by establishing a
procancer microenvironment. Am J Pathol. 184:2285–2296. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Huang H, Bhat A, Woodnutt G and Lappe R:
Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer.
10:575–585. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
31
|
Biel NM and Siemann DW: Targeting the
Angiopoietin-2/Tie-2 axis in conjunction with VEGF signal
interference. Cancer Lett. Oct 12–2014.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mazzieri R, Pucci F, Moi D, et al:
Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis
by impairing angiogenesis and disabling rebounds of proangiogenic
myeloid cells. Cancer Cell. 19:512–526. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Goede V, Coutelle O, Neuneier J, et al:
Identification of serum angiopoietin-2 as a biomarker for clinical
outcome of colorectal cancer patients treated with
bevacizumab-containing therapy. Br J Cancer. 103:1407–1414. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Helfrich I, Edler L, Sucker A, et al:
Angiopoietin-2 levels are associated with disease progression in
metastatic malignant melanoma. Clin Cancer Res. 15:1384–1392. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Geva E, Ginzinger DG, Zaloudek CJ, Moore
DH, Byrne A and Jaffe RB: Human placental vascular development:
Vasculogenic and angiogenic (branching and nonbranching)
transformation is regulated by vascular endothelial growth
factor-A, angiopoietin-1, and angiopoietin-2. J Clin Endocrinol
Metab. 87:4213–4224. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang EG, Smith SK, Baker PN and
Charnock-Jones DS: The regulation and localization of
angiopoietin-1, -2, and their receptor Tie2 in normal and
pathologic human placentae. Mol Med. 7:624–635. 2001.
|
|
37
|
Leinonen E, Wathén KA, Alfthan H,
Ylikorkala O, Andersson S, Stenman UH and Vuorela P: Maternal serum
angiopoietin-1 and -2 and tie-2 in early pregnancy ending in
preeclampsia or intrauterine growth retardation. J Clin Endocrinol
Metab. 95:126–133. 2010. View Article : Google Scholar
|
|
38
|
Hirokoshi K, Maeshima Y, Kobayashi K,
Matsuura E, Sugiyama H, Yamasaki Y, Masuyama H, Hiramatsu Y and
Makino H: Elevated serum sFlt-1/Ang-2 ratio in women with
preeclampsia. Nephron Clin Pract. 106:c43–c50. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Seval Y, Sati L, Celik-Ozenci C, Taskin O
and Demir R: The distribution of angiopoietin-1, angiopoietin-2 and
their receptors tie-1 and tie-2 in the very early human placenta.
Placenta. 29:809–815. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Suri C, Jones PF, Patan S, Bartunkova S,
Maisonpierre PC, Davis S, Sato TN and Yancopoulos GD: Requisite
role of angiopoietin-1, a ligand for the TIE2 receptor, during
embryonic angiogenesis. Cell. 87:1171–1180. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Geva E, Ginzinger DG, Moore DH II, Ursell
PC and Jaffe RB: In utero angiopoietin-2 gene delivery remodels
placental blood vessel phenotype: A murine model for studying
placental angiogenesis. Mol Hum Reprod. 11:253–260. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sato TN, Tozawa Y, Deutsch U,
Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T,
Wolburg H, Risau W and Qin Y: Distinct roles of the receptor
tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature.
376:70–74. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wulff C, Wilson H, Dickson SE, Wiegand SJ
and Fraser HM: Hemochorial placentation in the primate: Expression
of vascular endothelial growth factor, angiopoietins, and their
receptors throughout pregnancy. Biol Reprod. 66:802–812. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Steegers EA, von Dadelszen P, Duvekot JJ
and Pijnenborg R: Pre-eclampsia. Lancet. 376:631–644. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kleinrouweler CE, Wiegerinck MM,
Ris-Stalpers C, Bossuyt PM, van der Post JA, von Dadelszen P, Mol
BW and Pajkrt E; EBM CONNECT Collaboration. Accuracy of circulating
placental growth factor, vascular endothelial growth factor,
soluble fms-like tyrosine kinase 1 and soluble endoglin in the
prediction of pre-eclampsia: A systematic review and meta-analysis.
BJOG. 119:778–787. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sung JF, Fan X, Dhal S, Dwyer BK, Jafari
A, El-Sayed YY, Druzin ML and Nayak NR: Decreased circulating
soluble Tie2 levels in preeclampsia may result from inhibition of
vascular endothelial growth factor (VEGF) signaling. J Clin
Endocrinol Metab. 96:E1148–E1152. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Han SY, Jun JK, Lee CH, Park JS and Syn
HC: Angiopoietin-2: A promising indicator for the occurrence of
severe preeclampsia. Hypertens Pregnancy. 31:189–199. 2012.
