|
1
|
Takahashi M, Ishiko T, Kamohara H, Hidaka
H, Ikeda O, Ogawa M and Baba H: Curcumin
(1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione)
blocks the chemotaxis of neutrophils by inhibiting signal
transduction through IL-8 receptors. Mediators Inflamm.
2007:107672007.PubMed/NCBI
|
|
2
|
Jurenka JS: Anti-inflammatory properties
of curcumin, a major constituent of Curcuma longa: A review
of preclinical and clinical research. Altern Med Rev. 14:141–153.
2009.PubMed/NCBI
|
|
3
|
Wilken R, Veena MS, Wang MB and Srivatsan
ES: Curcumin: A review of anti-cancer properties and therapeutic
activity in head and neck squamous cell carcinoma. Mol Cancer.
10:122011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Miłobȩdzka J, Kostanecki S and Lampe V:
Notes on Curcumins. Ber Deut Chem Ges. 43:2163–2170. 1910.(In
German).
|
|
5
|
Sharma RA, Gescher AJ and Steward WP:
Curcumin: The story so far. Eur J Cancer. 41:1955–1968. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sandur SK, Pandey MK, Sung B, Ahn KS,
Murakami A, Sethi G, Limtrakul P, Badmaev V and Aggarwal BB:
Curcumin, demethoxycurcumin, bisdemethoxycurcumin,
tetrahydrocurcumin and turmerones differentially regulate
anti-inflammatory and anti-proliferative responses through a
ROS-independent mechanism. Carcinogenesis. 28:1765–1773. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gupta SC, Kismali G and Aggarwal BB:
Curcumin, a component of turmeric: From farm to pharmacy.
Biofactors. 39:2–13. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kumar A, Ahuja A, Ali J and Baboota S:
Conundrum and therapeutic potential of curcumin in drug delivery.
Crit Rev Ther Drug Carrier Syst. 27:279–312. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ammon HP and Wahl MA: Pharmacology of
Curcuma longa. Planta Med. 57:1–7. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lev-Ari S, Strier L, Kazanov D, Elkayam O,
Lichtenberg D, Caspi D and Arber N: Curcumin synergistically
potentiates the growth-inhibitory and pro-apoptotic effects of
celecoxib in osteoarthritis synovial adherent cells. Rheumatology
(Oxford). 45:171–177. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Neerati P, Devde R and Gangi AK:
Evaluation of the effect of curcumin capsules on glyburide therapy
in patients with type-2 diabetes mellitus. Phytother Res.
28:1796–1800. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kim YS, Young MR, Bobe G, Colburn NH and
Milner JA: Bioactive food components, inflammatory targets and
cancer prevention. Cancer Prev Res (Phila). 2:200–208. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bhullar KS, Jha A, Youssef D and
Rupasinghe HP: Curcumin and its carbocyclic analogs:
Structure-activity in relation to antioxidant and selected
biological properties. Molecules. 18:5389–5404. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Somchit M, Changtam C, Kimseng R, Utaipan
T, Lertcanawanichakul M, Suksamrarn A and Chunglok W:
Demethoxycurcumin from Curcuma longa rhizome suppresses iNOS
induction in an in vitro inflamed human intestinal mucosa
model. Asian Pac J Cancer Prev. 15:1807–1810. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li YB, Gao JL, Zhong ZF, Hoi PM, Lee SM
and Wang YT: Bisdemethoxycurcumin suppresses MCF-7 cells
proliferation by inducing ROS accumulation and modulating
senescence-related pathways. Pharmacol Rep. 65:700–709. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Food and Drug Administration (FDA): Food
for Human Consumption; Part 182 - Substances generally recognized
as safe. http://accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.10Accessed.
2011
|
|
17
|
Aggarwal BB, Deb L and Prasad S: Curcumin
differs from tetrahydrocurcumin for molecular targets, signaling
pathways and cellular responses. Molecules. 20:185–205. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Masuda T, Hidaka K, Shinohara A, Maekawa
T, Takeda Y and Yamaguchi H: Chemical studies on antioxidant
mechanism of curcuminoid: Analysis of radical reaction products
from curcumin. J Agric Food Chem. 47:71–77. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS,
Hsieh CY and Lin JK: Stability of curcumin in buffer solutions and
characterization of its degradation products. J Pharm Biomed Anal.
