|
1
|
Wainwright M: Photodynamic antimicrobial
chemotherapy (PACT). J Antimicrob Chemother. 42:13–28. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Plaetzer K, Krammer B, Berlanda J, Berr F
and Kiesslich T: Photophysics and photochemistry of photodynamic
therapy: Fundamental aspects. Lasers Med Sci. 24:259–268. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bagnato VS, Kurachi C, Ferreira J,
Marcassa LG, Sibata CH and Allison RR: PDT experience in Brazil: A
regional profile. Photodiagnosis Photodyn Ther. 2:107–118. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Calzavara-Pinton PG, Venturini M and Sala
R: A comprehensive overview of photodynamic therapy in the
treatment of superficial fungal infections of the skin. J Photochem
Photobiol B. 78:1–6. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yu J, Hsu CH, Huang CC and Chang PY:
Development of therapeutic Au-methylene blue nanoparticles for
targeted photodynamic therapy of cervical cancer cells. ACS Appl
Mater Interfaces. 7:432–441. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
de Freitas LM, Soares CP and Fontana CR:
Synergistic effect of photodynamic therapy and cisplatin: A novel
approach for cervical cancer. J Photochem Photobiol B. 140:365–373.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gracia-Cazaña T, López MT, Oncins R and
Gilaberte Y: Successful treatment of sequential therapy in digital
Bowen's disease with methyl aminolevulinate photodynamic therapy
and topical diclofenac 3% in hyaluronan 2.5% gel. Dermatol Ther
(Heidelb). 28:341–343. 2015. View Article : Google Scholar
|
|
8
|
Jung SE, Kim SK and Kim YC: Photodynamic
therapy in Bowen disease of the first web space of the hand. Ann
Dermatol. 27:76–78. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Trushina OI, Novikova EG, Sokolov VV,
Filonenko EV, Chissov VI and Vorozhtsov GN: Photodynamic therapy of
virus-associated precancer and early stages cancer of cervix uteri.
Photodiagn Photodyn Ther. 5:256–259. 2008. View Article : Google Scholar
|
|
10
|
Cassidy CM, Tunney MM, McCarron PA and
Donnelly RF: Drug delivery strategies for photodynamic
antimicrobial chemotherapy: From benchtop to clinical practice. J
Photochem Photobiol B. 95:71–80. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wang Q, Yuan D, Liu W, Chen J, Lin X,
Cheng S, Li F and Duan X: Use of Optical Fiber Imported
Intra-Tissue Photodynamic Therapy for Treatment of Moderate to
Severe Acne Vulgaris. Med Sci Monit. 22:362–366. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Al-Qahtani A, Alkahtani S, Kolli B,
Tripathi P, Dutta S, Al-Kahtane AA, Jiang XJ, Ng DK and Chang KP:
Amino-phthalocyanine-mediated photodynamic inactivation of
Leishmania tropica. Antimicrob Agents Chemother: Jan 11. 2016 (Epub
ahead of print). AAC: 01879-15. 2016. View Article : Google Scholar
|
|
13
|
Gupta AK, Einarson TR, Summerbell RC and
Shear NH: An overview of topical antifungal therapy in
dermatomycoses. A North American perspective. Drugs. 55:645–674.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Calzavara-Pinton PG, Venturini M,
Capezzera R, Sala R and Zane C: Photodynamic therapy of
interdigital mycoses of the feet with topical application of
5-aminolevulinic acid. Photodermatol Photoimmunol Photomed.
20:144–147. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Henderson BW and Dougherty TJ: How does
photodynamic therapy work? Photochem Photobiol. 55:145–157. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Drake LA, Dinehart SM, Farmer ER, Goltz
RW, Graham GF, Hordinsky MK, Lewis CW, Pariser DM, Skouge JW,
Webster SB, et al: Guidelines/Outcomes Committee. American Academy
of Dermatology: Guidelines of care for superficial mycotic
infections of the skin: Tinea capitis and tinea barbae. J Am Acad
Dermatol. 34:290–294. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Brown GD, Denning DW, Gow NA, Levitz SM,
Netea MG and White TC: Hidden killers: Human fungal infections. Sci
Transl Med. 4:165rv132012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cowen LE: The evolution of fungal drug
resistance: Modulating the trajectory from genotype to phenotype.
Nat Rev Microbiol. 6:187–198. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Soergel P and Hillemanns P: Photodynamic
therapy for intraepithelial neoplasia of the lower genital tract.