View Article : Google Scholar
|
|
48
|
Kappou D, Sifakis S, Androutsopoulos V,
Konstantinidou A, Spandidos DA and Papantoniou N: Placental mRNA
expression of angiopoietins (Ang)-1, Ang-2 and their receptor Tie-2
is altered in pregnancies complicated by preeclampsia. Placenta.
35:718–723. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Szpera-Gozdziewicz A and Breborowicz GH:
Endothelial dysfunction in the pathogenesis of pre-eclampsia. Front
Biosci (Landmark Ed). 19:734–746. 2014. View Article : Google Scholar
|
|
50
|
Oh H, Takagi H, Suzuma K, Otani A,
Matsumura M and Honda Y: Hypoxia and vascular endothelial growth
factor selectively up-regulate angiopoietin-2 in bovine
microvascular endothelial cells. J Biol Chem. 274:15732–15739.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Vuorela P, Matikainen MT, Kuusela P,
Ylikorkala O, Alitalo K and Halmesmäki E: Endothelial tie receptor
antigen in maternal and cord blood of healthy and preeclamptic
subjects. Obstet Gynecol. 92:179–183. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hirokoshi K, Maeshima Y, Kobayashi K,
Matsuura E, Sugiyama H, Yamasaki Y, Masuyama H, Hiramatsu Y and
Makino H: Increase of serum angiopoietin-2 during pregnancy is
suppressed in women with preeclampsia. Am J Hypertens.
18:1181–1188. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gotsch F, Romero R, Kusanovic JP, et al:
Preeclampsia and small-for-gestational age are associated with
decreased concentrations of a factor involved in angiogenesis:
Soluble Tie-2. J Matern Fetal Neonatal Med. 21:389–402. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Bolin M, Wiberg-Itzel E, Wikström AK, Goop
M, Larsson A, Olovsson M and Akerud H:
Angiopoietin-1/angiopoietin-2 ratio for prediction of preeclampsia.
Am J Hypertens. 22:891–895. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Schoofs K, Grittner U, Engels T, Pape J,
Denk B, Henrich W and Verlohren S: The importance of repeated
measurements of the sFlt-1/PlGF ratio for the prediction of
preeclampsia and intrauterine growth restriction. J Perinat Med.
42:61–68. 2014. View Article : Google Scholar
|
|
56
|
Vrachnis N, Kalampokas E, Sifakis S,
Vitoratos N, Kalampokas T, Botsis D and Iliodromiti Z: Placental
growth factor (PlGF): A key to optimizing fetal growth. J Matern
Fetal Neonatal Med. 26:995–1002. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wang Y, Tasevski V, Wallace EM, Gallery ED
and Morris JM: Reduced maternal serum concentrations of
angiopoietin-2 in the first trimester precede intrauterine growth
restriction associated with placental insufficiency. BJOG.
114:1427–1431. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Akolekar R, Casagrandi D, Skyfta E, Ahmed
AA and Nicolaides KH: Maternal serum angiopoietin-2 at 11 to 13
weeks of gestation in hypertensive disorders of pregnancy. Prenat
Diagn. 29:847–851. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Schneuer FJ, Roberts CL, Ashton AW,
Guilbert C, Tasevski V, Morris JM and Nassar N: Angiopoietin 1 and
2 serum concentrations in first trimester of pregnancy as
biomarkers of adverse pregnancy outcomes. Am J Obstet Gynecol.
210:345.e1–e9. 2014. View Article : Google Scholar
|
|
60
|
Findley CM, Cudmore MJ, Ahmed A and Kontos
CD: VEGF induces Tie2 shedding via a phosphoinositide 3-kinase/Akt
dependent pathway to modulate Tie2 signaling. Arterioscler Thromb
Vasc Biol. 27:2619–2626. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Regnault TR, Galan HL, Parker TA and
Anthony RV: Placental development in normal and compromised
pregnancies- a review. Placenta. 23(Suppl A): S119–S129. 2002.
View Article : Google Scholar
|
|
62
|
Tseng JJ, Hsu SL, Ho ES, Hsieh YT, Wen MC
and Chou MM: Differential expression of angiopoietin-1,
angiopoietin-2, and Tie receptors in placentas from pregnancies
complicated by placenta accreta. Am J Obstet Gynecol. 194:564–571.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Vuorela P, Carpén O, Tulppala M and
Halmesmäki E: VEGF, its receptors and the tie receptors in
recurrent miscarriage. Mol Hum Reprod. 6:276–282. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hall M, Gourley C, McNeish I, Ledermann J,
Gore M, Jayson G, Perren T, Rustin G and Kaye S: Targeted
anti-vascular therapies for ovarian cancer: current evidence. Br J
Cancer. 108:250–258. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gerald D, Chintharlapalli S, Augustin HG
and Benjamin LE: Angiopoietin-2: an attractive target for improved
antiangiogenic tumor therapy. Cancer Res. 73:1649–1657. 2013.
View Article : Google Scholar : PubMed/NCBI
|