15:1867–1876. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Prasad K, Mantha SV, Kalra J and Lee P:
Prevention of hypercholesterolemic atherosclerosis by garlic, an
antixoidant. J Cardiovasc Pharmacol Ther. 2:309–320. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Surh YJ and Chun KS: Cancer
chemopreventive effects of curcumin. Adv Exp Med Biol. 595:149–172.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Surh YJ, Chun KS, Cha HH, Han SS, Keum YS,
Park KK and Lee SS: Molecular mechanisms underlying chemopreventive
activities of anti-inflammatory phytochemicals: Down-regulation of
COX-2 and iNOS through suppression of NF-kappaB activation. Mutat
Res. 480(481): 243–268. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hong J, Bose M, Ju J, Ryu JH, Chen X, Sang
S, Lee MJ and Yang CS: Modulation of arachidonic acid metabolism by
curcumin and related beta-diketone derivatives: Effects on
cytosolic phospholipase A (2), cyclooxygenases and 5-lipoxygenase.
Carcinogenesis. 25:1671–1679. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang F, Altorki NK, Mestre JR,
Subbaramaiah K and Dannenberg AJ: Curcumin inhibits
cyclooxygenase-2 transcription in bile acid- and phorbol
ester-treated human gastrointestinal epithelial cells.
Carcinogenesis. 20:445–451. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li Y, Zhang S, Geng JX and Hu XY: Curcumin
inhibits human non-small cell lung cancer A549 cell proliferation
through regulation of Bcl-2/Bax and cytochrome C. Asian Pac J
Cancer Prev. 14:4599–4602. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Koeberle A, Northoff H and Werz O:
Curcumin blocks prostaglandin E2 biosynthesis through direct
inhibition of the microsomal prostaglandin E2 synthase-1. Mol
Cancer Ther. 8:2348–2355. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Divya CS and Pillai MR: Antitumor action
of curcumin in human papillomavirus associated cells involves
downregulation of viral oncogenes, prevention of NF-kB and AP-1
translocation and modulation of apoptosis. Mol Carcinog.
45:320–332. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hess J, Angel P and Schorpp-Kistner M:
AP-1 subunits: Quarrel and harmony among siblings. J Cell Sci.
117:5965–5973. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Panicker SR and Kartha CC: Curcumin
attenuates glucose-induced monocyte chemoattractant protein-1
synthesis in aortic endothelial cells by modulating the nuclear
factor-kappaB pathway. Pharmacology. 85:18–26. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Aggarwal BB, Sundaram C, Malani N and
Ichikawa H: Curcumin: The Indian solid gold. Adv Exp Med Biol.
595:1–75. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Huang YF, Zhu XX, Ding ZS and Lv GY: Study
on anti-angiogenesis effect of three curcumin pigments and
expression of their relevant factors. Zhongguo Zhong Yao Za Zhi.
40:324–329. 2015.(In Chinese). PubMed/NCBI
|
|
32
|
Arbiser JL, Klauber N, Rohan R, van
Leeuwen R, Huang MT, Fisher C, Flynn E and Byers HR: Curcumin is an
in vivo inhibitor of angiogenesis. Mol Med. 4:376–383.
1998.PubMed/NCBI
|
|
33
|
Gururaj AE, Belakavadi M, Venkatesh DA,
Marmé D and Salimath BP: Molecular mechanisms of anti-angiogenic
effect of curcumin. Biochem Biophys Res Commun. 297:934–942. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Biswas S and Rahman I: Modulation of
steroid activity in chronic inflammation: A novel anti-inflammatory
role for curcumin. Mol Nutr Food Res. 52:987–994. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yadav R, Jee B and Awasthi SK: Curcumin
suppresses the production of pro-inflammatory cytokine
interleukin-18 in lipopolysaccharide stimulated murine
macrophage-like cells. Indian J Clin Biochem. 30:109–112. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Funk JL, Oyarzo JN, Frye JB, Chen G, Lantz
RC, Jolad SD, Sólyom AM and Timmermann BN: Turmeric extracts
containing curcuminoids prevent experimental rheumatoid arthritis.
J Nat Prod. 69:351–355. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Funk JL, Frye JB, Oyarzo JN, Kuscuoglu N,
Wilson J, McCaffrey G, Stafford G, Chen G, Lantz RC, Jolad SD, et
al: Efficacy and mechanism of action of turmeric supplements in the
treatment of experimental arthritis. Arthritis Rheum. 54:3452–3464.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Nonose N, Pereira JA, Machado PR,
Rodrigues MR, Sato DT and Martinez CA: Oral administration of
curcumin (Curcuma longa) can attenuate the neutrophil
inflammatory response in zymosan-induced arthritis in rats. Acta
Cir Bras. 29:727–734. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Panahi Y, Rahimnia AR, Sharafi M, Alishiri
G, Saburi A and Sahebkar A: Curcuminoid treatment for knee
osteoarthritis: A randomized double-blind placebo-controlled trial.
