Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
April-2016 Volume 11 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2016 Volume 11 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Clinical application: Restoration of immune homeostasis by autophagy as a potential therapeutic target in sepsis (Review)

  • Authors:
    • Lemeng Zhang
    • Yuhang Ai
    • Allan Tsung
  • View Affiliations / Copyright

    Affiliations: Department of Intensive Care Unit, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
  • Pages: 1159-1167
    |
    Published online on: February 11, 2016
       https://doi.org/10.3892/etm.2016.3071
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Sepsis-induced lymphocyte and dendritic cell apoptosis contributes to immunosuppression, resulting in an inability to eradicate the primary infection and a propensity to acquire secondary infections. However, the inhibition of apoptosis may produce unexpected and undesirable consequences. Another cellular process, autophagy, is also activated in immune cells. There is increasing evidence to suggest that autophagy confers a protective effect in sepsis. The protective mechanisms underlying this effect include limiting apoptotic cell death and maintaining cellular homeostasis. Therefore, understanding the regulation of immune cell autophagy and apoptosis may provide insight into novel therapeutic strategies. The present review examined potential novel therapeutic strategies aimed at restoring immune homeostasis by inducing autophagy. The restoration of balance between apoptosis and autophagy may be a novel approach for improving sepsis‑induced immunosuppression and decreasing susceptibility to sepsis.
View Figures
View References

1 

Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM, Buchman TG and Karl IE: Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med. 27:1230–1251. 1999. View Article : Google Scholar : PubMed/NCBI

2 

Aneja R and Fink MP: Promising therapeutic agents for sepsis. Trends Microbiol. 15:31–37. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J and Pinsky MR: Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit Care Med. 29:1303–1310. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Angus DC and van der Poll T: Severe sepsis and septic shock. N Engl J Med. 369:840–851. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Ziegler EJ, Fisher CJ Jr..Sprung CL, Straube RC, Sadoff JC, Foulke GE, Wortel CH, Fink MP, Dellinger RP, Teng NN, et al: Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A Sepsis Study Group. N Engl J Med. 324:429–436. 1991. View Article : Google Scholar : PubMed/NCBI

6 

Fisher CJ Jr, Slotman GJ, Opal SM, Pribble JP, Bone RC, Emmanuel G, Ng D, Bloedow DC and Catalano MA: IL-1RA Sepsis Syndrome Study Group: Initial evaluation of human recombinant interleukin-1 receptor antagonist in the treatment of sepsis syndrome: A randomized, open-label, placebo-controlled multicenter trial. Crit Care Med. 22:12–21. 1994. View Article : Google Scholar : PubMed/NCBI

7 

Fisher CJ Jr, Agosti JM, Opal SM, Lowry SF, Balk RA, Sadoff JC, Abraham E, Schein RM and Benjamin E: Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N Engl J Med. 334:1697–1702. 1996. View Article : Google Scholar : PubMed/NCBI

8 

Boomer JS, Green JM and Hotchkiss RS: The changing immune system in sepsis: Is individualized immuno-modulatory therapy the answer? Virulence. 5:45–56. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Zhang L, Cardinal JS, Bahar R, Evankovich J, Huang H, Nace G, Billiar TR, Rosengart MR, Pan P and Tsung A: Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide. Mol Med. 18:201–208. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Zhang L, Cardinal JS, Pan P, Rosborough BR, Chang Y, Yan W, Huang H, Billiar TR, Rosengart MR and Tsung A: Splenocyte apoptosis and autophagy is mediated by interferon regulatory factor 1 during murine endotoxemia. Shock. 37:511–517. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Hotchkiss RS and Karl IE: The pathophysiology and treatment of sepsis. N Engl J Med. 348:138–150. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Hotchkiss RS and Nicholson DW: Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol. 6:813–822. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Venet F, Chung CS, Monneret G, Huang X, Horner B, Garber M and Ayala A: Regulatory T cell populations in sepsis and trauma. J Leukoc Biol. 83:523–535. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, O'Malley KA, Wynn JL, Antonenko S, Al-Quran SZ, et al: MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med. 204:1463–1474. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Osuchowski MF, Welch K, Siddiqui J and Remick DG: Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. J Immunol. 177:1967–1974. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Adib-Conquy M and Cavaillon JM: Compensatory anti-inflammatory response syndrome. Thromb Haemost. 101:36–47. 2009.PubMed/NCBI