Photodiagn Photodyn Ther. 7:10–14. 2010. View Article : Google Scholar
|
|
20
|
Smijs TG and Pavel S: The susceptibility
of dermatophytes to photodynamic treatment with special focus on
Trichophyton rubrum. Photochem Photobiol. 87:2–13. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hamblin MR and Hasan T: Photodynamic
therapy: A new antimicrobial approach to infectious disease?
Photochem Photobiol Sci. 3:436–450. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Maisch T: A new strategy to destroy
antibiotic resistant microorganisms: Antimicrobial photodynamic
treatment. Mini Rev Med Chem. 9:974–983. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wilson BC and Patterson MS: The physics,
biophysics and technology of photodynamic therapy. Phys Med Biol.
53:R61–R109. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Athar M, Mukhtar H and Bickers DR:
Differential role of reactive oxygen intermediates in photofrin-I-
and photofrin-II-mediated photoenhancement of lipid peroxidation in
epidermal microsomal membranes. J Invest Dermatol. 90:652–657.
1988. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Redmond RW and Gamlin JN: A compilation of
singlet oxygen yields from biologically relevant molecules.
Photochem Photobiol. 70:391–475. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Phoenix DA and Harris F: Light activated
compounds as antimicrobial agents - patently obvious? Recent Pat
Antiinfect Drug Discov. 1:181–199. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jori G and Coppellotti O: Inactivation of
pathogenic microorganisms by photodynamic techniques: Mechanistic
aspects and perspective applications. Antiinfect Agents Med Chem.
6:119–131. 2007. View Article : Google Scholar
|
|
28
|
Smijs TG and Schuitmaker HJ: Photodynamic
inactivation of the dermatophyte Trichophyton rubrum. Photochem
Photobiol. 77:556–560. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Girotti AW and Kriska T: Role of lipid
hydroperoxides in photo-oxidative stress signaling. Antioxid Redox
Signal. 6:301–310. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bertoloni G, Zambotto F, Conventi L, Reddi
E and Jori G: Role of specific cellular targets in the
hematoporphyrin-sensitized photoinactivation of microbial cells.
Photochem Photobiol. 46:695–698. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Merchat M, Bertolini G, Giacomini P,
Villanueva A and Jori G: Meso-substituted cationic porphyrins as
efficient photosensitizers of gram-positive and gram-negative
bacteria. J Photochem Photobiol B. 32:153–157. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lee JW, Kim BJ and Kim MN: Photodynamic
therapy: New treatment for recalcitrant Malassezia folliculitis.
Lasers Surg Med. 42:192–196. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Allison RR, Downie GH, Cuenca R, Hu XH,
Childs CJ and Sibata CH: Photosensitizers in clinical PDT.
Photodiagn Photodyn Ther. 1:27–42. 2004. View Article : Google Scholar
|
|
34
|
Magalhães JL, Moreira LM, Rodrigues-Filho
UP, Giz MJ, Pereira-da-Silva MA, Landers R, Vinhas RCG and Nascente
PAP: Surface chemistry of iron tetraazamacrocycle on the
aminopropyl-modified surface of oxidized n-Si(100) by AFM and XPS.
Surf Interface Anal. 33:293–298. 2002. View Article : Google Scholar
|
|
35
|
Moreira LM, dos Santos FV, Lyon JP,
Maftoum-Costa M, Pacheco-Soares C and da Silva NA: Photodynamic
therapy: Porphyrins and phthalocyanines as photosensitizers. J
Chem. 61:741–754. 2008.
|
|
36
|
Moreira LM, Ribelatto JC and Imasato H:
Ruffled and planar conformations of the porphyrin ring in complexes
and heme proteins: Physical-chemistry properties and spectroscopic
implications. Quim Nova. 27:958–963. 2004.(In Portuguese).
View Article : Google Scholar
|
|
37
|
Nyman ES and Hynninen PH: Research
advances in the use of tetrapyrrolic photosensitizers for
photodynamic therapy. J Photochem Photobiol B. 73:1–28. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Plaetzer K, Krammer B, Berlanda J, Berr F
and Kiesslich T: Photophysics and photochemistry of photodynamic
therapy: Fundamental aspects. Lasers Med Sci. 24:259–268. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Calzavara-Pinton P, Rossi MT, Sala R and
Venturini M: Photodynamic antifungal chemotherapy. Photochem
Photobiol. 88:512–522. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Maisch T, Szeimies RM, Lehn N and Abels C:
Antibacterial photodynamic therapy. A new treatment for superficial
bacterial infections? Hautarzt. 56:1048–1055. 2005.(In German).