Phytother Res. 28:1625–1631. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Srivastava R, Dikshit M, Srimal RC and
Dhawan BN: Anti-thrombotic effect of curcumin. Trhomb Res.
40:413–417. 1985. View Article : Google Scholar
|
|
41
|
Shah BH, Nawaz Z, Pertani SA, Roomi A,
Mahmood H, Saeed SA and Gilani AH: Inhibitory effect of curcumin, a
food spice from turmeric, on platelet-activating factor- and
arachidonic acid-mediated platelet aggregation through inhibition
of thromboxane formation and Ca2+ signaling. Biochem
Pharmacol. 58:1167–1172. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liu AC, Zhao LX and Lou HX: Curcumin
alters the pharmacokinetics of warfarin and clopidogrel in Wistar
rats but has no effect on anticoagulation or antiplatelet
aggregation. Planta Med. 79:971–977. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lala PK and Chakraborty C: Role of nitric
oxide in carcinogenesis and tumour progression. Lancet Oncol.
2:149–156. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
de Rojas-Walker T, Tamir S, Ji H, Wishnok
JS and Tannenbaum SR: Nitric oxide induces oxidative damage in
addition to deamination in macrophage DNA. Chem Res Toxicol.
8:473–477. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Graziewicz M, Wink DA and Laval F: Nitric
oxide inhibits DNA ligase activity: Potential mechanisms for
NO-mediated DNA damage. Carcinogenesis. 17:2501–2505. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mourtas S, Lazar AN, Markoutsa E,
Duyyckaerts C and Antimisiaris SG: Multifunctional nanoliposomes
with curcumin-lipid derivative and brain targeting functionality
with potential applications for Alzheimer disease. Eur J Med Chem.
80:175–183. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fang L, Gou S, Liu X, Cao F and Cheng L:
Design, synthesis and anti-Alzheimer properties of
dimethylaminomethyl-substituted curcumin derivatives. Bioorg Med
Chem Lett. 24:40–43. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lazar AN, Mourtas S, Youssef I, Parizot C,
Dauphin A, Delatour B, Antimisiaris SG and Duyckaerts C:
Curcumin-conjugated nanoliposomes with high affinity for Aβ
deposits: Possible applications to Alzheimer disease. Nanomedicine.
9:712–721. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Belkacemi A, Doggui S, Dao L and Ramassamy
C: Challenges associated with curcumin therapy in Alzheimer
disease. Expert Rev Mol Med. 13:e342011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Motterlini R, Foresti R, Bassi R and Green
CJ: Curcumin, an antioxidant and anti-inflammatory agent, induces
heme oxygenase-1 and protects endothelial cells against oxidative
stress. Free Radic Biol Med. 28:1303–1312. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Scapagnini G, Colombrita C, Amadio M,
D'Agata V, Arcelli E, Sapienza M, Quattrone A and Calabrese V:
Curcumin activates defensive genes and protects neurons against
oxidative stress. Antioxid Redox Signal. 8:395–403. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Miao M, Guo L, Tian S and Wang T: Effects
of curcumin on antioxidation in diabetic rats. Pak J Pharm Sci.
28(Suppl 1): 371–373. 2015.PubMed/NCBI
|
|
53
|
Liu Y, Wu YM, Yu Y, Cao CS, Zhang JH, Li K
and Zhang PY: Curcumin and resveratrol in combination modulate
drug-metabolizing enzymes as well as antioxidant indices during
lung carcinogenesis in mice. Hum Exp Toxicol. 34:620–627. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kamalakkannan N, Rukkumani R, Varma PS,
Viswanathan P, Rajasekharan KN and Menon VP: Comparative effects of
curcumin and an analogue of curcumin in carbon
tetrachloride-induced hepatotoxicity in rats. Basic Clin Pharmacol
Toxicol. 97:15–21. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Reyes-Gordillo K, Segovia J, Shibayama M,
Vergara P, Moreno MG and Muriel P: Curcumin protects against acute
liver damage in the rat by inhibiting NF-kappaB, proinflammatory
cytokines production and oxidative stress. Biochim Biophys Acta.
