|
1
|
Hotchkiss RS, Swanson PE, Freeman BD,
Tinsley KW, Cobb JP, Matuschak GM, Buchman TG and Karl IE:
Apoptotic cell death in patients with sepsis, shock, and multiple
organ dysfunction. Crit Care Med. 27:1230–1251. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Aneja R and Fink MP: Promising therapeutic
agents for sepsis. Trends Microbiol. 15:31–37. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Angus DC, Linde-Zwirble WT, Lidicker J,
Clermont G, Carcillo J and Pinsky MR: Epidemiology of severe sepsis
in the United States: Analysis of incidence, outcome, and
associated costs of care. Crit Care Med. 29:1303–1310. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Angus DC and van der Poll T: Severe sepsis
and septic shock. N Engl J Med. 369:840–851. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ziegler EJ, Fisher CJ Jr..Sprung CL,
Straube RC, Sadoff JC, Foulke GE, Wortel CH, Fink MP, Dellinger RP,
Teng NN, et al: Treatment of gram-negative bacteremia and septic
shock with HA-1A human monoclonal antibody against endotoxin. A
randomized, double-blind, placebo-controlled trial. The HA-1A
Sepsis Study Group. N Engl J Med. 324:429–436. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fisher CJ Jr, Slotman GJ, Opal SM, Pribble
JP, Bone RC, Emmanuel G, Ng D, Bloedow DC and Catalano MA: IL-1RA
Sepsis Syndrome Study Group: Initial evaluation of human
recombinant interleukin-1 receptor antagonist in the treatment of
sepsis syndrome: A randomized, open-label, placebo-controlled
multicenter trial. Crit Care Med. 22:12–21. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Fisher CJ Jr, Agosti JM, Opal SM, Lowry
SF, Balk RA, Sadoff JC, Abraham E, Schein RM and Benjamin E:
Treatment of septic shock with the tumor necrosis factor receptor:
Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N
Engl J Med. 334:1697–1702. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Boomer JS, Green JM and Hotchkiss RS: The
changing immune system in sepsis: Is individualized
immuno-modulatory therapy the answer? Virulence. 5:45–56. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang L, Cardinal JS, Bahar R, Evankovich
J, Huang H, Nace G, Billiar TR, Rosengart MR, Pan P and Tsung A:
Interferon regulatory factor-1 regulates the autophagic response in
LPS-stimulated macrophages through nitric oxide. Mol Med.
18:201–208. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhang L, Cardinal JS, Pan P, Rosborough
BR, Chang Y, Yan W, Huang H, Billiar TR, Rosengart MR and Tsung A:
Splenocyte apoptosis and autophagy is mediated by interferon
regulatory factor 1 during murine endotoxemia. Shock. 37:511–517.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hotchkiss RS and Karl IE: The
pathophysiology and treatment of sepsis. N Engl J Med. 348:138–150.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hotchkiss RS and Nicholson DW: Apoptosis
and caspases regulate death and inflammation in sepsis. Nat Rev
Immunol. 6:813–822. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Venet F, Chung CS, Monneret G, Huang X,
Horner B, Garber M and Ayala A: Regulatory T cell populations in
sepsis and trauma. J Leukoc Biol. 83:523–535. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Delano MJ, Scumpia PO, Weinstein JS, Coco
D, Nagaraj S, Kelly-Scumpia KM, O'Malley KA, Wynn JL, Antonenko S,
Al-Quran SZ, et al: MyD88-dependent expansion of an immature
GR-1(+)CD11b(+) population induces T cell suppression and Th2
polarization in sepsis. J Exp Med. 204:1463–1474. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Osuchowski MF, Welch K, Siddiqui J and
Remick DG: Circulating cytokine/inhibitor profiles reshape the
understanding of the SIRS/CARS continuum in sepsis and predict
mortality. J Immunol. 177:1967–1974. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Adib-Conquy M and Cavaillon JM:
Compensatory anti-inflammatory response syndrome. Thromb Haemost.
101:36–47. 2009.PubMed/NCBI
|
|
17
|
Hotchkiss RS, Tinsley KW, Swanson PE,
Schmieg RE Jr, Hui JJ, Chang KC, Osborne DF, Freeman BD, Cobb JP,
Buchman TG and Karl IE: Sepsis-induced apoptosis causes progressive
profound depletion of B and CD4+ T lymphocytes in humans. J
Immunol. 166:6952–6963. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hotchkiss RS, Tinsley KW, Swanson PE,
Grayson MH, Osborne DF, Wagner TH, Cobb JP, Coopersmith C and Karl
IE: Depletion of dendritic cells, but not macrophages, in patients
with sepsis. J Immunol. 168:2493–2500. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Stearns-Kurosawa DJ, Osuchowski MF,
Valentine C, Kurosawa S and Remick DG: The pathogenesis of sepsis.