PubMed/NCBI
|
|
41
|
Ragàs X, Agut M and Nonell S: Singlet
oxygen in Escherichia coli: New insights for antimicrobial
photodynamic therapy. Free Radic Biol Med. 49:770–776. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Odom R: Dermatologic manifestations of
AIDS. J Am Podiatr Med Assoc. 78:127–129. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Martinez-Rossi NM, Peres NT and Rossi A:
Antifungal resistance mechanisms in dermatophytes. Mycopathologia.
166:369–383. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Grappel SF, Bishop CT and Blank F:
Immunology of dermatophytes and dermatophytosis. Bacteriol Rev.
38:222–250. 1974.PubMed/NCBI
|
|
45
|
San-Blas G: The cell wall of fungal human
pathogens: Its possible role in host-parasite relationships.
Mycopathologia. 79:159–184. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Deacon JW: The moulds of man. Fungal
Biology. Blackwell Publishing Ltd. 322–338. 2006.
|
|
47
|
Zurita J and Hay RJ: Adherence of
dermatophyte microconidia and arthroconidia to human keratinocytes
in vitro. J Invest Dermatol. 89:529–534. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Apodaca G and McKerrow JH: Regulation of
Trichophyton rubrum proteolytic activity. Infect Immun.
57:3081–3090. 1989.PubMed/NCBI
|
|
49
|
Brasch J and Zaldua M: Enzyme patterns of
dermatophytes. Mycoses. 37:11–16. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Maranhão FC, Paião FG and Martinez-Rossi
NM: Isolation of transcripts over-expressed in human pathogen
Trichophyton rubrum during growth in keratin. Microb Pathog.
43:166–172. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gupta AK and Cooper EA: Update in
antifungal therapy of dermatophytosis. Mycopathologia. 166:353–367.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lyon JP, Costa SC, Totti VMG, Munhoz MF
and de Resende MA: Predisposing conditions for Candida spp.
carriage in the oral cavity of denture wearers and individuals with
natural teeth. Can J Microbiol. 52:462–467. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Munin E, Giroldo LM, Alves LP and Costa
MS: Study of germ tube formation by Candida albicans after
photodynamic antimicrobial chemotherapy (PACT). J Photochem
Photobiol B. 88:16–20. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Dovigo LN, Pavarina AC, Mima EG, Giampaolo
ET, Vergani CE and Bagnato VS: Fungicidal effect of photodynamic
therapy against fluconazole-resistant Candida albicans and
Candida glabrata. Mycoses. 54:123–130. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Fuchs BB, Tegos GP, Hamblin MR and
Mylonakis E: Susceptibility of Cryptococcus neoformans to
photodynamic inactivation is associated with cell wall integrity.
Antimicrob Agents Chemother. 51:2929–2936. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Prates RA, Kato IT, Ribeiro MS, Tegos GP
and Hamblin MR: Influence of multidrug efflux systems on methylene
blue-mediated photodynamic inactivation of Candida albicans.
J Antimicrob Chemother. 66:1525–1532. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Calzavara-Pinton PG, Venturini M,
Capezzera R, Sala R and Zane C: Photodynamic therapy of
interdigital mycoses of the feet with topical application of
5-aminolevulinic acid. Photodermatol Photoimmunol Photomed.
20:144–147. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Smijs TGM, Bouwstra JA, Schuitmaker HJ,
Talebi M and Pavel S: A novel ex vivo skin model to study the
susceptibility of the dermatomycete Trichophyton rubrum to
photodynamic treatment in different growth phases. J Antimicrob
Chemother. 59:433–440. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Peres NT, Sanches PR, Falcão JP, Silveira
HC, Paião FG, Maranhão FC, Gras DE, Segato F, Cazzaniga RA,
Mazucato M, et al: Transcriptional profiling reveals the expression
of novel genes in response to various stimuli in the human
dermatophyte Trichophyton rubrum. BMC Microbiol. 10:392010.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Akilov OE, Kosaka S, O'Riordan K and Hasan
T: Parasiticidal effect of delta-aminolevulinic acid-based
photodynamic therapy for cutaneous leishmaniasis is indirect and
mediated through the killing of the host cells. Exp Dermatol.