1770:989–996. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sugiyama T, Nagata J, Yamagishi A, Endoh
K, Saito M, Yamada K, Yamada S and Umegaki K: Selective protection
of curcumin against carbon tetrachloride-induced inactivation of
hepatic cytochrome P450 isozymes in rats. Life Sci. 78:2188–2193.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Maheshwari RK, Singh AK, Gaddipati J and
Srimal RC: Multiple biological activities of curcumin: A short
review. Life Sci. 78:2081–2087. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yance DR Jr and Sagar SM: Targeting
angiogenesis with integrative cancer therapies. Integr Cancer Ther.
5:9–29. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Karunagaran D, Rashmi R and Kumar TR:
Induction of apoptosis by curcumin and its implications for cancer
therapy. Curr Cancer Drug Targets. 5:117–129. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Helson L: Curcumin (diferuloylmethane)
delivery methods: A review. Biofactors. 39:21–26. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Salvioli S, Sikora E, Cooper EL and
Franceschi C: Curcumin in cell death processes: A challenge for CAM
of age-related pathologies. Evid Based Complement Alternat Med.
4:181–190. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yang JY, Zhong X, Yum HW, Lee HJ, Kundu
JK, Na HK and Surh YJ: Curcumin inhibits STAT3 signaling in the
colon of dextran sulfate sodium-treated mice. J Cancer Prev.
18:186–191. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Vallianou NG, Evangelopoulos A, Schizas N
and Kazazis C: Potential anticancer properties and mechanisms of
action of curcumin. Anticancer Res. 35:645–651. 2015.PubMed/NCBI
|
|
64
|
Chuang SE, Cheng AL, Lin JK and Kuo ML:
Inhibition by curcumin of diethylnitrosamine-induced hepatic
hyperplasia, inflammation, cellular gene products and
cell-cycle-related proteins in rats. Food Chem Toxicol. 38:991–995.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Busquets S, Carbó N, Almendro V, Quiles
MT, López-Soriano FJ and Argilés JM: Curcumin, a natural product
present in turmeric, decreases tumor growth but does not behave as
an anticachectic compound in a rat model. Cancer Lett. 167:33–38.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Huang MT, Wang ZY, Georgiadis CA, Laskin
JD and Conney AH: Inhibitory effects of curcumin on tumor
initiation by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene.
Carcinogenesis. 13:2183–2186. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Huang MT, Ma W, Lu YP, Chang RL, Fisher C,
Manchand PS, Newmark HL and Conney AH: Effects of curcumin,
demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin on
12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion.
Carcinogenesis. 16:2493–2497. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Huang MT, Ma W, Yen P, Xie JG, Han J,
Frenkel K, Grunberger D and Conney AH: Inhibitory effects of
topical application of low doses of curcumin on
12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion and
oxidized DNA bases in mouse epidermis. Carcinogenesis. 18:83–88.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Huang MT, Smart RC, Wong CQ and Conney AH:
Inhibitory effect of curcumin, chlorogenic acid, caffeic acid and
ferulic acid on tumor promotion in mouse skin by
12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 48:5941–5946.
1988.PubMed/NCBI
|
|
70
|
Jiang AJ, Jiang G, Li LT and Zheng JN:
Curcumin induces apoptosis through mitochondrial pathway and
caspases activation in human melanoma cells. Mol Biol Rep.
42:267–275. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li L, Braiteh FS and Kurzrock R:
Liposome-encapsulated curcumin: In vitro and in vivo
effects on proliferation, apoptosis, signaling and angiogenesis.
Cancer. 104:1322–1331. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bao B, Ali S, Banerjee S, Wang Z, Logna F,
Azmi AS, Kong D, Ahmad A, Li Y, Padhye S and Sarkar FH: Curcumin
analogue CDF inhibits pancreatic tumor growth by switching on
suppressor microRNAs and attenuating EZH2 expression. Cancer Res.
72:335–345. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ali S, Ahmad A, Aboukameel A, Bao B,
Padhye S, Philip PA and Sarkar FH: Increased Ras GTPase activity is
regulated by miRNAs that can be attenuated by CDF treatment in
pancreatic cancer cells. Cancer Lett. 319:173–181. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Dorai T, Cao YC, Dorai B, Buttyan R and
Katz AE: Therapeutic potential of curcumin in human prostate cancer
III. Curcumin inhibits proliferation, induces apoptosis and
inhibits angiogenesis of LNCaP prostate cancer cells in vivo.