17 

Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE Jr, Hui JJ, Chang KC, Osborne DF, Freeman BD, Cobb JP, Buchman TG and Karl IE: Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol. 166:6952–6963. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Hotchkiss RS, Tinsley KW, Swanson PE, Grayson MH, Osborne DF, Wagner TH, Cobb JP, Coopersmith C and Karl IE: Depletion of dendritic cells, but not macrophages, in patients with sepsis. J Immunol. 168:2493–2500. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S and Remick DG: The pathogenesis of sepsis. Annu Rev Pathol. 6:19–48. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Levine B and Yuan J: Autophagy in cell death: An innocent convict? J Clin Invest. 115:2679–2688. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, et al: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 12:222–230. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Carchman EH, Rao J, Loughran PA, Rosengart MR and Zuckerbraun BS: Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology. 53:2053–2062. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Takahashi W, Watanabe E, Fujimura L, Watanabe-Takano H, Yoshidome H, Swanson PE, Tokuhisa T, Oda S and Hatano M: Kinetics and protective role of autophagy in a mouse cecal ligation and puncture-induced sepsis. Crit Care. 17:R1602013. View Article : Google Scholar : PubMed/NCBI

24 

Hsiao HW, Tsai KL, Wang LF, Chen YH, Chiang PC, Chuang SM and Hsu C: The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock. 37:289–296. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Howell GM, Gomez H, Collage RD, Loughran P, Zhang X, Escobar DA, Billiar TR, Zuckerbraun BS and Rosengart MR: Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS One. 8:e695202013. View Article : Google Scholar : PubMed/NCBI

26 

Lo S, Yuan SS, Hsu C, Cheng YJ, Chang YF, Hsueh HW, Lee PH and Hsieh YC: Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice. Ann Surg. 257:352–363. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Yen YT, Yang HR, Lo HC, Hsieh YC, Tsai SC, Hong CW and Hsieh CH: Enhancing autophagy with activated protein C and rapamycin protects against sepsis-induced acute lung injury. Surgery. 153:689–698. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Hsieh YC, Athar M and Chaudry IH: When apoptosis meets autophagy: Deciding cell fate after trauma and sepsis. Trends Mol Med. 15:129–138. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Hengartner MO: The biochemistry of apoptosis. Nature. 407:770–776. 2000. View Article : Google Scholar : PubMed/NCBI

30 

Budihardjo I, Oliver H, Lutter M, Luo X and Wang X: Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 15:269–290. 1999. View Article : Google Scholar : PubMed/NCBI

31 

Hotchkiss RS, Osmon SB, Chang KC, Wagner TH, Coopersmith CM and Karl IE: Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. J Immunol. 174:5110–5118. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD II, Kreisel D, Krupnick AS, et al: Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 306:2594–2605. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Wesche DE, Lomas-Neira JL, Perl M, Chung CS and Ayala A: Leukocyte apoptosis and its significance in sepsis and shock. J Leukoc Biol. 78:325–337. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Felmet KA, Hall MW, Clark RS, Jaffe R and Carcillo JA: Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J Immunol. 174:3765–3772. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Hotchkiss RS, Chang KC, Grayson MH, Tinsley KW, Dunne BS, Davis CG, Osborne DF and Karl IE: Adoptive transfer of apoptotic splenocytes worsens survival, whereas adoptive transfer of necrotic splenocytes improves survival in sepsis. Proc Natl Acad Sci USA. 100:6724–6729. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Wesche-Soldato DE, Swan RZ, Chung CS and Ayala A: The apoptotic pathway as a therapeutic target in sepsis. Curr Drug Targets. 8:493–500. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Springer TA: Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol. 57:827–872. 1995. View Article : Google Scholar : PubMed/NCBI

38 

Hotchkiss RS, Tinsley KW, Swanson PE, Chang KC, Cobb JP, Buchman TG, Korsmeyer SJ and Karl IE: Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci USA. 96:14541–14546. 1999. View Article : Google Scholar : PubMed/NCBI