Annu Rev Pathol. 6:19–48. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Levine B and Yuan J: Autophagy in cell
death: An innocent convict? J Clin Invest. 115:2679–2688. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nakahira K, Haspel JA, Rathinam VA, Lee
SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim
HP, et al: Autophagy proteins regulate innate immune responses by
inhibiting the release of mitochondrial DNA mediated by the NALP3
inflammasome. Nat Immunol. 12:222–230. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Carchman EH, Rao J, Loughran PA, Rosengart
MR and Zuckerbraun BS: Heme oxygenase-1-mediated autophagy protects
against hepatocyte cell death and hepatic injury from
infection/sepsis in mice. Hepatology. 53:2053–2062. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Takahashi W, Watanabe E, Fujimura L,
Watanabe-Takano H, Yoshidome H, Swanson PE, Tokuhisa T, Oda S and
Hatano M: Kinetics and protective role of autophagy in a mouse
cecal ligation and puncture-induced sepsis. Crit Care. 17:R1602013.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hsiao HW, Tsai KL, Wang LF, Chen YH,
Chiang PC, Chuang SM and Hsu C: The decline of autophagy
contributes to proximal tubular dysfunction during sepsis. Shock.
37:289–296. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Howell GM, Gomez H, Collage RD, Loughran
P, Zhang X, Escobar DA, Billiar TR, Zuckerbraun BS and Rosengart
MR: Augmenting autophagy to treat acute kidney injury during
endotoxemia in mice. PLoS One. 8:e695202013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lo S, Yuan SS, Hsu C, Cheng YJ, Chang YF,
Hsueh HW, Lee PH and Hsieh YC: Lc3 over-expression improves
survival and attenuates lung injury through increasing
autophagosomal clearance in septic mice. Ann Surg. 257:352–363.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yen YT, Yang HR, Lo HC, Hsieh YC, Tsai SC,
Hong CW and Hsieh CH: Enhancing autophagy with activated protein C
and rapamycin protects against sepsis-induced acute lung injury.
Surgery. 153:689–698. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hsieh YC, Athar M and Chaudry IH: When
apoptosis meets autophagy: Deciding cell fate after trauma and
sepsis. Trends Mol Med. 15:129–138. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hengartner MO: The biochemistry of
apoptosis. Nature. 407:770–776. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Budihardjo I, Oliver H, Lutter M, Luo X
and Wang X: Biochemical pathways of caspase activation during
apoptosis. Annu Rev Cell Dev Biol. 15:269–290. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hotchkiss RS, Osmon SB, Chang KC, Wagner
TH, Coopersmith CM and Karl IE: Accelerated lymphocyte death in
sepsis occurs by both the death receptor and mitochondrial
pathways. J Immunol. 174:5110–5118. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Boomer JS, To K, Chang KC, Takasu O,
Osborne DF, Walton AH, Bricker TL, Jarman SD II, Kreisel D,
Krupnick AS, et al: Immunosuppression in patients who die of sepsis
and multiple organ failure. JAMA. 306:2594–2605. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wesche DE, Lomas-Neira JL, Perl M, Chung
CS and Ayala A: Leukocyte apoptosis and its significance in sepsis
and shock. J Leukoc Biol. 78:325–337. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Felmet KA, Hall MW, Clark RS, Jaffe R and
Carcillo JA: Prolonged lymphopenia, lymphoid depletion, and
hypoprolactinemia in children with nosocomial sepsis and multiple
organ failure. J Immunol. 174:3765–3772. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hotchkiss RS, Chang KC, Grayson MH,
Tinsley KW, Dunne BS, Davis CG, Osborne DF and Karl IE: Adoptive
transfer of apoptotic splenocytes worsens survival, whereas
adoptive transfer of necrotic splenocytes improves survival in
sepsis. Proc Natl Acad Sci USA. 100:6724–6729. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wesche-Soldato DE, Swan RZ, Chung CS and
Ayala A: The apoptotic pathway as a therapeutic target in sepsis.