Prostate. 47:293–303. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hong JH, Ahn KS, Bae E, Jeon SS and Choi
HY: The effects of curcumin on the invasiveness of prostate cancer
in vitro and in vivo. Prostate Cancer Prostatic Dis. 9:147–152.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li M, Zhang Z, Hill DL, Wang H and Zhang
R: Curcumin, a dietary component, has anticancer,
chemosensitization and radiosensitization effects by
down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2
pathway. Cancer Res. 67:1988–1996. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yallapu MM, Dobberpuhl MR, Maher DM, Jaggi
M and Chauhan SC: Design of curcumin loaded cellulose nanoparticles
for prostate cancer. Curr Drug Metab. 13:120–128. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Menon LG, Kuttan R and Kuttan G:
Inhibition of lung metastasis in mice induced by B16F10 melanoma
cells by polyphenolic compounds. Cancer letters. 95:221–225. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cai YY, Lin WP, Li AP and Xu JY: Combined
effects of curcumin and triptolide on an ovarian cancer cell line.
Asian Pac J Cancer Prev. 14:4267–4271. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yang CL, Liu YY, Ma YG, Xue YX, Liu DG,
Ren Y, Liu XB, Li Y and Li Z: Curcumin blocks small cell lung
cancer cells migration, invasion, angiogenesis, cell cycle and
neoplasia through Janus kinase-STAT3 signalling pathway. PLoS One.
7:e379602012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Tanaka T, Makita H, Ohnishi M, Hirose Y,
Wang A, Mori H, Satoh K, Hara A and Ogawa H: Chemoprevention of
4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary
curcumin and hesperidin: Comparison with the protective effect of
beta-carotene. Cancer Res. 54:4653–4659. 1994.PubMed/NCBI
|
|
82
|
Azuine MA and Bhide SV: Adjuvant
chemoprevention of experimental cancer: Catechin and dietary
turmeric in forestomach and oral cancer models. J Ethnopharmacol.
44:211–217. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tomren MA, Másson M, Loftsson T and
Tønnesen HH: Studies on curcumin and curcuminoids XXXI. Symmetric
and asymmetric curcuminoids: Stability, activity and complexation
with cyclodextrin. Int J Pharm. 338:27–34. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chakravarti N, Kadara H, Yoon DJ, Shay JW,
Myers JN, Lotan D, Sonenberg N and Lotan R: Differential inhibition
of protein translation machinery by curcumin in normal,
immortalized and malignant oral epithelial cells. Cancer Prev Res
(Phila). 3:331–338. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chang KW, Hung PS, Lin IY, Hou CP, Chen
LK, Tsai YM and Lin SC: Curcumin upregulates insulin-like growth
factor binding protein-5 (IGFBP-5) and C/EBPalpha during oral
cancer suppression. Int J Cancer. 127:9–20. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
LoTempio MM, Veena MS, Steele HL,
Ramamurthy B, Ramalingam TS, Cohen AN, Chakrabarti R, Srivatsan ES
and Wang MB: Curcumin suppresses growth of head and neck squamous
cell carcinoma. Clin Cancer Res. 11:6994–7002. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Sandur SK, Deorukhkar A, Pandey MK, Pabón
AM, Shentu S, Guha S, Aggarwal BB and Krishnan S: Curcumin
modulates the radiosensitivity of colorectal cancer cells by
suppressing constitutive and inducible NF-kappaB activity. Int J
Radiat Oncol Biol Phys. 75:534–542. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Siwak DR, Shishodia S, Aggarwal BB and
Kurzrock R: Curcumin-induced antiproliferative and proapoptotic
effects in melanoma cells are associated with suppression of I
kappaB kinase and nuclear factor kappaB activity and are
independent of the B-Raf/mitogen-activated/extracellular
signal-regulated protein kinase pathway and the Akt pathway.