39 

Hotchkiss RS, Chang KC, Swanson PE, Tinsley KW, Hui JJ, Klender P, Xanthoudakis S, Roy S, Black C, Grimm E, et al: Caspase inhibitors improve survival in sepsis: A critical role of the lymphocyte. Nat Immunol. 1:496–501. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Dong X, Shen K and Bulow HE: Intrinsic and extrinsic mechanisms of dendritic morphogenesis. Annu Rev Physiol. 77:271–300. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Gautier EL, Huby T, Saint-Charles F, Ouzilleau B, Chapman MJ and Lesnik P: Enhanced dendritic cell survival attenuates lipopolysaccharide-induced immunosuppression and increases resistance to lethal endotoxic shock. J Immunol. 180:6941–6946. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Tinsley KW, Grayson MH, Swanson PE, Drewry AM, Chang KC, Karl IE and Hotchkiss RS: Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. J Immunol. 171:909–914. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Wesche-Soldato DE, Chung CS, Lomas-Neira J, Doughty LA, Gregory SH and Ayala A: In vivo delivery of caspase-8 or Fas siRNA improves the survival of septic mice. Blood. 106:2295–2301. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Brahmamdam P, Watanabe E, Unsinger J, Chang KC, Schierding W, Hoekzema AS, Zhou TT, McDonough JS, Holemon H, Heidel JD, et al: Targeted delivery of siRNA to cell death proteins in sepsis. Shock. 32:131–139. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Lamkanfi M, Moreira LO, Makena P, Spierings DC, Boyd K, Murray PJ, Green DR and Kanneganti TD: Caspase-7 deficiency protects from endotoxin-induced lymphocyte apoptosis and improves survival. Blood. 113:2742–2745. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Hotchkiss RS, Swanson PE, Knudson CM, Chang KC, Cobb JP, Osborne DF, Zollner KM, Buchman TG, Korsmeyer SJ and Karl IE: Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J Immunol. 162:4148–4156. 1999.PubMed/NCBI

47 

Peck-Palmer OM, Unsinger J, Chang KC, McDonough JS, Perlman H, McDunn JE and Hotchkiss RS: Modulation of the Bcl-2 family blocks sepsis-induced depletion of dendritic cells and macrophages. Shock. 31:359–366. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Chung CS, Song GY, Lomas J, Simms HH, Chaudry IH and Ayala A: Inhibition of Fas/Fas ligand signaling improves septic survival: Differential effects on macrophage apoptotic and functional capacity. J Leukoc Biol. 74:344–351. 2003. View Article : Google Scholar : PubMed/NCBI

49 

Méthot N, Huang J, Coulombe N, Vaillancourt JP, Rasper D, Tam J, Han Y, Colucci J, Zamboni R, Xanthoudakis S, et al: Differential efficacy of caspase inhibitors on apoptosis markers during sepsis in rats and implication for fractional inhibition requirements for therapeutics. J Exp Med. 199:199–207. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Kidd VJ: Proteolytic activities that mediate apoptosis. Annu Rev Physiol. 60:533–573. 1998. View Article : Google Scholar : PubMed/NCBI

51 

Martinon F and Tschopp J: Inflammatory caspases: Linking an intracellular innate immune system to autoinflammatory diseases. Cell. 117:561–574. 2004. View Article : Google Scholar : PubMed/NCBI

52 

Parrino J, Hotchkiss RS and Bray M: Prevention of immune cell apoptosis as potential therapeutic strategy for severe infections. Emerg Infect Dis. 13:191–198. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Levine B, Mizushima N and Virgin HW: Autophagy in immunity and inflammation. Nature. 469:323–335. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Klionsky DJ and Codogno P: The mechanism and physiological function of macroautophagy. J Innate Immun. 5:427–433. 2013. View Article : Google Scholar : PubMed/NCBI