Curr Drug Targets. 8:493–500. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Springer TA: Traffic signals on
endothelium for lymphocyte recirculation and leukocyte emigration.
Annu Rev Physiol. 57:827–872. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hotchkiss RS, Tinsley KW, Swanson PE,
Chang KC, Cobb JP, Buchman TG, Korsmeyer SJ and Karl IE: Prevention
of lymphocyte cell death in sepsis improves survival in mice. Proc
Natl Acad Sci USA. 96:14541–14546. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hotchkiss RS, Chang KC, Swanson PE,
Tinsley KW, Hui JJ, Klender P, Xanthoudakis S, Roy S, Black C,
Grimm E, et al: Caspase inhibitors improve survival in sepsis: A
critical role of the lymphocyte. Nat Immunol. 1:496–501. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Dong X, Shen K and Bulow HE: Intrinsic and
extrinsic mechanisms of dendritic morphogenesis. Annu Rev Physiol.
77:271–300. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gautier EL, Huby T, Saint-Charles F,
Ouzilleau B, Chapman MJ and Lesnik P: Enhanced dendritic cell
survival attenuates lipopolysaccharide-induced immunosuppression
and increases resistance to lethal endotoxic shock. J Immunol.
180:6941–6946. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tinsley KW, Grayson MH, Swanson PE, Drewry
AM, Chang KC, Karl IE and Hotchkiss RS: Sepsis induces apoptosis
and profound depletion of splenic interdigitating and follicular
dendritic cells. J Immunol. 171:909–914. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wesche-Soldato DE, Chung CS, Lomas-Neira
J, Doughty LA, Gregory SH and Ayala A: In vivo delivery of
caspase-8 or Fas siRNA improves the survival of septic mice. Blood.
106:2295–2301. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Brahmamdam P, Watanabe E, Unsinger J,
Chang KC, Schierding W, Hoekzema AS, Zhou TT, McDonough JS, Holemon
H, Heidel JD, et al: Targeted delivery of siRNA to cell death
proteins in sepsis. Shock. 32:131–139. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lamkanfi M, Moreira LO, Makena P,
Spierings DC, Boyd K, Murray PJ, Green DR and Kanneganti TD:
Caspase-7 deficiency protects from endotoxin-induced lymphocyte
apoptosis and improves survival. Blood. 113:2742–2745. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hotchkiss RS, Swanson PE, Knudson CM,
Chang KC, Cobb JP, Osborne DF, Zollner KM, Buchman TG, Korsmeyer SJ
and Karl IE: Overexpression of Bcl-2 in transgenic mice decreases
apoptosis and improves survival in sepsis. J Immunol.
162:4148–4156. 1999.PubMed/NCBI
|
|
47
|
Peck-Palmer OM, Unsinger J, Chang KC,
McDonough JS, Perlman H, McDunn JE and Hotchkiss RS: Modulation of
the Bcl-2 family blocks sepsis-induced depletion of dendritic cells
and macrophages. Shock. 31:359–366. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chung CS, Song GY, Lomas J, Simms HH,
Chaudry IH and Ayala A: Inhibition of Fas/Fas ligand signaling
improves septic survival: Differential effects on macrophage
apoptotic and functional capacity. J Leukoc Biol. 74:344–351. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Méthot N, Huang J, Coulombe N,
Vaillancourt JP, Rasper D, Tam J, Han Y, Colucci J, Zamboni R,
Xanthoudakis S, et al: Differential efficacy of caspase inhibitors
on apoptosis markers during sepsis in rats and implication for
fractional inhibition requirements for therapeutics. J Exp Med.
199:199–207. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kidd VJ: Proteolytic activities that
mediate apoptosis. Annu Rev Physiol. 60:533–573. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Martinon F and Tschopp J: Inflammatory
caspases: Linking an intracellular innate immune system to
autoinflammatory diseases. Cell. 117:561–574. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Parrino J, Hotchkiss RS and Bray M:
Prevention of immune cell apoptosis as potential therapeutic
strategy for severe infections. Emerg Infect Dis. 13:191–198. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Levine B, Mizushima N and Virgin HW:
Autophagy in immunity and inflammation. Nature. 469:323–335. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Klionsky DJ and Codogno P: The mechanism
and physiological function of macroautophagy. J Innate Immun.
5:427–433. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
He C and Klionsky DJ: Regulation
mechanisms and signaling pathways of autophagy. Annu Rev Genet.