Cancer. 104:879–890. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Crowell JA, Steele VE and Fay JR:
Targeting the AKT protein kinase for cancer chemoprevention. Mol
Cancer Ther. 6:2139–2148. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Vermorken JB, Mesia R, Rivera F, Remenar
E, Kawecki A, Rottey S, Erfan J, Zabolotnyy D, Kienzer HR, Cupissol
D, et al: Platinum-based chemotherapy plus cetuximab in head and
neck cancer. N Engl J Med. 359:1116–1127. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Aravindan N, Madhusoodhanan R, Ahmad S,
Johnson D and Herman TS: Curcumin inhibits NF-kappaB mediated
radioprotection and modulate apoptosis related genes in human
neuroblastoma cells. Cancer Biol Ther. 7:569–576. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Bachmeier BE, Mohrenz IV, Mirisola V,
Schleicher E, Romeo F, Höhneke C, Jochum M, Nerlich AG and Pfeffer
U: Curcumin downregulates the inflammatory cytokines CXCL1 and −2
in breast cancer cells via NF-kappaB. Carcinogenesis. 29:779–789.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Marin YE, Wall BA, Wang S, Namkoong J,
Martino JJ, Suh J, Lee HJ, Rabson AB, Yang CS, Chen S and Ryu JH:
Curcumin downregulates the constitutive activity of NF-kappaB and
induces apoptosis in novel mouse melanoma cells. Melanoma Res.
17:274–283. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tomita M, Kawakami H, Uchihara JN,
Okudaira T, Masuda M, Takasu N, Matsuda T, Ohta T, Tanaka Y,
Ohshiro K and Mori N: Curcumin (diferuloylmethane) inhibits
constitutive active NF-kappaB, leading to suppression of cell
growth of human T-cell leukemia virus type I-infected T-cell lines
and primary adult T-cell leukemia cells. Int J Cancer. 118:765–772.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wang D, Veena MS, Stevenson K, Tang C, Ho
B, Suh JD, Duarte VM, Faull KF, Mehta K, Srivatsan ES and Wang MB:
Liposome-encapsulated curcumin suppresses growth of head and neck
squamous cell carcinoma in vitro and in xenografts through
the inhibition of nuclear factor kappaB by an AKT-independent
pathway. Clin Cancer Res. 14:6228–6236. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Khafif A, Lev-Ari S, Vexler A, Barnea I,
Starr A, Karaush V, Haif S and Ben-Yosef R: Curcumin: A potential
radio-enhancer in head and neck cancer. Laryngoscope.
119:2019–2026. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Jagetia GC: Radioprotection and
radiosensitization by curcumin. Adv Exp Med Biol. 595:301–320.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yallapu MM, Maher DM, Sundram V, Bell MC,
Jaggi M and Chauhan SC: Curcumin induces chemo/radio-sensitization
in ovarian cancer cells and curcumin nanoparticles inhibit ovarian
cancer cell growth. J Ovarian Res. 3:112010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Abuzeid WM, Davis S, Tang AL, Saunders L,
Brenner JC, Lin J, Fuchs JR, Light E, Bradford CR, Prince ME and
Carey TE: Sensitization of head and neck cancer to cisplatin
through the use of a novel curcumin analog. Arch Otolaryngol Head
Neck Surg. 137:499–507. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li N, Chen X, Liao J, Yang G, Wang S,
Josephson Y, Han C, Chen J, Huang MT and Yang CS: Inhibition of
7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis
in hamsters by tea and curcumin. Carcinogenesis. 23:1307–1313.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Manoharan S, Balakrishnan S, Menon VP,
Alias LM and Reena AR: Chemopreventive efficacy of curcumin and
piperine during 7,12-dimethylbenz[a]anthracene-induced hamster
buccal pouch carcinogenesis. Singapore Med J. 50:139–146.
2009.PubMed/NCBI
|
|
102
|
Clark CA, McEachern MD, Shah SH, Rong Y,
Rong X, Smelley CL, Caldito GC, Abreo FW and Nathan CO: Curcumin
inhibits carcinogen and nicotine-induced Mammalian target of
rapamycin pathway activation in head and neck squamous cell
carcinoma. Cancer Prev Res (Phila). 3:1586–1595. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Kumar B, Yadav A, Hideg K, Kuppusamy P,
Teknos TN and Kumar P: A novel curcumin analog (H-4073) enhances
the therapeutic efficacy of cisplatin treatment in head and neck
cancer. PloS One. 9:e932082014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Rao CV, Simi B and Reddy BS: Inhibition by
dietary curcumin of azoxymethane-induced ornithine decarboxylase,
tyrosine protein kinase, arachidonic acid metabolism and aberrant
crypt foci formation in the rat colon. Carcinogenesis.
14:2219–2225. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Hu A, Huang JJ, Jin XJ, Li JP, Tang YJ,
Huang XF, Cui HJ, Xu WH and Sun GB: Curcumin suppresses
invasiveness and vasculogenic mimicry of squamous cell carcinoma of
the larynx through the inhibition of JAK-2/STAT-3 signaling
pathway. Am J Cancer Res. 5:278–288. 2014.PubMed/NCBI
|