55 

He C and Klionsky DJ: Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 43:67–93. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Jung CH, Ro SH, Cao J, Otto NM and Kim DH: mTOR regulation of autophagy. FEBS Lett. 584:1287–1295. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD and Levine B: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 122:927–939. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y and Shimizu S: Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature. 461:654–658. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Behrends C, Sowa ME, Gygi SP and Harper JW: Network organization of the human autophagy system. Nature. 466:68–76. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Moy RH and Cherry S: Antimicrobial autophagy: A conserved innate immune response in Drosophila. J Innate Immun. 5:444–455. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Levine B and Kroemer G: Autophagy in the pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Pua HH, Guo J, Komatsu M and He YW: Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol. 182:4046–4055. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Miller BC, Zhao Z, Stephenson LM, Cadwell K, Pua HH, Lee HK, Mizushima NN, Iwasaki A, He YW, Swat W and Virgin HW IV: The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy. 4:309–314. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Pua HH, Dzhagalov I, Chuck M, Mizushima N and He YW: A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med. 204:25–31. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervonsky A, Mizushima N, Grinstein S and Iwasaki A: In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity. 32:227–239. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Pyle A, Burn DJ, Gordon C, Swan C, Chinnery PF and Baudouin SV: Fall in circulating mononuclear cell mitochondrial DNA content in human sepsis. Intensive Care Med. 36:956–962. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K and Hauser CJ: Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 464:104–107. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D and Deretic V: Autophagy-based unconventional secretory pathway for extracellular delivery of IL-β. EMBO J. 30:4701–4711. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Jiang S, Dupont N, Castillo EF and Deretic V: Secretory versus degradative autophagy: Unconventional secretion of inflammatory mediators. J Innate Immun. 5:471–479. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C and Levine B: Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell. 128:931–946. 2007. View Article : Google Scholar : PubMed/NCBI

71 

Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS and Iwasaki A: Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci USA. 106:2770–2775. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Maiuri MC, Zalckvar E, Kimchi A and Kroemer G: Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007. View Article : Google Scholar : PubMed/NCBI

73 

Fimia GM and Piacentini M: Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci. 67:1581–1588. 2010. View Article : Google Scholar : PubMed/NCBI

74 

Rubinstein AD and Kimchi A: Life in the balance-a mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci. 125:5259–5268. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Zinkel S, Gross A and Yang E: BCL2 family in DNA damage and cell cycle control. Cell Death Differ. 13:1351–1359. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Shi CS and Kehrl JH: MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem. 283:33175–33182. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Kurihara Y, Kanki T, Aoki Y, Hirota Y, Saigusa T, Uchiumi T and Kang D: Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem. 287:3265–3272. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Zhou R, Yazdi AS, Menu P and Tschopp J: A role for mitochondria in NLRP3 inflammasome activation. Nature. 469:221–225. 2011. View Article : Google Scholar : PubMed/NCBI

79 

Tang D, Loze MT, Zeh HJ and Kang R: The redox protein HMGB1 regulates cell death and survival in cancer treatment. Autophagy. 6:1181–1183. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T and Simon HU: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 8:1124–1132. 2006. View Article : Google Scholar : PubMed/NCBI

81 

Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi B, Lee H, Kim JH, et al: Essential roles of Atg5 and FADD in autophagic cell death: Dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem. 280:20722–20729. 2005. View Article : Google Scholar : PubMed/NCBI

82 

González-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquère S, Eskelinen EL, Pierron G, Saftig P and Kroemer G: The apoptosis/autophagy paradox: Autophagic vacuolization before apoptotic death. J Cell Sci. 118:3091–3102. 2005. View Article : Google Scholar : PubMed/NCBI

83 

Mizumura K, Cloonan SM, Haspel JA and Choi AM: The emerging importance of autophagy in pulmonary diseases. Chest. 142:1289–1299. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Mizumura K, Choi AM and Ryter SW: Emerging role of selective autophagy in human diseases. Front Pharmacol. 5:2442014. View Article : Google Scholar : PubMed/NCBI

85 

Lam KK, Zheng X, Forestieri R, Balgi AD, Nodwell M, Vollett S, Anderson HJ, Andersen RJ, Av-Gay Y and Roberge M: Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis. PLoS Pathog. 8:e10026912012. View Article : Google Scholar : PubMed/NCBI

86 

Tung SM, Unal C, Ley A, Pena C, Tunggal B, Noegel AA, Krut O, Steinert M and Eichinger L: Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell Microbiol. 12:765–780. 2010. View Article : Google Scholar : PubMed/NCBI