43:67–93. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Jung CH, Ro SH, Cao J, Otto NM and Kim DH:
mTOR regulation of autophagy. FEBS Lett. 584:1287–1295. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Pattingre S, Tassa A, Qu X, Garuti R,
Liang XH, Mizushima N, Packer M, Schneider MD and Levine B: Bcl-2
antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell.
122:927–939. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Nishida Y, Arakawa S, Fujitani K,
Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y
and Shimizu S: Discovery of Atg5/Atg7-independent alternative
macroautophagy. Nature. 461:654–658. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Behrends C, Sowa ME, Gygi SP and Harper
JW: Network organization of the human autophagy system. Nature.
466:68–76. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Moy RH and Cherry S: Antimicrobial
autophagy: A conserved innate immune response in Drosophila. J
Innate Immun. 5:444–455. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Pua HH, Guo J, Komatsu M and He YW:
Autophagy is essential for mitochondrial clearance in mature T
lymphocytes. J Immunol. 182:4046–4055. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Miller BC, Zhao Z, Stephenson LM, Cadwell
K, Pua HH, Lee HK, Mizushima NN, Iwasaki A, He YW, Swat W and
Virgin HW IV: The autophagy gene ATG5 plays an essential role in B
lymphocyte development. Autophagy. 4:309–314. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Pua HH, Dzhagalov I, Chuck M, Mizushima N
and He YW: A critical role for the autophagy gene Atg5 in T cell
survival and proliferation. J Exp Med. 204:25–31. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lee HK, Mattei LM, Steinberg BE, Alberts
P, Lee YH, Chervonsky A, Mizushima N, Grinstein S and Iwasaki A: In
vivo requirement for Atg5 in antigen presentation by dendritic
cells. Immunity. 32:227–239. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Pyle A, Burn DJ, Gordon C, Swan C,
Chinnery PF and Baudouin SV: Fall in circulating mononuclear cell
mitochondrial DNA content in human sepsis. Intensive Care Med.
36:956–962. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal
T, Junger W, Brohi K, Itagaki K and Hauser CJ: Circulating
mitochondrial DAMPs cause inflammatory responses to injury. Nature.
464:104–107. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dupont N, Jiang S, Pilli M, Ornatowski W,
Bhattacharya D and Deretic V: Autophagy-based unconventional
secretory pathway for extracellular delivery of IL-β. EMBO J.
30:4701–4711. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Jiang S, Dupont N, Castillo EF and Deretic
V: Secretory versus degradative autophagy: Unconventional secretion
of inflammatory mediators. J Innate Immun. 5:471–479. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng
P, Hogan RN, Gilpin C and Levine B: Autophagy gene-dependent
clearance of apoptotic cells during embryonic development. Cell.
128:931–946. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Tal MC, Sasai M, Lee HK, Yordy B, Shadel
GS and Iwasaki A: Absence of autophagy results in reactive oxygen
species-dependent amplification of RLR signaling. Proc Natl Acad
Sci USA. 106:2770–2775. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Maiuri MC, Zalckvar E, Kimchi A and
Kroemer G: Self-eating and self-killing: Crosstalk between
autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Fimia GM and Piacentini M: Regulation of
autophagy in mammals and its interplay with apoptosis. Cell Mol
Life Sci. 67:1581–1588. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Rubinstein AD and Kimchi A: Life in the
balance-a mechanistic view of the crosstalk between autophagy and
apoptosis. J Cell Sci. 125:5259–5268. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zinkel S, Gross A and Yang E: BCL2 family
in DNA damage and cell cycle control. Cell Death Differ.
13:1351–1359. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shi CS and Kehrl JH: MyD88 and Trif target
Beclin 1 to trigger autophagy in macrophages. J Biol Chem.
283:33175–33182. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kurihara Y, Kanki T, Aoki Y, Hirota Y,
Saigusa T, Uchiumi T and Kang D: Mitophagy plays an essential role
in reducing mitochondrial production of reactive oxygen species and
mutation of mitochondrial DNA by maintaining mitochondrial quantity
and quality in yeast. J Biol Chem. 287:3265–3272. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhou R, Yazdi AS, Menu P and Tschopp J: A
role for mitochondria in NLRP3 inflammasome activation. Nature.
469:221–225. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Tang D, Loze MT, Zeh HJ and Kang R: The
redox protein HMGB1 regulates cell death and survival in cancer
treatment. Autophagy. 6:1181–1183. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yousefi S, Perozzo R, Schmid I, Ziemiecki
A, Schaffner T, Scapozza L, Brunner T and Simon HU:
Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis.