16:651–60. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wiegell SR, Stender IM, Na R and Wulf HC:
Pain associated with photodynamic therapy using 5-aminolevulinic
acid or 5-aminolevulinic acid methylester on tape-stripped normal
skin. Arch Dermatol. 139:1173–1177. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sil S, Bose T, Roy D and Chakraborti AS:
Protoporphyrin IX-induced structural and functional changes in
human red blood cells, haemoglobin and myoglobin. J Biosci.
29:281–291. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Di Venosa G, Hermida L, Fukuda H, Defain
MV, Rodriguez L, Mamone L, MacRobert A, Casas A and Batlle A:
Comparation of liposomal formulations of ALA Undecanoyl ester for
its use in photodynamic therapy. J Photochem Photobiol B.
96:152–158. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Morrow DI, McCarron PA, Woolfson AD,
Juzenas P, Juzeniene A, Iani V, Moan J and Donnelly RF: Hexyl
aminolaevulinate is a more effective topical photosensitiser
precursor than methyl aminolaevulinate and 5-aminolaevulinic acids
when applied in equimolar doses. J Pharm Sci. 99:3486–3498. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
van den Akker JT, Iani V, Star WM,
Sterenborg HJ and Moan J: Topical application of 5-aminolevulinic
acid hexyl ester and 5-aminolevulinic acid to normal nude mouse
skin: Differences in protoporphyrin IX fluorescence kinetics and
the role of the stratum corneum. Photochem Photobiol. 72:681–689.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gaullier JM, Berg K, Peng Q, Anholt H,
Selbo PK, Ma LW and Moan J: Use of 5-aminolevulinic acid esters to
improve photodynamic therapy on cells in culture. Cancer Res.
57:1481–1486. 1997.PubMed/NCBI
|
|
67
|
Lopez RF, Bentley MV, Begoña
Delgado-Charro M and Guy RH: Optimization of aminolevulinic acid
delivery by iontophoresis. J Control Release. 88:65–70. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kacerovska D, Pizinger K, Kumpova M and
Cetkovska P: Genital warts treated by photodynamic therapy.
Skinmed. 6:295–297. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Mikolajewska P, Donnelly RF, Garland MJ,
Morrow DI, Singh TR, Iani V, Moan J and Juzeniene A: Microneedle
pre-treatment of human skin improves 5-aminolevulininc acid (ALA)-
and 5-aminolevulinic acid methyl ester (MAL)-induced PpIX
production for topical photodynamic therapy without increase in
pain or erythema. Pharm Res. 27:2213–2220. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Friedberg JS, Skema C, Baum ED, Burdick J,
Vinogradov SA, Wilson DF, Horan AD and Nachamkin I: In vitro
effects of photodynamic therapy on Aspergillus fumigatus. J
Antimicrob Chemother. 48:105–107. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Fang JY, Hong CT, Chiu WT and Wang YY:
Effect of liposomes and niosomes on skin permeation of enoxacin.
Int J Pharm. 219:61–72. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Allison RR, Downie GH, Cuenca R, et al:
Photosensitizers in clinical PDT. Photodiagnosis Photodyn Ther.
1:27–42. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kamp H, Tietz HJ, Lutz M, Piazena H,
Sowyrda P, Lademann J and Blume-Peytavi U: Antifungal effect of
5-aminolevulinic acid PDT in Trichophyton rubrum. Mycoses.
48:101–107. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zucker D, Marcus D, Barenholz Y and
Goldblum A: Liposome drugs' loading efficiency: A working model
based on loading conditions and drug's physicochemical properties.
J Control Release. 139:73–80. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Fang JY: Nano- or submicron-sized
liposomes as carriers for drug delivery. Chang Gung Med J.
29:358–362. 2006.PubMed/NCBI
|
|
76
|
Huang L, Huang YY, Mroz P, Tegos GP,
Zhiyentayev T, Sharma SK, Lu Z, Balasubramanian T, Krayer M, Ruzié
C, et al: Stable synthetic cationic bacteriochlorins as selective
antimicrobial photosensitizers. Antimicrob Agents Chemother.
54:3834–3841. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Qiao J, Li R, Ding Y and Fang H:
Photodynamic therapy in the treatment of superficial mycoses: An
evidence-based evaluation. Mycopathologia. 170:339–343. 2010.
View Article : Google Scholar : PubMed/NCBI
|