87 

Ye Y, Li X, Wang W, Ouedraogo KC, Li Y, Gan C, Tan S, Zhou X and Wu M: Atg7 deficiency impairs host defense against Klebsiella pneumoniae by impacting bacterial clearance, survival and inflammatory responses in mice. Am J Physiol Lung Cell Mol Physiol. 307:L355–L363. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Gannagé M, Dormann D, Albrecht R, Dengjel J, Torossi T, Rämer PC, Lee M, Strowig T, Arrey F, Conenello G, et al: Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe. 6:367–380. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Lee SJ, Smith A, Guo L, Alastalo TP, Li M, Sawada H, Liu X, Chen ZH, Ifedigbo E, Jin Y, et al: Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med. 183:649–658. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Patel AS, Lin L, Geyer A, Haspel JA, An CH, Cao J, Rosas IO and Morse D: Autophagy in idiopathic pulmonary fibrosis. PLoS One. 7:e413942012. View Article : Google Scholar : PubMed/NCBI

91 

Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, Stolz DB, Dhir R, Landreneau RJ, Schuchert MJ, Yousem SA, et al: Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS One. 3:e33162008. View Article : Google Scholar : PubMed/NCBI

92 

Chen ZH, Lam HC, Jin Y, Kim HP, Cao J, Lee SJ, Ifedigbo E, Parameswaran H, Ryter SW and Choi AM: Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci USA. 107:18880–18885. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Yang ZJ, Chee CE, Huang S and Sinicrope FA: The role of autophagy in cancer: Therapeutic implications. Mol Cancer Ther. 10:1533–1541. 2011. View Article : Google Scholar : PubMed/NCBI

94 

Kim EJ, Jeong JH, Bae S, Kang S, Kim CH and Lim YB: mTOR inhibitors radiosensitize PTEN-deficient non-small-cell lung cancer cells harboring an EGFR activating mutation by inducing autophagy. J Cell Biochem. 114:1248–1256. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Hsieh CH, Pai PY, Hsueh HW, Yuan SS and Hsieh YC: Complete induction of autophagy is essential for cardioprotection in sepsis. Ann Surg. 253:1190–1200. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang L, Ai Y and Tsung A: Clinical application: Restoration of immune homeostasis by autophagy as a potential therapeutic target in sepsis (Review). Exp Ther Med 11: 1159-1167, 2016.
APA
Zhang, L., Ai, Y., & Tsung, A. (2016). Clinical application: Restoration of immune homeostasis by autophagy as a potential therapeutic target in sepsis (Review). Experimental and Therapeutic Medicine, 11, 1159-1167. https://doi.org/10.3892/etm.2016.3071
MLA
Zhang, L., Ai, Y., Tsung, A."Clinical application: Restoration of immune homeostasis by autophagy as a potential therapeutic target in sepsis (Review)". Experimental and Therapeutic Medicine 11.4 (2016): 1159-1167.
Chicago
Zhang, L., Ai, Y., Tsung, A."Clinical application: Restoration of immune homeostasis by autophagy as a potential therapeutic target in sepsis (Review)". Experimental and Therapeutic Medicine 11, no. 4 (2016): 1159-1167. https://doi.org/10.3892/etm.2016.3071
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang L, Ai Y and Tsung A: Clinical application: Restoration of immune homeostasis by autophagy as a potential therapeutic target in sepsis (Review). Exp Ther Med 11: 1159-1167, 2016.
APA
Zhang, L., Ai, Y., & Tsung, A. (2016). Clinical application: Restoration of immune homeostasis by autophagy as a potential therapeutic target in sepsis (Review). Experimental and Therapeutic Medicine, 11, 1159-1167. https://doi.org/10.3892/etm.2016.3071
MLA
Zhang, L., Ai, Y., Tsung, A."Clinical application: Restoration of immune homeostasis by autophagy as a potential therapeutic target in sepsis (Review)". Experimental and Therapeutic Medicine 11.4 (2016): 1159-1167.
Chicago
Zhang, L., Ai, Y., Tsung, A."Clinical application: Restoration of immune homeostasis by autophagy as a potential therapeutic target in sepsis (Review)". Experimental and Therapeutic Medicine 11, no. 4 (2016): 1159-1167. https://doi.org/10.3892/etm.2016.3071
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team