Nat Cell Biol. 8:1124–1132. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI,
Woo HN, Cho DH, Choi B, Lee H, Kim JH, et al: Essential roles of
Atg5 and FADD in autophagic cell death: Dissection of autophagic
cell death into vacuole formation and cell death. J Biol Chem.
280:20722–20729. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
González-Polo RA, Boya P, Pauleau AL,
Jalil A, Larochette N, Souquère S, Eskelinen EL, Pierron G, Saftig
P and Kroemer G: The apoptosis/autophagy paradox: Autophagic
vacuolization before apoptotic death. J Cell Sci. 118:3091–3102.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Mizumura K, Cloonan SM, Haspel JA and Choi
AM: The emerging importance of autophagy in pulmonary diseases.
Chest. 142:1289–1299. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Mizumura K, Choi AM and Ryter SW: Emerging
role of selective autophagy in human diseases. Front Pharmacol.
5:2442014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lam KK, Zheng X, Forestieri R, Balgi AD,
Nodwell M, Vollett S, Anderson HJ, Andersen RJ, Av-Gay Y and
Roberge M: Nitazoxanide stimulates autophagy and inhibits mTORC1
signaling and intracellular proliferation of Mycobacterium
tuberculosis. PLoS Pathog. 8:e10026912012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Tung SM, Unal C, Ley A, Pena C, Tunggal B,
Noegel AA, Krut O, Steinert M and Eichinger L: Loss of
Dictyostelium ATG9 results in a pleiotropic phenotype affecting
growth, development, phagocytosis and clearance and replication of
Legionella pneumophila. Cell Microbiol. 12:765–780. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ye Y, Li X, Wang W, Ouedraogo KC, Li Y,
Gan C, Tan S, Zhou X and Wu M: Atg7 deficiency impairs host defense
against Klebsiella pneumoniae by impacting bacterial clearance,
survival and inflammatory responses in mice. Am J Physiol Lung Cell
Mol Physiol. 307:L355–L363. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Gannagé M, Dormann D, Albrecht R, Dengjel
J, Torossi T, Rämer PC, Lee M, Strowig T, Arrey F, Conenello G, et
al: Matrix protein 2 of influenza A virus blocks autophagosome
fusion with lysosomes. Cell Host Microbe. 6:367–380. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lee SJ, Smith A, Guo L, Alastalo TP, Li M,
Sawada H, Liu X, Chen ZH, Ifedigbo E, Jin Y, et al: Autophagic
protein LC3B confers resistance against hypoxia-induced pulmonary
hypertension. Am J Respir Crit Care Med. 183:649–658. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Patel AS, Lin L, Geyer A, Haspel JA, An
CH, Cao J, Rosas IO and Morse D: Autophagy in idiopathic pulmonary
fibrosis. PLoS One. 7:e413942012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Chen ZH, Kim HP, Sciurba FC, Lee SJ,
Feghali-Bostwick C, Stolz DB, Dhir R, Landreneau RJ, Schuchert MJ,
Yousem SA, et al: Egr-1 regulates autophagy in cigarette
smoke-induced chronic obstructive pulmonary disease. PLoS One.
3:e33162008. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chen ZH, Lam HC, Jin Y, Kim HP, Cao J, Lee
SJ, Ifedigbo E, Parameswaran H, Ryter SW and Choi AM: Autophagy
protein microtubule-associated protein 1 light chain-3B (LC3B)
activates extrinsic apoptosis during cigarette smoke-induced
emphysema. Proc Natl Acad Sci USA. 107:18880–18885. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yang ZJ, Chee CE, Huang S and Sinicrope
FA: The role of autophagy in cancer: Therapeutic implications. Mol
Cancer Ther. 10:1533–1541. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kim EJ, Jeong JH, Bae S, Kang S, Kim CH
and Lim YB: mTOR inhibitors radiosensitize PTEN-deficient
non-small-cell lung cancer cells harboring an EGFR activating
mutation by inducing autophagy. J Cell Biochem. 114:1248–1256.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hsieh CH, Pai PY, Hsueh HW, Yuan SS and
Hsieh YC: Complete induction of autophagy is essential for
cardioprotection in sepsis. Ann Surg. 253:1190–1200. 2011.
View Article : Google Scholar : PubMed/NCBI
|